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Preface

v

In the literature, several terms are used synonymously to name the topic
of this book: chem-, chemi-, or chemo-informatics. A widely recognized defi-
nition of this discipline is the one by Frank Brown from 1998 (1) who defined
chemoinformatics as the combination of “all the information resources that a
scientist needs to optimize the properties of a ligand to become a drug.” In
Brown’s definition, two aspects play a fundamentally important role: deci-
sion support by computational means and drug discovery, which distinguishes
it from the term “chemical informatics” that was introduced at least ten years
earlier and described as the application of information technology to chem-
istry (not with a specific focus on drug discovery). In addition, there is of
course “chemometrics,” which is generally understood as the application of
statistical methods to chemical data and the derivation of relevant statistical
models and descriptors (2). The pharmaceutical focus of many developments
and efforts in this area—and the current popularity of gene-to-drug or simi-
lar paradigms—is further reflected by the recent introduction of such terms
as “discovery informatics” (3), which takes into account that gaining knowl-
edge from chemical data alone is not sufficient to be ultimately successful
in drug discovery. Such insights are well in accord with other views that the
boundaries between bio- and chemoinformatics are fluid and that these dis-
ciplines should be closely combined or merged to significantly impact bio-
technology or pharmaceutical research (4). Clearly, from an algorithmic or
methodological point of view, bio- and chemoinformatics are much more
similar to each other than many of their applications would suggest, at least
on a first glance. It is fair to assume that the application of information sci-
ence and technology to chemical or biological problems will further develop
and mature, as well as continue to define, and redefine, itself.

If we wish to focus on chemoinformatics in a more narrow sense, what
should we really consider? First, methods that support decision making in the
context of pharmaceutical research (2) (such as compound design and selec-
tion) or methods that help interfacing computational and experimental pro-
grams (4) [such as virtual and biological screening (5)] are without doubt
essential components. Second, equally important to developing methods and
research tools is building and maintaining computational infrastructures to
collect, organize, manage, and analyze chemical data. Third, I would propose
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that it has also become increasingly difficult to distinguish between chemoin-
formatics and chemometrics, since statistical methods, models, and descrip-
tors play a crucial role in, for example, similarity and diversity analysis or
virtual screening. Fourth, approaches to explore (and exploit) structure–activ-
ity or structure–property relationships can hardly be excluded from chemoinfor-
matics research, much of which aims at helping to identify or make better molecules.
This means that approaches that are long disciplines in their own right such as QSAR
or structure-based design can—and perhaps should—also be considered to contrib-
ute and belong to chemoinformatics. Lastly, evaluation of drug-likeness and predic-
tion of downstream ADME characteristics of compounds have become highly
relevant topics for chemoinformatics and drug discovery research and are approached
using rather different concepts and algorithms.

Being confronted with the task of putting Chemoinformatics: Concepts,

Methods, and Tools for Drug Discovery together, I decided to focus on authors
and their individual contributions, rather than trying to address everything pos-
sible that could be covered under the chemoinformatics umbrella, as discussed
above. It was my sincere hope that this approach would do justice to this still
evolving and rather diverse field. Therefore, a variety of researchers (including
well-recognized pioneers, senior scientists, and junior-level investigators) from
diverse professional environments (academia, large pharmaceutical industry,
and biotech companies) were asked to contribute. Chemoinformatics-relevant
subject areas were initially outlined to provide some guidance, but authors
were given as much freedom as possible in choosing their topics and design-
ing their chapters. The result we are looking at is the rather diverse array of
chapters I had initially hoped for. Certainly, many chapters go well beyond
the introduction of single methods and protocols that is a major theme of the
Methods in Molecular Biology series, at least as far as experimental science is
concerned. Our contributions range from the description of specific methods
or applications to the discussion of fundamentally important concepts and
extensive review articles. On the other hand, some of the topics I initially
envisioned to cover are missing, for example, neural network simulations or
chemical genetics, to name just two. By contrast, some contributions present
and discuss similar methods, for example, compound selection or library
design, in rather different ways, which I find particularly interesting and stimu-
lating.

Chemoinformatics: Concepts, Methods, and Tools for Discovery begins
with an elaborate theoretical discussion of the concept of molecular similarity
by Maggiora & Shanmugasundaram that is one of the origins and cornerstones
of chemoinformatics as we understand it today. Chapter 2 by Willett follows
up on this theme and extends the discussion to molecular diversity, a related
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—yet distinct—and equally fundamental concept. Following these method-
ological considerations, Bembenek & colleagues describe a computational infra-
structure to enable pharmaceutical researchers to efficiently access basic
chemoinformatics tools and help in decision-making. Chapters 4 and 5 by Parker
& Schreyer and Lajiness & Shanmugasundaram describe efforts to interface
chemoinformatics approaches with high-throughput screening and with screening
and medicinal chemistry, respectively. As discussed above, the formation of such
interfaces is one of the major challenges—and opportunities—for chemoinfor-
matics in pharmaceutical research.

Esposito & colleagues provide an extensive discussion of QSAR approaches
in Chapter 6. The authors review basic principles and methods and then focus on
the latest developments in multidimensional QSAR analysis. In the following chap-
ter, Gomar & colleagues describe the development of a lipophilicity descriptor that
alleviates the molecular alignment problem in QSAR and discuss exemplary appli-
cations. In general, the majority of chemoinformatics applications critically depend
on the use of descriptors of molecular structure and properties, and Chapter 8 by
Labute presents a good example of descriptor design. The author describes the gen-
eration of a novel class of molecular surface property descriptors that can be readily
calculated from 2D representations of molecular structures.

The next four chapters focus on partitioning algorithms and classification
methods that have become very popular for the analysis of large compound
databases, screening sets, and virtual screening for active molecules. Xue &
colleagues describe cell-based partitioning based on principal component analysis
and, to contrast with chemical space dimension reduction methods, Godden &
Bajorath introduce a statistically based partitioning algorithm that directly oper-
ates in higher-dimensional, albeit simplified, chemical descriptor spaces. In the
following back-to-back chapters, Lam & Welch first apply clustering and cell-
based partitioning methods for the selection of active compounds from the HIV
data set of the National Cancer Institute. Based on their computational scheme
and results, Young & Hawkins apply recursive partitioning (another statistical
approach) to the same data set, thus enabling direct comparisons.

Following these compound classification and selection methods, Chap-
ters 13–15 describe different approaches to compound library design. Gillet
discusses a genetic algorithm-based method to simultaneously optimize mul-
tiple objectives or properties when designing libraries. Schnur & colleagues
describe various approaches to focus compound libraries on families of thera-
peutic targets, which represents a major trend in drug discovery, and Zheng
introduces simulated annealing as a stochastic approach to library design.

In Chapter 16, Lavine & colleagues return to a compound classification prob-
lem by using a combination of principal component analysis and a genetic algo-

Preface
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rithm that is here applied to an optimization problem different from the one dis-
cussed by Gillet. In the next chapters, Crippen introduces novel ways of describ-
ing molecular chirality and conformational parameters with relevance for the
analysis of structure–activity relationships, and Pick provides a brief review of
scoring functions for structure-based virtual screening. The book ends with an
extensive and detailed description by Jalaie & colleagues of different types of
methods, including structure-based approaches, to predict drug-like character
of compounds and basic ADME properties based on modeling their putative
interactions with cytochrome P450 isoforms, which are important drug metabo-
lizing enzymes. This discussion complements other major themes represented
herein including molecular similarity, structure-activity relationships, and com-
pound classification and design.

First and foremost, I would like to thank our authors whose diverse con-
tributions have made this project a (hopefully, interesting!) reality.

Jürgen Bajorath
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Molecular Similarity Measures

Gerald M. Maggiora and Veerabahu Shanmugasundaram

Abstract

Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chem-
ical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal
chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number
of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and
related fields. How molecular information is represented, called the representation problem, is
important to the type of molecular similarity analysis (MSA) that can be carried out in any given sit-
uation. In this work, four types of mathematical structure are used to represent molecular informa-
tion: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces
structure into sets of molecules, giving rise to the concept of a chemistry space. Although all three
concepts—molecular similarity, molecular representation, and chemistry space—are treated in this
chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity
coefficients or indices, are functions that map pairs of compatible molecular representations, that is,
representations of the same mathematical form, into real numbers usually, but not always, lying on
the unit interval. This chapter presents a somewhat pedagogical discussion of many types of mole-
cular similarity measures, their strengths and limitations, and their relationship to one another.

Key Words: Molecular similarity; molecular similarity analyses (MSA); dissimilarity.

1. Introduction

Similarity is a fundamental concept that has been used since before the time of
Aristotle. Even in the sciences, it has been used for more than two centuries (1).
Similarity is subjective and relies upon comparative judgments—there is no
absolute standard of similarity, rather “like beauty, it is in the eye of the
beholder.” Because of this subjectivity it is difficult to develop methods for unam-
biguously computing the similarities of large sets of molecules (2). Moreover,
there is no absolute standard to compare to so that assessing the validity of any
similarity-based method remains subjective; basically, one must rely upon the

From: Methods in Molecular Biology, vol. 275:
Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery
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judgment of experienced scientists. Nevertheless, numerous approaches have been
developed over the years to address this difficult but important problem (3–5).

The notion of similarity is fundamental to many aspects of chemical rea-
soning and analysis; indeed, it is perhaps the fundamental assumption under-
lying medicinal chemistry, and falls under the general rubric of molecular

similarity analysis (MSA). Determining the similarity of one “molecular
object” to another is basically an exercise in pattern matching—generally called
the matching problem. The outcome of the exercise is a value, the similarity

measure, that characterizes the degree of matching, association, proximity,
resemblance, alignment, or similarity of pairs of molecules as manifested by
their “molecular patterns,” which are made up of sets of features. The termi-
nology “proximity” is sometimes used in a more general sense to refer to the
similarity, dissimilarity, or distance between pairs of molecules. Similarity is
generally considered to be a symmetric property, that is, “A” is as similar to
“B” as “B” is to “A,” and most studies are based upon this property. Tversky (6),
however, has argued persuasively that certain similarity comparisons are inher-
ently asymmetric. Although his work was directed toward psychology, it
nonetheless has applicability in studies of molecular similarity. An example
will be presented that illustrates the nature of asymmetric similarity and how it
can be used to augment the usefulness of the usual symmetric version of sim-
ilarity. Recently, Willett et al. (7) presented a comprehensive overview of many
of the similarity measures in use today. Their review included a table that sum-
marized the form of the various measures with respect to the type of represen-
tation used and should be consulted for further details.

Choosing an appropriate feature set and an associated mathematical structure
(e.g., set, vector, function, or graph) for handling them is called the represen-

tation problem and underlies all aspects of MSA. Because similarity is subjec-
tive, choosing a feature set depends upon the background of the scientist doing
the choosing and to some extent on the problem being addressed. For example,
a synthetic organic chemist may focus on the nature of a molecular scaffold and
its substituent groups while a physical chemist may be more interested in three-
dimensional (3-D) shape and electrostatic properties.

Closely allied with the notion of molecular similarity is that of a chemistry

space. Chemistry spaces provide a means for conceptualizing and visualizing
molecular similarity. A chemistry space consists of a set of molecules and a set
of associated relations (e.g., similarities, dissimilarities, distances, and so on)
among the molecules, which give the space a “structure” (8). In most chemistry
spaces, which are coordinate-based, molecules are generally depicted as points.
This, however, need not always be the case—sometimes only similarities or
“distances” among molecules in the population are known. Nevertheless, this
type of pairwise information can be used to construct an appropriate coordinate

2 Maggiora and Shanmugasundaram



system that optimally preserves the information using methods such as multi-
dimensional scaling (MDS) (9), principal-component analysis (PCA) (10), or
nonlinear mapping (NLM) (11). Coordinate-based chemistry spaces can also be
partitioned into cells and are usually referred to as cell-based chemistry spaces
(12). Each particular type of representation of chemistry space has its strengths
and weaknesses so that it may be necessary to use multiple types of represen-
tations to satisfactorily treat specific problems.

Identifying the appropriate molecular features is crucial in MSA, as the
number of potential features is quite large and many contain redundant infor-
mation. Typical types of molecular features include molecular size, shape,
charge distribution, conformation states, and conformational flexibility. In gen-
eral, only those features deemed relevant or necessary to the matching task at
hand are considered. Features are mimicked by any number of descriptors that,
ideally, capture the essential characteristics of the features. For example, numer-
ous descriptors of molecular shape exist, such as the Jurs shape indices (13) or
the Sterimol parameters (14), as well as descriptors of charge distributions,
such as the venerable Mulliken population analysis (15) or charged partial sur-
face areas, which conveniently incorporate both charge and shape information
(16) and descriptors of conformational flexibility, such as the Kier molecular
flexibility index Φ (17). Sometimes the term “feature” is used interchangeably
with “descriptor.” As is seen in the above discussion, features are more general
than descriptors, but this distinction is generally not strictly adhered to in most
research papers including this one. Other chapters in this work should be con-
sulted for detailed discussion of the many types and flavors of descriptors in
use in chemoinformatics and chemometrics today.

Similarity measures for assessing the degree of matching between two mol-
ecules given a particular representation constitutes the main subject matter of
this chapter. These measures, also called similarity coefficients or indices, are
functions that map pairs of compatible molecular representations, that is, rep-
resentations of the same mathematical form, into real numbers usually, but not
always, lying on the unit interval. Set, graph, vector, and function-based repre-
sentations use a variety of distance and “overlap” measures. Graph-based rep-
resentations use chemical distance or related graph metrics (18,19), although
numerous graph invariants have been used as descriptors in vector-based rep-
resentations (20–22). All of the similarity and related measures have at least
some idiosyncratic behavior, which can give rise to misleading assessments of
similarity or dissimilarity (2). Similarity measures are sometimes referred to
as similarity coefficients or similarity indices and these terminologies will be
used somewhat interchangeably in this work.

From the above discussion it is clear that similarity measures provide assess-
ments that are inherently subjective in nature. Thus, the inconsistencies of var-
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ious measures are not entirely surprising and sometimes can be quite daunting.
An interesting approach was recently developed by Willett’s group using a tech-
nique called “data fusion”(23). They showed that values obtained from multi-
ple similarity methods combined using data fusion led to an improvement over
values obtained utilizing a single similarity measure. Alternatively, less sophis-
ticated approaches, such as taking the mean of multiple similarity values, can
also be used.

A brief introduction to the types of molecular representations typically
encountered in MSA is presented at the beginning of Subheading 2. followed
in Subheading 2.1. by a discussion of similarity measures based on chemical-
graph representations. Although graph-based representations are the most famil-
iar to chemists, their use has been somewhat limited in similarity studies due to
the difficulty of evaluating the appropriate similarity measures. This section is
followed by a discussion of similarity measures based on finite vector repre-
sentations, the most ubiquitous types of representations. In these cases, the
vector components can be of four types:

(1.1)

the first of which, called “binary vectors,” “bit vectors,” or “molecular finger-
prints,” is by far the most prevalent in applications and is discussed in detail in
Subheading 2.2.1. Although the terminology “vector” is used, these objects
mathematically are classical sets. Thus, the associated similarity measures are
set-based rather than vector-based measures. In addition to the more traditional
symmetric similarity measures, a discussion of asymmetric similarity measures
associated with binary vectors is also presented.

Vectors whose components are based upon categorical or integer variables
are described in Subheading 2.2.3. As was the case for binary vectors, these
vectors are also classical sets, and, as was the case in the previous subsection,
the associated similarity measures are set-based rather than vector-based. Here
it will also be seen that the form of the set measures are, in some cases, mod-
ified from those associated with traditional classical sets.

Subheading 2.3. describes the last class of finite feature vectors, namely,
those with continuous-valued components, where the components (i.e., features)
are usually obtained from computed or experimentally measured properties. An
often-overlooked aspect of continuous feature vectors is the inherent non-
orthogonality of the basis of the “feature space.” The consequences of this are
discussed in Subheading 2.3.2. Similarity measures derived from continuous
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vectors are generally related to Euclidean distances or to cosine or correlation
coefficients, all of which are “true” vector-based measures, and are discussed in
Subheading 2.3.3. Finally, a new “molecule-based” approach to continuous fea-
ture vectors that automatically accounts for the inherent non-orthogonality of
the feature basis is presented in Subheading 2.3.4.

Essentially none of the previously discussed approaches deals with the
three-dimensionality of molecules. This is dealt with in Subheading 2.4.,
which describes the application of field-based functions to 3-D molecular
similarity. The fields referred to here are related to the steric, electrostatic,
and lipophilic properties of molecules and are represented by functions (i.e.,
“infinite-dimensional vectors”), which are usually taken to be linear combi-
nations of atomic-centered Gaussians. Similarity measures totally analogous
to those defined for finite-dimensional, continuous-valued feature vectors (see

Subheading 2.3.3.) also apply here and are treated in Subheading 2.4.2. An
added difficulty encountered in 3-D MSA arises from the conformational
flexibility of most molecules of interest in chemoinformatic applications. Two
general approaches to this problem are described here. One approach involves
the identification of a set of conformational prototypes and the other approach
involves the simultaneous maximization of the similarity measure and mini-
mization of the conformational energy of the molecules being aligned. The
former approach is more computationally demanding because it involves M × N

pairwise comparisons, where M and N are the respective numbers of proto-
type conformations for each pair of molecules.

The role of chemistry spaces in chemoinformatics is treated briefly in
Subheading 3. The treatment includes a discussion of coordinate-based and
coordinate-free chemistry spaces, how they can be transformed into one
another, and how the usually high dimension of typical chemistry spaces can be
reduced in order to facilitate visualization and analysis.

This work is not intended as a comprehensive review of the similarity liter-
ature. Rather, it is intended to provide an integrated and somewhat pedagogical
discussion of many of the simple, complex, and confounding issues confronting
scientists using the concept of molecular similarity in their work.

2. Molecular Representations and their Similarity Measures

How the structural information in molecules is represented is crucial to the
types of “chemical questions” that can be asked and answered. This is certainly
true in MSA where different representations and their corresponding similarity
measures can lead to dramatically different results (2). Four types of mathe-
matical objects are typically used to represent molecules—sets, graphs, vec-
tors, and functions. Sets are the most general objects and basically underlie the
other three and are useful in their own right as will be seen below. Because of
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their importance a brief introduction to sets, employing a more powerful but
less familiar notation than that typically used, is provided in the Appendix.

Typically chemists represent molecules as “chemical graphs” (24), which
are closely related to the types of graphs dealt with by mathematicians in the
field of graph theory (25). Most chemical graphs describe the nature of the
atoms and how they are bonded. Thus, chemical graphs are sometimes said to
provide a 2-D representation of molecules. They do not typically contain infor-
mation on the essential 3-D features of molecules, although chemical graphs have
been defined that do capture some of this information (26). Three-dimensional
structures are also used extensively, especially now that numerous computer pro-
grams have been developed for their computation and display.

While chemical graphs provide a powerful and intuitive metaphor for under-
standing many aspects of chemistry, they nevertheless have their limitations
especially when dealing with questions of interest in chemometrics and
chemoinformatics (vide infra). In these fields molecular information is typically
represented by feature vectors, where each component corresponds to a “local”
or “global” feature or property of a molecule usually represented by one of a
number of possible descriptors associated with the chosen feature. Local features
include molecular fragments (“substructures”), potential pharmacophores (27),
various topological indices (28), and partial atomic charges, to name a few.
Global features include properties such as molecular weight, logP, polar sur-
face area, various BCUTs (29), and volume.

More recently, with the significant increases in computer power even on
desktop PCs, methods for directly matching 3-D features of molecules have
become more prevalent. Features here generally refer to various types of mol-
ecular fields, some such as electron density (“steric”) and electrostatic-potential
fields are derived from fundamental physics (30,31) while others such as
lipophilic potential fields (32) are constructed in an ad hoc manner. Molecular
fields are typically represented as continuous functions. Discrete fields have
also been used (33) albeit somewhat less frequently except in the case of the
many CoMFA-based studies (34).

2.1. Chemical Graphs

Chemical graphs are ubiquitous in chemistry. A chemical graph, Gk, can be
defined as an ordered triple of sets

(2.1)

where Vk is a set (see the Appendix for notation) of n vertices (“atoms”)

(2.2)
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where the lower expression for the vertex set in Eq. 2.2 is used to designate all
vertices in the set for which V(xi) = 1. Ek is the corresponding set of m edges
(“bonds”)

(2.3)

where each edge corresponds to an unordered pair of vertices, that is ek,i =
{vk,p,vk,q} , and Lk is a set of r symbols

(2.4)

that label each vertex (“atom”) and/or edge (“bond”). Typical atom labels
include hydrogen (“H”), carbon (“C”), nitrogen (“N”), and oxygen (“O”); typ-
ical bond labels include single (“s”), double (“d”), triple (“t”), and aromatic
(“ar”), but other possibilities exist. Whatever symbol set is chosen will depend
to some degree on the nature of the problem being addressed. In most chemoin-
formatics applications hydrogen-suppressed chemical graphs, which are
obtained by deleting all of the hydrogen atoms, are used. Figure 1 depicts an
example of two hydrogen-suppressed chemical graphs, G1 and G2, which are
clearly related to a chemist’s 2-D representation of a molecule. Chemical
graphs of 3-D molecular structures are described by Raymond and Willett (26),
but their use has been much more limited.

The notion of a subgraph is also important. If G′k is a subgraph of Gk, writ-
ten G′k ⊆ Gk, then

(2.5)

that is, the vertex and edge sets V′k and E′k associated with the subgraph, G′k ,
are subsets of the corresponding vertex and edge sets Vk and Ek of the graph,
Gk. Many operations defined on sets can also be defined on graphs. One such
operation is the norm or cardinality of a graph,

(2.6)

which is a measure of the “size” of the graph. Another measure the edge norm,
which is of interest in this work, is given by

(2.7)

where the subscript E explicitly denotes that the cardinality refers only to the
edges (“bonds”) of the graph. For the two chemical graphs depicted in Fig. 1,
G1E = 22 and G2E = 20. Note that only the number of bonds and not
their multiplicities (e.g., single, double) are considered here. However, many
other possibilities exist, and their use will depend on the problem being
addressed (18).

A key concept in the assessment of molecular similarity based on chemical
graphs is that of a maximum common substructure, MCS(Gi,Gj), of two chem-
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Fig. 1. An example of two hydrogen-suppressed graphs G1, G2 and a common substructure CS(G1,G2) and
the maximum common substructure MCS(G1,G2) are shown above. The Tanimoto similarity index and the dis-
tance between the two chemical graphs are computed below.



ical graphs, which derives from the concept of maximum common subgraph
employed in mathematical graph theory. There are several possible forms of
MCS (19,26). Here we will focus on what is usually called the maximum
common edge substructure, which is closest to what chemists perceive as
“chemically meaningful” substructures (35), but we will retain the simpler and
more common nomenclature MCS. A common (edge) substructure (CS) of two
chemical graphs is given by

(2.8)

where Ek
i and El

j are subsets of their respective edge sets, Ek
i ⊆ Ei and El

j ⊆ Ej,
and are equivalent. Thus, the intersection (or union) of these two equivalent
subsets is equal to the sets themselves. As there are numerous such common
substructures, CS(Gi,Gj)k,l, k,l = 1,2,3, . . . , determining the MCS between two
chemical graphs is equivalent to determining the edge intersection-set of max-
imum cardinality, that is

(2.9)

Thus,

(2.10)

that is, the MCS is equivalent to “graph intersection,” which is equivalent to the
maximum number of edges in common between the two molecules. Note that
multiple solutions may exist and that some of the solutions could involve dis-
connected graphs. However, to obtain “chemically meaningful” results only
connected MCS’s are usually considered.

The edge cardinality of the intersection and union of two chemical graphs is
given, respectively, by

(2.11)

and

(2.12)

These two expressions form the basis for several measures such as Tanimoto
similarity (see Subheading 2.2. for an extensive discussion)

(2.13)

and the distance between two chemical graphs

(2.14)
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The edge cardinality is explicitly designated in Eqs. 2.9 and 2.11–2.14 in order
to emphasize that a particular norm has been chosen. Equation 2.13 is the graph-
theoretical analog of the well-known Tanimoto similarity index (see Eq. 2.19),
which is symmetric and bounded by zero and unity. Equation 2.14 corresponds
to the distance between two graphs (36), which is the number of bonds that are
not in common in the two molecules depicted by Gi and Gj. Another distance
measure called “chemical distance” is similar to that given in Eq. 2.14 except that
lone-pair electrons are explicitly accounted for (19). The Tanimoto similarity
index of the two chemical graphs in Fig. 1 and the distance between them are
given by STan (Gi,Gj) = 0.83 and d(Gi,Gj) = 4, respectively.

A similarity index called “subsimilarity,” which is short for substructure sim-
ilarity, has been developed by developed by Hagadone (37). In form it is iden-
tical to one of the family of asymmetric similarity indices developed by
Tversky (6) that is discussed in Subheading 2.2.2.,

(2.15)

where GQ is the substructure query and GT is a target molecule. In contrast to
STan(Gi,Gj), STve(Gi,Gj) is not symmetric, although zero and unity also bound it.

Although chemical graphs are intuitive to those trained in the chemical sci-
ences, they have not been widely used in MSA primarily because of the com-
putational demands brought on by the need to compute MCS(Gi,Gj), which for
large complex systems can be quite daunting. Approximate algorithms do exist,
however (26,37), and with the ever-increasing power of computers, the use of
graph-based similarity may become more prevalent in the future. Interestingly,
there is a close analogy between determination of the MCS and alignment of
the 3-D molecular fields of molecules (see Subheading 2.4.) except that in the
former the optimization is discrete while in the latter it is continuous.

2.2. Discrete-Valued Feature Vectors

The components of discrete feature vectors may indicate the presence or
absence of a feature, the number of occurrences of a feature, or a finite set of
binned values such as would be found in an ordered, categorical variable.

2.2.1. Binary-Valued Feature Vectors

Each component of an n-component binary feature vector, also called bit

vectors or molecular fingerprints,

(2.16)
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indicates the presence or absence of a given feature, xk, that is

(2.17)

A wide variety of features have been used in bit vectors, including molecular
fragments, 3-D “potential pharmacophores,” atom pairs, 2-D pharmacophores,
topological torsions, and variety of topological indices.

Binary feature vectors are completely equivalent to sets (see the Appendix
for further discussion). Care must be exercised when using them to ensure that
appropriate mathematical operations are carried out. The number of compo-
nents in a bit vector is usually quite large, normally n >> 100. In some cases n
can be orders of magnitude larger, sometimes exceeding a million components
(27,38). Bit vectors of this size are not handled directly because many of the
components are zero, and methods such as hashing (39) are used to reduce the
size of the stored information.

Bit vectors live in an n-dimensional, discrete hypercubic space, where each
vertex of the hypercube corresponds to a set. Figure 2 provides an example of
sets with three elements. Distances between two bit vectors, vA and vB, mea-
sured in this space correspond to Hamming distances, which are based on the
city-block l1 metric

(2.18)

Because these vectors live in an n-dimensional hypercubic space, the use of
non-integer distance measures is inappropriate, although in this special case
the square of the Euclidean distance is equal to the Hamming distance.

The most widely used similarity measure by far is the Tanimoto similarity
coefficient STan, which is given in set-theoretic language as (cf. Eq. 2.13 for
the graph-theoretical case)

(2.19)

Using the explicit expressions for set cardinality, intersection, and union given
in Eqs. 5.10, 5.5, and 5.6, respectively, Eq. 2.19 becomes

(2.20)
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By changing the form of the denominator (see Eq. 5.15), STan is also given by

(2.21)

where

(2.22)

The Tanimoto similarity coefficient is symmetric,

(2.23)

as are most of the similarity coefficients in use today, and is bounded by zero
and unity,

(2.24)
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Fig. 2. Distance between two binary-valued feature vectors vA and vB is not given by
the Euclidean distance but the Hamming distance between the two.



From the form of these equations it can be seen that the method is biased
when there is a great disparity in the size of the two molecules being com-
pared. Consider, for example, the case when Q<<T, where Q is a query
molecule and T is a target molecule that could be obtained in a similarity
search. If Q is much smaller than T, Q∪T≈T, and because Q≤Q∩T,
it follows that STan(Q,T) ≈Q/T. A consequence of this relationship is that
in similarity-based searching Q will tend to recover other small molecules, T,
because as T gets larger STan becomes smaller in value, which works against the
selection of larger molecules in the search. This is not generally a problem
except in cases where a substructure of a large target molecule is quite similar
to the smaller query molecule. If the query were biologically active, the larger
target molecule containing a similar substructure to the query, which is bioac-
tive, would be missed. The same holds true for a large molecule query, that is,
it will tend to recover larger molecules. Thus, molecules with a strong sub-

structural relationship to the query molecule will likely be missed, but this
could be important in drug design as the substructure may contain the key
atoms of the pharmacophore. As will be seen in the next section, the use of an
asymmetric similarity measure can compensate for this to some degree. The
above argument carries through completely to the case of chemical-graph-based
similarity indices (see Subheading 2.1.).

A number of other similarity indices are in use today. The recent work by
Willett et al. (7) should be consulted for examples of many of them, including
a comprehensive discussion of their properties.

2.2.2. Asymmetric Similarity Indices

Most similarity measures for binary-valued feature vectors in use today are sym-
metric; Tversky (6), however, has defined an infinite family of asymmetric measures

(2.25)

where α,β ≥ 0 . This generalizes the typical symmetric Tanimoto similarity
measure given in Eq. 2.21, which obtains when α = β = 1. For all other values
of α and β STve(A,B) is asymmetric, that is, STve(A,B) ≠ STve(B,A). Only the
two extreme forms will, however, be considered here, namely, those when
α = 1 and β = 0 and α = 0 and β = 1. Their set-theoretic forms are given by

(2.26)
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(2.27)

Using Eqs. 5.5 and 5.10 both of the above equations can be written in a form
similar to that for STan given in Eq. 2.20. For example, Eq. 2.26 becomes

(2.28)

In analogy to Eq. 2.21 the asymmetric similarity indices are given, respec-
tively, by

(2.29)

As was the case for the symmetric similarity coefficient

(2.30)

although generally S*
Tve(A,B) ≠ S*

Tve(B,A).
Asymmetric similarity can provide some benefits in similarity searches

not afforded by its symmetric competitors. For example, consider as in Subhead-

ing 2.2.1., the query and target molecules, Q and T, respectively, and the asym-
metric similarity coefficients given in Eqs. 2.26 and 2.27. If Q is relatively “small”
(N.B. “small” and “large” are used here refer to the size of the set and not to the
size of the corresponding molecule), that is, if Q<<T, then target molecules
for which Q is an approximate subset will be selected using Eq. 2.26, that is,

(2.31)

This result is approximately independent of the size of T given that Q is an
approximate subset of T. A comparable selection of molecules would not be
obtained using the symmetric similarity coefficient in Eq. 2.19 or the asym-
metric similarity coefficient given by Eq. 2.27 because as the target molecule
increased in size the denominator would reduce the overall similarity values
making selection less likely. If, on the other hand, Q is a relatively “large,” that
is, if Q>>T, then using the lower expression for asymmetric similarity
in Eq. 2.27 will produce similar results

(2.32)
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except that the target molecules retrieved will be smaller than Q and will also
be approximate subsets of Q. An example of this is shown in Figs. 3 and 4.
Interestingly, choosing SPetmin

(A,B) given below in Eq. 2.34, where A = Q
and B = T, will always yield the maximum similarity value for a given (Q,T)
pair regardless of the “size” of the query molecule Q. Thus, SPetmin

(Q,T) may
be the preferred similarity index in certain types of similarity searches (cf. the
example given in Figs. 3 and 4).

The “extreme” forms, but not the intermediate forms, of asymmetric simi-
larity defined by Tversky (6) given in Eqs. 2.26 and 2.27 can be transformed
into two symmetric measures by taking the maximum and minimum of the set
cardinalities in the denominators of the two equations. The forms of these equa-
tions are obtained in analogy to those developed by Petke (33) for vectors and
field-based functions (see Subheadings 2.3. and 2.4. for further details):

(2.33)
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Fig. 3. Asymmetric similarity searching might provide some benefits not afforded by
symmetric similarity searching. (A) Database searching using ISIS keys and symmet-
ric similarity searching, STan, will not yield enalapril as a “database hit” because the
similarity value is too low, 0.58. (B) Whereas database searching using asymmetric
similarity searching, S*

Tve, could yield enalapril as a “database hit” because the asym-
metric similarity value is 0.78.



and

(2.34)

As is the case for asymmetric similarity indices, both SPetmax
(A,B) and

SPetmin
(A,B) are bounded by zero and unity, but are ordered with respect to

each other and with respect to Tanimoto similarity, that is,

(2.35)

2.2.3. Integer- and Categorical-Valued Feature Vectors

Feature vectors with integer- or categorical-valued components are identical
in form to binary-valued vectors (see Eq. 2.16). In contrast, however, each
component takes on a finite number of values

(2.36)

In the integer case, these values usually refer to the frequency of occurrence of
a given feature such as, for example, a molecular fragment. In the categorical
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Fig. 4. (A) The other asymmetric Tversky similarity index, S*
Tve, has a value of 0.69.

Exchanging the roles of the query and target molecules (Q⇔T) gives (B), which shows
that smaller target molecules are more likely to be retrieved from a large query structure
using the asymmetric Tversky similarity index than the Tanimoto similarity index.



case the values may refer to a binned variable. In both cases the vectors live in
discrete, lattice-like “hyperrectangular” spaces, which are generalizations of
the hypercubic spaces inhabited by bit vectors. Such spaces can also be
described by multisets (40), but this formalism will not be used in this work.

Distances in these spaces should be based upon an l1 or city-block metric
(see Eq. 2.18) and not the l2 or Euclidean metric typically used in many
applications. The reasons for this are the same as those discussed in
Subheading 2.2.1. for binary vectors. Set-based similarity measures can be
adapted from those based on bit vectors using an ansatz borrowed from fuzzy
set theory (41,42). For example, the Tanimoto similarity coefficient becomes

(2.37)

As noted in Klir and Yuan (41) there are many possible denominators that can
be used in place of A∪B, each of which gives rise to a different similarity
measure.

The asymmetric similarity coefficients become, in an analogous fashion
(see Eq. 2.28)

(2.38)

As was the case in the previous section for bit vectors, it can be shown that the
similarity coefficients defined here are also bounded

(2.39)

It should be noted here that these expressions only apply to the case of non-
negative integer-valued vector components. Other modifications are needed to
accommodate non-integer values. Maggiora et al., (43) have discussed this issue
in general for the case of field-based continuous functions, but their work also
applies to vectors.

In a methodology they developed called holographic QSAR (44), Hurst and
Patterson have used integer-valued vectors to characterize the frequency of
occurrence of molecular fragments. However, they do not use the vectors in
their “native” form but rather fold them into a smaller vector by hashing.
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Schneider et al. (45) have also used integer-valued vectors to characterize what
they call 2-D pharmacophores.

Integer- and categorical-valued vectors can be converted into equivalent
binary vectors by augmenting the components of a typical bit vector as shown
in Fig. 5. The process is straightforward for integer-valued variables, and
Bajorath (46) has developed a novel binning approach for variables with con-
tinuous values, basically converting them into categorical variables. Once
the mapping to the augmented bit vector has been completed all of the usual
bit-vector-based similarity measures (see Subheading 2.2.2. for further dis-
cussion) can be applied.

There are many other expressions for similarity that can be used for integer-
and categorical-valued vectors. Again, the comprehensive discussion provided
by Willett et al. should be consulted for additional details (7). Many of the fea-
tures of discrete vector-based representations do not capture all of the relevant
3-D information in any substantive way, although they do capture some 3-D
information indirectly, and this is why some feature vector procedures are
referred to as “2.5-D” methods.

2.3. Continuous-Valued Feature Vectors

Vectors whose components have continuous values correspond to the more
“traditional” types of vectors found in the physical sciences. They are of iden-
tical form to the discrete-valued vectors (see Eq. 2.16) except that the compo-
nents, vA(xk), are continuous valued. In chemoinformatics, however, the nature
of the components is considerably different from those typically found in
physics. For example, physiochemical properties, such as logP, solubility, melt-
ing point, molecular volume, Hammett σρ parameters, and surface charge, as
well as other descriptors derived explicitly for the purpose, such as BCUTs
(29), have routinely been used. The use of continuous-valued vectors is usually
confined to relatively low-dimensional chemistry spaces, generally less than
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Fig. 5. In the scheme shown above, a 20-bit integer-valued vector (maximum integer
value for each bit is 4) is converted into a 80-bit binary vector by converting each integer
bit into a binary bit of four-bit length {0=0000; 1 = 1000; 2 = 1100; 3=1110; 4=1111}.



10 dimensions (see Subheading 3. for further discussion). This is in sharp con-
trast to those discussed in the previous sections, where the dimensions are gen-
erally manifold larger.

Although it is ubiquitous in chemoinformatics applications, the term vector
should be used with caution as vectors are properly the objects of vector spaces
and must satisfy the axioms of vector spaces. For example, vectors in BCUT
chemistry spaces do not form a vector space because the sum of two BCUT
vectors may not lie in the space (29). However, as long as this rather fine dis-
tinction is borne in mind, significant problems should not arise, and the term
vector, taken in its broadest sense, will be used here.

2.3.1. Property-Based Continuous-Valued Feature Vectors

The components of most continuous-valued feature vectors are based on a vari-
ety of molecular properties such as solubilities, logPs, melting points, polar sur-
face areas, molecular volumes, various shape indices (vide supra), and BCUTs,
which are related to the charge, polarizability, and hydrogen-bonding properties of
molecules. Because these properties have a wide range of values, they are typi-
cally scaled using the usual “z-transform” zi = (xi – x̄)/σx favored by statisticians,
where x̄ is the average property value and σ2

x is its variance. Other transforms
have also been used; one of the most popular is x′i = (xi – xmin) / (xmax – xmin), where
the values of the property, xi, are mapped into the unit interval [0,1]. Simple scal-
ing can be used to expand or contract the unit interval if desired.

An advantage of the z-transform is that it establishes a well-defined point of
reference for the property-based vectors (the mean) as well as scaling the values
of all of the variables to unit variance. BCUTs have a more complicated scal-
ing, and relevant papers should be consulted for further details (29). Because
distances between vectors are invariant to the origin of the coordinate system,
mean centering does not affect the result. However, the transformations used in
all of the above procedures involve some form of scaling, and thus distances are
not preserved between the original and scaled coordinate systems. Care must be
exercised in the case of cosine similarity indices between vectors because they
are both origin and scale dependent.

2.3.2. Inherent Non-Orthogonality of Descriptor Coordinate Systems

An often-overlooked issue is the inherent non-orthogonality of coordinate
systems used to portray data points. Almost universally a Euclidean coordinate
system is used. This assumes that the original variables are orthogonal, that
is, are uncorrelated, when it is well known that this is generally not the case.
Typically, principal component analysis (PCA) is performed to generate a puta-
tive orthogonal coordinate system each of whose axes correspond to directions
of maximum variance in the transformed space. This, however, is not quite cor-
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rect. Because an orthogonal similarity transformation is used to carry out the
PCA, and because such transformations rigidly rotate the original coordinate
system, the angles among the coordinate vectors are unchanged. By exactly
reversing the rigid rotation of the orthogonal principal-component coordinate
system, one regenerates the original coordinate system, which is thus seen to
be orthogonal. This clearly contradicts the general observation that most
variables used in practice tend to be statistically correlated, that is, are non-
orthogonal. Importantly, even when the variables are properly uncorrelated,
this does not mean that they are necessarily statistically independent (47).
To correctly handle such correlated variables one must first orthogonalize the
original variables, and then perform PCA to orient the orthogonal coordinate
system along directions of maximum variance of the data points. This is rarely
done in current practice, but what are the consequences of not doing this?
As is well known from the theory of tensors (48) both distances and angles
between data vectors are affected by the angles between the coordinate axes.
Conclusions drawn using, for example, either cosine similarity indices or
distances will be affected quantitatively but not qualitatively. This is a mani-
festation of the fact that the topology (i.e., neighborhood relationships) of the
space is preserved but its geometry (i.e., distances and angles) is not. The con-
sequences of this are the following. The order of nearest neighbors from a given
reference molecule in a chemistry space (see Subheading 3. for further details)
will remain unchanged but the magnitude of their distances from the reference
molecule will change. Thus, if one is only interested in, say, obtaining the
50 most similar molecules to a given reference molecule, nothing will change
by modifying the angles of the coordinate axes. If, one the other hand, one is
interested in finding all molecules with similarities greater than or equal to,
say, 0.85 with respect to that reference molecule, the results obtained will
change because they depend on the angles of the coordinate vectors.

In many cases, however, problems brought about by skewed coordinate axes
due to significant correlations among the variables are somewhat ameliorated
by procedures, such as genetic algorithms, used for variable selection. Although
such procedures tend to remove highly correlated variables, this may not always
be the case so that coordinate system skew may still be a problem. However, if
the variables are not too correlated, the skew of a coordinate system will not
significantly influence the overall results. A methodology is described in
Subheading 2.3.4. that includes, in a natural way, the non-orthogonality of the
coordinate system.

2.3.3. Proximity Measures for Continuous-Valued Vectors

Because of the continuous nature of the vector components described in this
section, other types of distance and similarity measures have been used.
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Although the Hamming distance (see Eq. 2.18) also applies for continuous
vectors, Euclidean distances are typically used

(2.40)

In some instances, however, Minkowski distances are employed

(2.41)

where r ≥ 0 . Minkowski distances include both Hamming (r = 1) and Euclidean
(r = 2) distances as special cases. Continuous distances can be converted into
similarities using an appropriate monotonically decreasing function of distance,
d, such as exp(–η·d ) or 1/(1 + η·d ), which both map to the unit interval, [0,1]
for finite, non-negative values of η.

The most prevalent among the similarity coefficients is the so-called cosine

similarity index or correlation coefficient. For the field functions discussed in
Subheading 2.4. it is usually called the Carbó similarity index, and this nomen-
clature will be used here as well,

(2.42)

where the term in brackets in the numerator is the inner product of the two
vectors

(2.43)

and their magnitudes are given by the Euclidean norm

(2.44)

It is important to note that the expressions in the latter two equations implicitly
assume, as we shall see in Subheading 2.4., that the basis of the vectors is
orthonormal.
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As this similarity index is origin-dependent, there generally is a difference
between the values computed for the cosine similarity index and correlation
coefficients, because the latter is always computed at the mean of the data.
Moreover, if the components of the vectors are all non-negative, then
SCar(vA,vB) is also non-negative. When this is not the case, however, SCar(vA,vB)
may become negative, a situation that also obtains for the other similarity
indices discussed in the remainder of this section. Maggiora et al. (43) have
treated this case in great detail for continuous field functions, but the argu-
ments can be carried through for finite vectors as well.

As has been pointed out numerous times, if vA = κvB ⇒ SCar(vA,vB) = 1, for
all κ. This prompted Hodgkin and Richards (49) to define a slightly modified
form of the similarity, usually called the Hodgkin similarity index, that does not
suffer from this problem, namely,

(2.45)

Petke (33) has developed two additional indices that bound both the Carbó and
Hodgkin similarity indices, namely,

(2.46)

and

(2.47)

that are analogous to those given, respectively, in Eqs. 2.26 and 2.27 for the
case of sets or binary vectors. Recently, a comprehensive analysis has been
given for continuous, field-based functions of all of the similarity coefficients
of this general form, which characterizes their linear ordering and their upper
and lower bounds (43) (see Eq. 2.85). Because field-based functions also sat-
isfy the postulates of linear vectors spaces, their approach can be taken over in
its entirety to the case of finite-dimensional vectors covered in this section.
Thus, the bounds of the similarity indices in Eqs. 2.42, 2.45, 2.46, and 2.47, are
given by

(2.48)

All of the indices except SPetmin
(vA,vB) have upper bound of unity.
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2.3.4. Molecule-Based Approach to Continuous-Valued Feature Vectors

In the “traditional” molecular-fragment approach the coefficients of the
vector components are usually binary- or positive integer-valued. A continu-
ous vector representation can be constructed in the following way. Choose a set
of f molecular fragments, or whole molecules, as a “molecular basis” for rep-
resenting chemistry space

(2.49)

which can be written as the row vector

(2.50)

Consider the similarities of all of the elements of the molecular basis with
respect to each other. This generates a similarity matrix

(2.51)

(2.52)

whose diagonal elements are unity and where the matrix elements can, depend-
ing on the nature of the molecular basis, be evaluated in a number of different
ways. For example, suppose the φi ⇑ Gi, that is, the ith element of the molecu-
lar basis, is a labeled chemical graph of a molecular fragment or complete
molecule. Then Si,j = 〈φi,φj〉 = STan(Gi,Gj), where the Tanimoto similarity, STan,
is evaluated as in Eq. 2.13. The set of labeled graphs G = {G1,G2, . . . ,Gf} will
be referred to as a “fragment graph basis” or a “chemical graph basis” depend-
ing on whether molecular fragments or complete molecules are used, respec-
tively. Note that similarities could also be computed using a bit-vector
representation, especially in cases where complete molecules are used. The
molecular basis could be related to the 3-D structures of molecules or their
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fragments or, alternatively, to their 3-D fields. In such cases, evaluation of the
similarities can be accomplished as described in Subheading 2.4.

Because 0 ≤ Si,j ≤ 1, the elements of S are completely analogous to the basis-
set overlap integrals familiar in quantum chemistry (50). As the off-diagonal
elements of the matrix are non-zero, that is, Si,j ≠ 0 for all i ≠ j, the basis is non-
orthogonal. In some applications S is equivalent to what is typically called the
metric matrix; in statistics S is equivalent to the correlation matrix.

Consider a given molecule, A, within a set of n molecules that can, in matrix
notation, be represented in the Φ-basis as

(2.53)

where the column vector of coefficients is given by

(2.54)

To compute the various cosine-like similarity indices it is necessary to evaluate,
respectively, the inner product 〈vA,vB〉 and Euclidean norms vX = √〈vX,vX〉
(see also Eqs. 2.43 and 2.44):

(2.55)

which in expanded form is

(2.56)

In “summation form” Eq. 2.56 becomes

(2.57)

where Si,j = 1 for i = 1,2, . . . , f . Comparing Eq. 2.57 with Eq. 2.43 shows
that the elements of the S-matrix modulate the product of the vector compo-
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nents and the cross-terms, v(xi) · v(xj), remain. When the basis is orthonormal,
and S = I and Eq. 2.57 reduces to Eq. 2.43. Similarly, the Euclidean norm is
given by

(2.58)

which reduces to Eq. 2.44 when S = I. These relationships clearly show the
important role play by the metric matrix S. Importantly, because the various
cosine-like similarity indices all depend on the quantities given in Eqs. 2.57

and 2.58, it follows these indices also depend upon S, but this dependence is
routinely neglected in most calculations. Euclidean (see Eq. 2.40) and other
distances are likewise affected by the metric matrix:

(2.59)

As was the case in the two cases above, Eq. 2.59 reduces to Eq. 2.40 in an
orthonormal basis.

There are numerous ways in which to orthonormalize a basis. Here we
choose to employ the symmetric orthonormalization procedure described by
Löwdin (51), which has the benefit over other orthogonality procedures that
the new basis is as close as possible, in a least squares sense, to the original
basis (52)

(2.60)

where

(2.61)

Computing the inner product, 〈Λ,Λ〉 = 〈ΦS– 1-
2,ΦS– 1-

2〉 = S– 1-
2〈Φ,Φ〉S– 1-

2 = S– 1-
2S S– 1-

2 = I,
shows that the basis is indeed orthonormal.

Right multiplying the terms in Eq. 2.60 by S
1-
2 gives Φ = ΛS

1-
2, which upon

substitution into Eq. 2.53 yields

(2.62)

where the “expansion coefficients” (i.e., components) in the new, orthonormal

basis are given by

(2.63)
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As was the case for the basis above, Eq. 2.60 can be rearranged to give the
expansion coefficients in the original, non-orthogonal basis, that is,

(2.64)

Thus, this equation provides the means for determining the components of vA

in the original basis given the components in the orthonormal basis, which as
we will see are easily determined. This can be accomplished by first taking the
inner product of, say, the kth orthonormal basis element with vA using Eq. 2.57

(2.65)

Because 〈λk,λl〉 = δk,l , where the Kronecker delta, δk,k = 1 and δk,l = 0 for k ≠ l,
the kth component of vλ

A is given by

(2.66)

Because vλ
A is normalized with respect to the Euclidean norm

(2.67)

the square of each component value, vλ
A(xk), gives the fraction of the “molecule”

represented by its corresponding basis element λk.
To evaluate the inner product 〈λk ,vA〉, λk must be expanded in terms of the

non-orthogonal φ-basis (see Eq. 2.60), that is

(2.68)

Substituting Eq. 2.68 into Eq. 2.66 yields

(2.69)

The inner-product terms 〈φl,vA〉 can now be evaluated in exactly the same
manner as was described earlier. For example, 〈φl,vA〉 = STan(Gl,GA), where φl is
the labeled graph corresponding to lth ”basis fragment,” vA is the labeled graph
corresponding to molecule A, and STan(Gl,GA) is the chemical graph-theoretical
Tanimoto similarity coefficient.

This approach can, in many instances, be extended even to cases where the
basis is comprised of physicochemical, topological, or other such parameters.
The similarity matrix is replaced in these cases by the correlation matrix com-
puted with respect to the “basis set” of parameters (vide supra).
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Agrafiotis et al. (53) developed a similar approach to generate vectors for
input into neural nets. Although these authors did not account for the inherent
non-orthogonality of the “basis,” in their work the issue of the orthogonality of
the basis may be less critical than it is here, and the mappings they generated
seem to be sufficiently stable. Another related approach comes from Villar and
co-workers (54). In this case, however, the basis consisted of a set of proteins.
The interaction of each molecule in the training set to each of the proteins in
the “basis” was measured experimentally, and the expansion coefficients were
determined using a least squares procedure. Again, non-orthogonality of the
basis was not explicitly addressed, although the choice of the basis proteins
did involve an assessment of correlations among them.

Randic (55–57) has investigated the role of orthogonalized descriptors in
multivariate regressions. In his work he points out that, although the predictions
obtained with orthogonal or non-orthogonal descriptors are the same, the sta-
bility of the regression coefficients is much greater in the former case. Also,
adding a new, orthogonal descriptor to set of orthogonal descriptors does not
affect the values of the previously determined regression coefficients. This is
definitely not the case for non-orthogonal descriptors where addition of a new
descriptor can cause all of the coefficients to fluctuate significantly depending
on the degree of collinearity of the new descriptor with those in the original set.

2.4. Field-Based Functions

Many methods exist for assessing 3-D molecular similarity. Lemmen and
Lengauer (58) provide a comprehensive review of most of the methods in use
today, a large class of which utilizes some form vector-based representation of
3-D molecular features such as 3-D pharmacophores (59) and various types of
3-D shape descriptors (60). The components of these vectors can be binary,
integer, categorical, or continuous as discussed in the last three sections, respec-
tively. Most 3-D methods, however, involve some type of direct alignment of
the molecules being considered. Early on RMS deviations between specific
atoms in the molecules being compared were employed, but this required iden-
tifying the key atoms, a non-trivial computational task. A variety of other 3-D
methods exist (58), but the bulk of the 3-D methods utilize some form of
field-based function to represent the fields or pseudo-fields, which can be either
continuous or discrete, surrounding molecules. Examples include “steric,” elec-
trostatic potential, and lipophilic fields (32). Several workers have also devel-
oped a field-based methodology for directly aligning molecules based on their
electric fields (33,49), which differs from the usual scalar potential fields that
are typically matched, but these approaches have only been implemented as
discrete procedures. Use of continuous electric fields has not been carried out
at this time.
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Interestingly, there is a close analogy between the alignment of 3-D molec-
ular fields and the determination of maximum common substructures of two
chemical graphs (see Subheading 2.1.). Both cases involve the search for opti-
mal overlays or alignments: The former requires continuous optimizations of
non-linear similarity indices that give rise to large numbers of solutions and to
great difficulties in clearly identifying the global maximum solution. The latter
requires discrete optimizations, but the problem is NP complete and thus does
not scale well computationally.

A major factor differentiating 3-D from 2-D similarity methods, regardless
of the type of 3-D method employed, is the need to account in some manner for
conformational flexibility. There are two ways this is generally accomplished.
One way involves carrying out a conformational analysis and selecting a subset
of “appropriate” conformations. All pairwise alignments are then considered.
The other way involves some form of conformational search carried out simul-
taneously with the alignment process (61,62). Because of its importance in
similarity-based alignments of molecules, the remainder of the discussion in
this section will focus on field-based methods.

2.4.1. Representation of Molecular Fields

Field-based methods generally utilize linear combinations of appropriate
functions that are associated in some way with the atoms of the molecule under
study:

(2.70)

where “α” designates the specific type of field or property being considered. The
coefficients aα

i weight the atom-based functions and in many cases are used to
characterize specific properties attributed to the individual atoms (vide infra).
Unnormalized, spherically symmetric Gaussian functions, “Gaussians” for short,
are by far the most ubiquitous functions used in field-based applications:

(2/71)

where Ri is the location of the Gaussian, generally at an atomic center, and κi

is its “width,” which is the reciprocal of the variance, that is κi = 1/σ 2
i. The

variance is sometimes referred to as the orbital radius, ρi = σ 2
i, of a Gaussian

(63). As κi → 0, fi(r) becomes more spread out and conversely as κi → ∞, fi(r)
becomes sharper until, in the limit, it approaches an infinitely sharp delta func-
tion. In the latter case atoms are essentially represented as points, while in the
former case they are represented as “soft spheres,” which is illustrated in Fig. 6.
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A useful property of Gaussians is that the integral of the product of two
Gaussians (50) is given by another Gaussian that is a function of their distance
of separation, that is,

(2.72)

Thus, the “overlap” of two molecules, A and B, with respect to the field of
property α , Ω(Fα

A,Fα
B), is given by

(2.73)

(2.74)

where the modified coefficients, ãα
i and ˜bα

j, are obtained by including the
square root term equally into the two field (property) coefficients aα

i and bα
j

given in Eq. 2.73. In most cases the width parameters, κi and κj, are chosen to
be the same for all atoms.
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Equation 2.74 is a general form that is used in a number of field-based
approaches to 3-D molecular alignment and similarity. For example, in the pro-
gram Seal (64) the coefficients given either in Eq. 2.73 or Eq. 2.74 are sub-
sumed into a single “property coefficient,” ãα

i · b̃α
j ⇒ wi,j, which may account

for the effect of multiple types of properties,

(2.75)

The exponential coefficient, κ, determines the spread of the Gaussian and is
taken be identical for all atom pairs. Some methods assign property values
directly to the coefficients ãα

i and b̃α
j (62,65).

An alternative approach (30) treats the steric and electrostatic potential fields
directly. The steric field is generally given by an expression similar to that in
Eq. 2.70,

(2.76)

where the coefficients are usually to be unity, that is, a st
i = 1, the field functions,

fi(r), are usually taken to be Gaussians (see Eq. 2.71), and the width parameters,
κi, are either held constant for all atoms or are adjusted for each specific “atomic
environment” (30). In the case of the molecular electrostatic potential (el) field

(2.77)

the “1/r” term, which becomes singular at each atomic nucleus, presents a
computational problem that was solved by Good et al., (66) who developed a
Gaussian expansion of the “1/r” term,

(2.78)

that significantly expedites computations. In this expression fi,k(r) is the kth
Gaussian in the expansion of 1/r about the ith atom, Ai, of molecule A. The
expansion usually consists of two or three terms, and the expansion coeffi-
cients, ck, are obtained by least-squares minimization. Note that the width
parameters, κk, are independent of the atom center and differ significantly from
each other in order to fit the 1/r term with sufficient accuracy (66). Substitut-
ing Eq. 2.78 into Eq. 2.77 converts it into a sum of Gaussians, and thus most
field-based similarity measures (vide infra) only require calculation of Gaussian
overlap integrals (see, for example, Eqs. 2.72 and 2.73) when dealing with
steric or electrostatic potential fields. Thus, many of the issues that plague
similarity calculations carried out within a discrete lattice framework are no
longer a problem in the case of continuous field-based functions.
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2.4.2 Field-Based Similarity Indices

Field-based similarities are usually evaluated by the cosine or correlation
function similarity measure employed initially by Carbó and co-workers (67) to
compute molecular similarities based upon quantum mechanical wavefunctions.
Such a measure, which is usually called a Carbó similarity index, is given by

(2.79)

where the inner product in the numerator is now given by an integral rather
than a summation because the objects considered here are field functions, Fα

A

and Fα
B, not vectors, that is,

(2.80)

and the Euclidean norm of the functions is given by

(2.81)

Note the similarity of Eqs. 2.43 and 2.44 with Eqs. 2.80 and 2.81 because
both the vectors in the former equations and the functions of the latter are all
elements of linear vector spaces. The main difference arises in the way in which
the inner products are evaluated. Also, as was the case for vectors, if the field
functions are non-negative functions, SCar(Fα

A,Fα
B) will be non-negative. When

this is not the case, however, SCar(Fα
A,Fα

B) may become negative, a situation that
also obtains for the other similarity indices discussed in the remainder of this
section. Maggiora et al. (43) have treated this case in great detail for continu-
ous field functions, but the arguments can be carried through for finite vectors
as well (vide supra).

As discussed in the previous section for vectors, if Fα
A and Fα

B differ only
by a constant, that is, if Fα

A = K · Fα
B, then SCar(Fα

A,Fα
B) = 1 regardless of the

specific form of the functions. While this is not a likely occurrence in practical
applications, Hodgkin and Richards (49) nonetheless defined a slightly altered
similarity measure, usually referred to as the Hodgkin similarity index, which
is not affected by this problem and is given by

(2.82)

Molecular Similarity Measures 31



where the terms in the denominator of Eqs. 2.79 and 2.82 are, respectively,
the geometric and arithmetic means of the squared norms of Fα

A and Fα
B. As has

been shown by Maggiora et al. (43), a family of similarity indices can be
defined in terms of the means of the squared norms in their denominators.

The Petke indices, defined earlier for vectors (see Eqs. 2.46 and 2.47), are
given by

(2.83)

and

(2.84)

All of the same bounding properties described in the previous section for
vectors (see Eq. 2.48) obtain here as well, including the fact that all of the
indices except SPetmin

are bounded from above by unity:

(2.85)

None of the cosine/correlation-like similarity indices or their complements
(see Subheading 2.5.) are true metrics, that is, they do not obey the distance
axioms. Petitjean (68,69), however, has developed a distance-based methodol-
ogy, but it has not been applied in many cases.

Similarity indices corresponding to different fields can be combined into an
overall similarity index, for example,

(2.86)

where X = Carbó, Hodgkin, Petke, or other appropriate index (43) and λ is the
weighting coefficient. Mestres et al. (30) have used a value (λ ≈ 0.66 ), arrived at
pragmatically, that weights steric to electrostatic-potential similarity in a 2�1 ratio.

2.4.3. Addressing Conformational Flexibility

As noted in the introduction of this section, computing 3-D molecular
similarities of a set of molecules requires physically aligning the appropriate
fields of the molecules, while accounting for their conformational flexibility,
which can be accomplished in two ways, either by rigid body superpositions of
selected conformations of each of the molecules being aligned or by simulta-
neous conformational sampling during the alignment process. In the rigid-
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body case, one molecule is generally chosen as the reference molecule, which
remains fixed, while the other adapting molecule is translated and rotated until
a maximum of the similarity index is obtained. Because the similarity index
is a non-linear function, it generally has multiple solutions,

(2.87)

although it is difficult to know if the global maximum has been attained. To
increase the chances that all of the best solutions are obtained, multiple start-
ing geometries are usually sampled.

An added difficulty in rigid-body alignment is that all “relevant” conforma-
tions, say N, of the reference molecule must be aligned with all “relevant” con-
formations, say M, of the adapting molecule—N × M alignments must be
carried out where, as discussed above, each alignment involves multiple start-
ing geometries. This is a significant computational burden for the alignment
of a single pair of molecules, and thus carrying out alignments for a large set
of molecules is not computationally feasible at this time.

There are some approaches that hold promise for speeding up the computa-
tions. A novel procedure based on Fourier transforms was developed by Nissink
et al. (70) and used by Lemmen et al. (65) The method separates the transla-
tional and rotational motions needed to align pairs of molecules and thus allows
the separate optimization of each, thereby facilitating the overall alignment
process. While this certainly speeds up the computations, it does not signifi-
cantly alter the significant time requirements of rigid body alignments.

An alternative approach that combines conformational searching with
similarity-based structure alignment perhaps holds more promise in terms of
speeding up the process of aligning conformationally flexible molecules. In
contrast to the rigid alignment process where one molecule is held fixed
(reference molecule) and one is allowed to move rigidly (adapting molecule),
here both molecules are treated on an equal footing and are allowed to move
and conformationally flex. In the approach of Blinn et al. (61), which is simi-
lar to that developed by Labute (62), the energy of the combined system of the
two molecules being aligned, E total

A,B , is given by

(2.88)

where EA
conf is the conformational energy of molecule A, EB

conf is the confor-
mational energy of molecule B, and E sim

A,B is a pseudo-energy penalty term,
which is given by

(2.89)
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where Ksim is an adjustable proportionality constant, which lies in the range of
5–20 kcal/mol. The dissimilarity (see Subheading 2.5.) DX(FA,FB) is
used rather than similarity because the penalty term should vanish when the
fields of the two molecules are in perfect alignment, that is, when SX(FA,FB) =
1 → DX(FA,FB) = 0 → E sim

A,B = 0, and, alternatively, the maximum penalty
should be assessed when

(2.90)

Other forms for the pseudo-energy penalty term have also been investigated
(61,62). In any case, pseudo-energy penalty term acts as a constraint on the
overall energy of the system, which is a balance between favorable conforma-
tional energies and overall molecular alignment as measured by field-based
similarity (dissimilarity).

2.4.4. Deriving Consistent Multimolecule Alignments

As has been shown by Mestres et al. (71) the optimal solution, SX(FA,FB)1,
may not correspond to the correct “experimentally derived” molecular align-
ment. To address this problem, Mestres et al. (71) developed the concept of
pairwise consistency, which is depicted in Fig. 7. Consider the similarities of
three molecules A, B, and C. Suppose molecule A is the reference molecule,
which is held fixed, and molecules B and C are the adapting molecules. Now
determine the optimal similarity solutions for SX(FA,FB)1 and SX(FA,FC)1 using
an appropriate similarity index. Both molecules B and C are now aligned to
molecule A. Keeping their positions relative to molecule A fixed, compute
SX(FB,FC)*, which is not necessarily equal to the optimized solution, that is,
SX(FB,FC)* ≠ SX(FB,FC)1. Pairwise consistency holds only in the case when
equality obtains, otherwise the solutions are said to be pairwise inconsistent.
Sometimes pairwise consistency is obtained when one of the lower similarity
solutions is considered, say, for example, SX(FA,FC)2 . In such cases, the align-
ments given by SX(FA,FB)1, SX(FA,FB)2, and SX(FB,FC)* = SX(FB,FC)1 are
assumed to be the correct alignments. In many cases, it is not possible to iden-
tify pairwise consistent sets of solutions. In such cases, the fields of three mol-
ecules are simultaneously aligned using the average of the pairwise similarities

(2.91)

This procedure automatically generates pairwise consistent solutions, and it
can be continued to higher orders until consistent solutions are obtained to all
orders, a computationally very demanding task that has not been pursued in
most cases because the ternary similarities are generally sufficient for molecular
design purposes.
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2.5 Dissimilarity Measures

Dissimilarity is generally taken to be the complement of similarity, that is,

(2.92)

Although this is mathematically reasonable, and is thus used extensively, psy-
chologically the two concepts are not so simply related. This stems from the
fact that assessing the similarity of two objects is easier than assessing their dis-
similarity. As two objects become less and less similar, a point is reached, say,
for a similarity value of 0.35, below which it is very difficult to assign a value
to their similarity. Because dissimilarity is just the complement of similarity, it
follows that humans can only properly assess the dissimilarity of two objects
if they are not too dissimilar. Thus, even though we can assign dissimilarities
~1.0 using Eq. 2.33, its “meaning” is not easily grasped. This is why we have
focused our discussion on similarity rather than dissimilarity, even though the
concept of dissimilarity has important practical applications in studies of mol-
ecular diversity. Martin (72) has edited an interesting account of the develop-
ment and implementation of the concepts of molecular dissimilarity and
diversity in chemoinformatics and combinatorial chemistry.

3. Chemistry Spaces

This section on chemistry spaces, while important, is not presented with the
same level of mathematical detail as given in earlier sections. The object here is
to provide a general overview of some of the important characteristics of chem-
istry spaces. Cited references should be consulted for additional information.
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The concept of a chemistry space derives from the notion of a space used
in mathematics and is taken here to be a set of molecules along with one or
more relationships defined on the set. The nature of a given chemistry space
depends, directly or indirectly, on how the molecular information is repre-
sented (Subheading 2.); the representation used strongly influences what can
be known about the set of molecules under study. Unlike the case in physics,

however, the underlying relationships in chemistry spaces are not invariant to

representation. For example, neighborhood relationships that obtain in one
chemistry space may not also obtain in another chemistry space (2,73). Thus,
there is loss of topological invariance, which is much more severe than the loss
of the purely geometric features such as the distances between molecules or the
angles between vectors representing the locations of molecules in chemistry
spaces, which may also occur. Loss of topological invariance can have dire
consequences in subset selection procedures (2) because it can change the rank
ordering of nearest neighbors.

3.1. Dimensionality of Chemistry Spaces

Chemistry spaces can be grouped into two broad classes, namely, coordinate-

based and coordinated-free. In coordinate-based chemistry spaces molecules
are represented as points distributed throughout the space as illustrated in
Fig. 8. Points in close proximity are considered to represent similar molecules,
while distant points represent dissimilar molecules. An important feature of
coordinate-based chemistry spaces is that the absolute position of a molecule
within the space is known, not just its position relative to the other molecules
in the space. This is not the case with coordinate-free chemistry spaces. In such
spaces the relationship of a given molecule to its near and far neighbors is
known but not its location within the space. Thus, finding “compound voids”
in a coordinate-free chemistry space is a much more difficult task than it is in a
coordinate-based chemistry space (vide infra). An additional useful feature
of coordinate-based chemistry spaces is their ability to portray the distribu-
tion of compounds in ways that, in many cases, can enhance our understanding
of the space. However, as is seen in the following paragraph, the high dimen-
sionality of these spaces can frustrate attempts to visualize them.

The dimension of a coordinate-based chemistry space is simply the number
of independent variables used to define the space. As seen in earlier discus-
sions, the dimension of such spaces can be quite large, and there are a signifi-
cant number of examples where the dimension can exceed one million (27,38).
Even for spaces of much lower dimension, say around 10 or greater, the effects
of the curse of dimensionality (74,75) can be felt. Bishop (76) provides an
excellent example, which shows that the ratio of the volume of a hypersphere
inscribed in a unit hypercube of the same dimension goes to zero as the dimen-
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sionality goes to infinity. Actually, even for the 10-dimensional case, the volume
of the hypersphere is less than 10% of that of the corresponding hypercube.
In addition, most of the spaces of extremely high dimension are discrete, a fea-
ture that can present additional problems (vide infra). This is not the case in
coordinate-free chemistry spaces. Moreover, it is possible in such spaces to rigor-
ously construct coordinates within a Euclidean space (the embedding problem)
for any set of molecules in the space. The caveat is that faithfully representing
the intermolecular proximities may require that the space may be of quite high
dimension, possibly equal to one less than the number of molecules in the set,
although this would be a very extreme case. As will be discussed in the fol-
lowing section, a number of methods exist for constructing low-dimensional
Euclidean spaces for both high-dimensional coordinate-based and coordinate-
free representations of molecules.

3.1.1. Constructing Reduced-Dimension Chemistry Spaces

This section provides a brief discussion on the construction of reduced-
dimension chemistry spaces for sets of molecules described by coordinate-free or
by high-dimensional coordinate-based representations. Inherently low-dimensional
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Fig. 8. In coordinate-based chemistry space points in close proximity are considered
to be similar. For instance, the compounds within the sphere shown here are quite sim-
ilar to each other compared to compounds in the extremities of this 3-D chemistry
space.



chemistry spaces such as those generated, for example, by BCUT descriptors
are not considered. It is important to note that all of the issues surrounding the
inherent non-orthogonality of coordinate systems described in Subheading

2.3.2. are applicable here as well, and that section should be consulted for fur-
ther details.

Scheme 1 illustrates the various routes for the “construction” of reduced-
dimension coordinate systems. As is seen in the scheme, similarity, correla-
tion, or distance play a central role in the process. The first step in reducing the
dimension of either coordinate-free or high-dimensional coordinate-based rep-
resentations is computation of some proximity measure of the similarity, cor-
relation, or distance between all the pairs of molecules in the set of interest.
This can be accomplished using the methods described earlier in this work.
For example, in the coordinate-free case (N.B. that this is a bit of a misnomer
in some cases because, for example, the functions used in 3-D field-based sim-
ilarity matching are essentially infinite-dimensional vectors) similarity can be
computed using the graph-theoretical approach described in Subheading 2.1.,
the field-based approach described in Subheading 2.4., or other less well-
known approaches such as shape-group (77) and feature-tree (78) methods. In
high-dimensional coordinate-based cases all of the vector-based approaches
described in Subheadings 2.2. and 2.3. are applicable.

Once a proximity measure has been computed for all of the molecules, basi-
cally two paths exist for determining a lower-dimensional coordinate-based
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representation. In the upper path in Scheme 1 coordinates are determined using
either multidimensional scaling (MDS) (79) or non-linear mapping (NLM) (80)

procedures, both of which require minimization of some sort of error function.
In the past, both procedures were somewhat limited and could only deal effec-
tively with datasets of less than approx 2000 molecules. In addition, they
encountered difficulty in treating new sets of compounds that were not included
in the original set without redoing the calculations for the entire augmented
set. These limitations have been removed by the work of Agrafiotis and his
colleagues (81,82), who developed a clever neural-net approach that learned
the non-linear mapping based on the use of training sets of relatively small
sample size (approx 1000 compounds). Once the mapping function was learned,
new compounds can be mapped with relative ease.

The lower path is somewhat more complicated. The first step in the path
involves either PCA (83) or principal-coordinate analysis (PCO) (83). This step
can be followed by optimization of a function that minimizes the error between
the proximity measure computed in the reduced-dimension and full coordinate
systems if desired. Xie et al. (84) recently published an interesting paper along
these lines. Kruscal stress (79) is a widely used function in this regard

(3.1)

where dˆ
i,j is the distance computed in the reduced-dimension space and di,j is

the distance computed in the full space.
PCA is designed to deal directly with correlation matrices, but not directly

with similarity or distance matrices. However, as pointed out by Kruscal (85),
the similarity matrix (or other proximity matrix) can be treated as a normal
data matrix upon which principal component analysis is performed, that is,

(3.2)

where the columns of the eigenvector matrix V are the principal components
and the elements of the diagonal matrix Λ are the corresponding eigenvalues.
The coordinates in the transformed, PC coordinate system, usually called the
“scores,” are given by the matrix T, where

(3.3)

PCO (83) works in an analogous fashion except that the similarity matrix is
used directly without the additional multiplications given in Eq. 3.2. Gower
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has described the relationship between PCA and PCO (86). Because both
approaches utilize matrix diagonalization procedures, the size systems that
they can practically treat are limited to approx 2000 molecules. This compu-
tational obstacle can be overcome for PCA using one of the neural-net meth-
ods for determining principal components (87). Benigni and Giuliani (88)

described an analogous method based on a matrix of Euclidean distances com-
puted from high-dimensional vectors representing a set of molecules. Analo-
gous dissimilarity-based methods have also been developed.

An important question is whether the proximity measures are compatible
with those of these references addresses the important issue of whether the
proximity measure is compatible with embedding in a Euclidean space. For
example, satisfying the distance axioms does not in itself guarantee that any
distance matrix associated with a given set of molecules be compatible as the
distance axioms are still satisfied in a non-Euclidean space. Gower has writ-
ten extensively on this important issue, and his work should be consulted for
details (89–91). Benigni (92), and Carbó (67) have also contributed interesting
approaches in this area.

4. Summary and Conclusions

This chapter provides an overview of the mathematics that underlies many of
the similarity measures used in chemoinformatics. Each similarity measure is
made up of two key elements: (1) A mathematical representation of the rele-
vant molecular information and (2) some form of similarity index or coefficient
that is compatible with the representation. The mathematical forms typically
used are sets, graphs, vectors, and functions, and each is discussed at length in
this chapter.

As was described in Subheading 2.1., chemical graphs are a subclass of
mathematical graphs, and thus many of the features of the latter can be taken
over to the former. A number of graph metrics, such as the size of a graph and
the distance between two graphs, have been applied to chemical graphs. In
addition, similarity measures, such as the Tanimoto similarity index, also have
their corresponding graph-theoretical analogs and have been used in a num-
ber of cases, albeit on relatively small sets of molecules. Although chemical
graphs are the most familiar and intuitive representation of molecular infor-
mation to chemists, they have been used relatively rarely in MSA, primarily
due to computational difficulties brought on by the need to evaluate the MCS,
an NP-complete computational problem that is required by most graph-based
distance and similarity measures.

Subheading 2.2. describes the properties of discrete-valued feature vectors,
with components given by finite, ordered sets of values. The most prevalent
class is that of vectors with binary-valued components, which are mathemati-
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cally equivalent to classical sets. Here features are either in the set (compo-
nent value of “1”) or not in the set (component value of “0”). Because we are
essentially dealing with sets, the distance and similarity measures used are typ-
ically related to set measures (i.e., cardinalities) and not to the types of inner
(scalar) products defined on linear vector spaces. A hypercubic mathematical
space can be associated with classical sets, where the dimension of the space is
equal to the number of elements in the universal set and each vertex of the
hypercube corresponds to a subset, including the null and universal sets. Dis-
tances in these spaces are appropriately Hamming distances that satisfy an l1

metric. Although Euclidean distances are sometimes used, they are inappropri-
ate in such hypercubic spaces. Most similarity indices are taken to be sym-
metric (“A is as similar to B as B is similar to A”), but Tversky defined an
infinite family of asymmetric indices related to the Tanimoto similarity index,
some of which may be useful for similarity-related tasks such as similarity
searching.

Another class of discrete-valued feature vectors useful in MSA is integer-
and categorical-valued feature vectors. Here the vectors are mathematically
equivalent to multisets and not directly to classical sets, although multisets can
be reformulated as classical sets. The components of the vectors now indicate
the number of times a given feature occurs or the ordered set of categorical
values corresponding to the given feature or property. Although care must be
taken, distance and similarity measures analogous to those used for binary-
valued vector components can be used here as well.

In Subheading 2.3. the important class of vectors with continuous-valued
components is described. A number of issues arise in this case. Importantly,
since the objects of concern here are vectors, the mathematical operations
employed are those applied to vectors such as addition, multiplication by a
scalar, and formation of inner products. While distances between vectors are
used in similarity studies, inner products are the most prevalent type of terms
found in MSA. Such similarities, usually associated with the names Carbó and
Hodgkin, are computed as ratios, where the inner product term in the numera-
tor is normalized by a term in the denominator that is some form of mean (e.g.,
geometric or arithmetic) of the norms of the two vectors.

The notion of an orthogonal set of “basis vectors” is also of significance
here and is particularly important because, as discussed in Subheading 2.3.2.,
it is in many instances ignored. In a non-orthogonal basis the associated simi-
larity matrix defines the metric of the space in which the vectors “live.” Thus,
“measurements” such as the distance or the angle between two vectors in the
space are dependent on the metric of that space. Subheading 2.3.4. describes
a general approach for dealing with non-orthogonal bases and explores some of
the consequences of ignoring non-orthogonality. While most of the discussion
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deals with substructural descriptors, the method can also deal with physico-
chemical, topological, or other such descriptors. However, in these cases the
correlation matrix replaces the similarity matrix.

Subheading 2.4. addresses the use of field-based functions in MSA. Field-
based functions, which can be thought of as infinite-dimensional vectors, are
used primarily in 3-D MSA. Here, molecular fields (e.g., steric or electrostatic)
or pseudo-fields (e.g., lipophilic) of the molecules being compared are matched,
using various similarity measures, the most popular being those of Carbó or
Hodgkin. Conformational flexibility adds a new degree of difficulty to studies
of 3-D molecular similarity, and this has been dealt with in a number of ways.
The most widespread approach is by standard conformational analysis. Because
such an analysis leads to many conformations, clustering is usually used to
group the conformations as a basis for identifying a smaller set of prototypical
conformations. Molecular similarity is then carried out by pairwise matching
the fields generated by each conformational prototype in one molecule with
each conformational prototype in the other molecule being compared. This rep-
resents a rather substantial computational problem that has been ameliorated
somewhat using Fourier transforms to separate translational from rotational
motions in the optimization process. Alternatively, several procedures have been
developed that combine conformational analysis with 3-D similarity matching
simultaneously in the optimization process. Both approaches are, however,
computationally demanding although the latter is somewhat better in this
regard. In either case, the need to assess the consistency of the 3-D alignment
solutions is paramount, and this is dealt with in Subheading 2.4.4.

Subheading 2.5. provides a very brief discussion of molecular dissimilarity
measures that are basically the complement of their corresponding molecular
similarity measures. This section also presents reasons as to why similarity is
preferred over dissimilarity, except in studies of diversity, as a measure of mol-
ecular resemblance.

The concept of chemistry space pervades, either explicitly or implicitly,
much of the literature in chemoinformatics. As is discussed in Subheading 3.,
chemistry spaces are induced by various similarity measures. The different sim-
ilarity measures do not, however, give rise to topologically equivalent chemistry
spaces—nearest-neighbor relations are generally not preserved among chem-
istry spaces induced by different similarity measures. The consequences of this
are manifold. An especially egregious consequence is that the results of simi-
larity searches based on different similarity measures can differ substantially.
And there is no easy solution to this problem.

Chemistry spaces fall into two broad categories, coordinate-based and
coordinate-free. Coordinate-based chemistry spaces tend to be of high dimen-
sion and thus cannot be visualized directly. Coordinate-free chemistry spaces
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cannot be visualized directly since coordinates do not exist. In both cases it
is possible to develop reduced-dimension representations that are easier to
work with theoretically and also afford possibilities for visualization. Dimen-
sionality reduction is a difficult problem that pervades many fields, and meth-
ods developed in these fields have proved useful in chemoinformatics, albeit
to varying degrees.

Molecular similarity analysis has developed substantially over the years,
especially as digital computers became faster, more compact, and widely avail-
able to scientists. Handling large sets of molecules is generally not a problem.
The main problem confronting MSA is the problem of the lack of topological
invariance of the chemistry spaces induced by the various similarity measures.
Unfortunately, this problem may be fundamentally related to the inherent sub-
jectivity of similarity and thus cannot be addressed in any simple manner.

5. Appendix—A New Notation for Classical Sets

Sets are very general mathematical objects that are used in many branches of
mathematics. Here the focus is on finite sets, that is, sets with a finite set of ele-
ments. A key concept in set theory is that of the universal set, U, sometimes
called the universe of discourse, which is an unordered collection of n elements
x1, x2, . . . , xk, . . . , xn and is given by

(5.1)

All sets in this “universe,” including U and the null or empty set ∅, are subsets
of U. A subset A is typically written as, for example,

(5.2)

but this notation can become awkward and cumbersome for large, complex
sets. A more general and powerful notation, which utilizes the concept of a
characteristic function, A(xk), is illustrate in Eq. 5.3:

(5.3)

where A(xk) characterizes the membership of each element in the set and is
given by

(5.4)

Thus, in the universal set A(xk) = 1 for k = 1,2, . . . ,n, that is, all elements of the
universal set have a membership-function value of unity.

Note that this representation differs from that usually used (see Eq. 5.2)
where only those elements actually in the set, that is, those elements for which
A(xk)=1, are included explicitly. All possible sets A, including the empty and
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universal sets ∅ and U, are subsets of U, i.e., A ⊆ U. Although this notation
may be unfamiliar, it is completely equivalent to that used for binary vectors or
“bit vectors.” Fuzzy sets, although not treated in this chapter, can also be rep-
resented in this notation with the modification that elements of the set are no
longer confined to the binary values {0,1}; fuzzy sets can take on all values
between and including zero and unity (41).

A number of useful operations between two sets, A and B, are given in the
notation introduced above:

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Relations, which are also sets, play an important role in set theory and in the
similarity theory, but due to space limitations are not formally considered in
this work.
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Evaluation of Molecular Similarity and Molecular
Diversity Methods Using Biological Activity Data

Peter Willett

Abstract

This chapter reviews the techniques available for quantifying the effectiveness of methods for
molecular similarity and molecular diversity, focusing in particular on similarity searching and
on compound selection procedures. The evaluation criteria considered are based on biological
activity data, both qualitative and quantitative, with rather different criteria needing to be used
depending on the type of data available.

Key Words: Chemical database; compound selection; library design; molecular diversity;
molecular similarity; neighborhood behavior; similar property principle; similarity searching.

1. Introduction

The concepts of molecular similarity (1–3) and molecular diversity (4,5) play
important roles in modern approaches to computer-aided molecular design.
Molecular similarity provides the simplest, and most widely used, method for
virtual screening and underlies the use of clustering methods on chemical data-
bases. Molecular diversity analysis provides a range of tools for exploring the
extent to which a set of molecules spans structural space, and underlies many
approaches to compound selection and to the design of combinatorial libraries.
Many different similarity and diversity methods have been described in the
literature, and new methods continue to appear. This raises the question of how
one can compare different methods, so as to identify the most appropriate
method(s) for some particular application: this chapter provides an overview of
the ways in which this can be carried out, illustrating such comparisons by,
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principally, our experience of similarity and diversity studies that have been car-
ried out in the Chemoinformatics Research Group at the University of Sheffield.

There are two bases for the comparison of similarity and diversity methods.
It is possible to compare the efficiency of methods, i.e., the resources, typically
computer time and computer memory, necessary for the completion of pro-
cessing. Considerations of efficiency, in particular, theoretical analyses of com-
putational complexity, are important in that they can serve to identify methods
that are unlikely to be applicable given the rapidly increasing sizes of current
and planned chemical datasets. Here, however, we restrict ourselves to com-
paring the effectiveness of similarity and diversity methods, i.e., the extent to
which a method is able to satisfy the user’s requirements in terms of identify-
ing similar or diverse sets of compounds. More specifically, we focus on eval-
uation criteria based on the availability of bioactivity data for the molecules
that are being processed, where the data can either be qualitative, i.e., a cate-
gorical (usually binary) variable, or quantitative, i.e., a real-valued variable.
The discussion here considers only the criteria that can be used for comparative
studies: the reader is referred elsewhere for the results of such studies.

2. Methods

2.1. Molecular Similarity Methods

2.1.1. Introduction

The basic concept of molecular similarity has many applications (1,2), but
we focus here on its use for similarity-based virtual screening, which is often
referred to as similarity searching (3). Here, a user specifies a target structure

that is characterized by one or more structural descriptors, and this set is com-
pared with the corresponding sets of descriptors for each of the molecules in
the database. These comparisons enable the calculation of a measure of simi-
larity, i.e., the degree of structural relatedness, between the target structure and
each of the database structures, and the latter are then sorted into order of
decreasing similarity with the target. The output from the search is a ranked list
in which the structures that are calculated to be most similar to the target struc-
ture, the nearest neighbors, are located at the top of the list. These neighbors
form the initial output of the search and will be those that have the greatest
probability of being of interest to the user, given an appropriate measure of
intermolecular structural similarity.

Many different types of similarity measure have been discussed in the litera-
ture, but they generally involve three principal components: the representation

that is used to characterize the molecules that are being compared; the weight-

ing scheme that is used to assign differing degrees of importance to the various
components of these representations; and the similarity coefficient that is used to
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provide a quantitative measure of the degree of structural relatedness between a
pair of structural representations. These three components are closely related
and, hence, it is most important that a comparative study should seek to ensure
that only one of these components is varied at any one time. For example, only
a limited amount of information might be gained from a comparison of the
effectiveness of similarity searching using binary fingerprints (e.g., those pro-
duced by the UNITY or Daylight software) and the Tanimoto coefficient, with
the effectiveness of similarity searching using a set of computed physicochem-
ical parameters (e.g., those produced by the MOLCONN-Z or DiverseSolutions
software), some particular standardization method and the Euclidean distance.
Given an appropriate evaluation criterion (as discussed below), one might be
able to decide that one of these approaches gave better results than the other, but
one would not be able to identify the relative contributions of the various com-
ponents of the overall similarity measures that were being studied.

The basis for all of the evaluation techniques to be discussed here is what is
commonly referred to as the similar-property principle, which was first stated
explicitly by Johnson and Maggiora in their seminal 1990 book (1). The prin-
ciple states that structurally similar molecules are expected to exhibit similar
properties. It is clear that there are many exceptions to the principle as stated
(6,7), because even a small change in the structure of a molecule can bring
about a radical change in some property; for example, replacement of a small
alkyl group by a larger one, e.g., methyl replaced by t-butyl, can mean that a
molecule is now too large to fit a binding site. The principle does, however,
provide a general rule of thumb that is very widely applicable; indeed, if this
were not the case, then it would prove difficult indeed to develop meaningful
structure-activity relationships of any sort. If the principle does hold for a
particular dataset, then the top-ranked molecules in a similarity search are
expected to have properties that are related to those of the target structure. We
can hence evaluate the effectiveness of a structurally based similarity proce-
dure by the extent to which the similarities resulting from its use mirror simi-
larities in some external property, which in the context of this chapter we take
to be biological activity (but could be any type of chemical, biological, or phys-
ical property). The next two sections detail the ways in which the principle is
applied to the analysis of qualitative and quantitative datasets.

2.1.2. Use of Qualitative Data

In what follows, we shall adopt ideas and terminology from that part of com-
puter science that is normally referred to as information retrieval (8–10). The
measurement of search effectiveness has played a large part in the development
of information retrieval (or IR) systems, whose principal aim is to identify as
many documents as possible that are relevant to a user’s query while simulta-
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neously minimizing the number of non-relevant documents that are retrieved. It
is possible to apply many of these measures to the evaluation of chemical
retrieval systems, where one wishes to identify as many molecules as possible
that have the same activity as the target structure while simultaneously mini-
mizing the number of inactive molecules that are retrieved.

The relationship between IR and chemical similarity searching is discussed
in detail by Edgar et al. (11) who summarize the various effectiveness measures
in terms of the 2 × 2 contingency table shown in Table 1. In this table, it is
assumed that a search has been carried out resulting in the retrieval of the n
nearest neighbors at the top of the ranked output. Assume that these n nearest
neighbors include a of the A active molecules in the complete database, which
contains a total of N molecules. Then the recall, R, is defined to be the fraction
of the active molecules that are retrieved, i.e.,

a

R = _____ ,
A

and the precision, P, is defined to be the fraction of the retrieved molecules that
are active, i.e.,

a

R = _____ ,
A

A retrieval mechanism should seek to maximize both the recall and the preci-
sion of a search so that, in the ideal case, a user would be presented with all of
the actives in the database without any additional inactives: needless to say,
this ideal is very rarely achieved in practice.
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Table 1

Contingency Table Describing the Output of a Search 
in Terms of Active Molecules and Molecules Retrieved 
in a Similarity Search Retrieving n Molecules

Active

Yes No

Retrieved Yes a n–a n

No A–a N–n–A+a N–n

A N–A N



It is inconvenient to have to specify two measures, i.e., recall and precision,
to quantify the effectiveness of a search. The Merck group have made extensive
use of the enrichment factor, i.e., the number of actives retrieved relative to
the number that would have been retrieved if compounds had been picked from
the database at random (12). Thus, using the notation of Table 1, the enrich-
ment factor at some point, n, in the ranking resulting from a similarity search
is given by

aR = _____ ,
A

Note that because A/N is a constant, the enrichment is monotonic with precision.
Rather than specifying the enrichment at some specific point in the ranking, e.g.,
the top-1000 positions, it can alternatively be specified at that point where some
specific fraction, e.g., 50%, of the actives have been retrieved. Examples of the
use of enrichment factors are provided by Sheridan and colleagues (12) and
Gillet et al. (13).

Alternatively, Güner and Henry (14) have introduced the G-H score, which
is a weighted average of recall and precision. The score was originally devel-
oped for evaluating the effectiveness of three-dimensional (3D) database
searches but can be applied to the evaluation of any sort of search for which
qualitative bioactivity data are available. Using the previous notation, the
G-H score is defined to be a

R = _____ ,
A

where α and β are weights describing the relative importance of recall and pre-
cision. The lower bound for the G-H score is zero; if both weights are set to
unity, then the score is simply the arithmetic mean of recall and precision, i.e.,

aR = _____ ,
A

Examples of the use of the G-H score are provided by Güner and Henry (15)

and by Raymond and Willett (16), while Edgar et al. discuss other combined
measures that can be used for chemical similarity searching (11).

At least three alternative approaches have been used widely. First, the
Sheffield group has generally quoted the mean numbers of active compounds
identified in some fixed number of the top-ranked nearest neighbors, when aver-
aged over a set of searches for bioactive target structures. An early example of
the use of this approach is a comparison of 3D similarity measures based on
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interatomic distances (17), with Briem and Lessel providing a more recent appli-
cation in their extended comparison of virtual screening methods (18). The use
of a fixed cut-off means that this measure is basically a reformulation of preci-
sion, which is entirely acceptable in the early stages of a discovery program,
when the immediate need is to identify additional active molecules; however, the
measure takes no account of recall, which may be an important factor in a
detailed comparative study of the behavior of different similarity measures. A
second, and alternative, “leave-one-out” classification approach assumes that the
activity of one of the molecules in the database, X, is unknown. A similarity
search is carried out using X as the target structure and the top-x (where x is odd)
nearest neighbors identified. The activity or inactivity of X is then predicted on
the basis of a majority vote (hence the requirement for an odd number) of the
known activities of the selected nearest neighbors. This process is repeated for
each of the N molecules in turn (or just the A active molecules in many cases),
yielding a contingency table of the sort shown in Table 2. Various statistics can
be produced from the elements of this table: perhaps the most common is
Cohen’s kappa statistic (19). This is defined to be

a

R = _____ ,
A

where O and E are the observed and expected accuracies of classification.
These accuracies can be defined in terms of the elements of Table 2 as follows:

a

R = _____ ,
A

a
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Table 2

Contingency Table Describing the Output of a Search 
in Terms of Correctly and Incorrectly Predicted Molecules
in a Classification Experiment Classifying n Molecules

Classification

Active Inactive

Truth Active i j i+j

Inactive k l k+l

i+k j+l n



There are many variants on this basic idea, such as the weighted kappa
described by Cohen himself (20) and the Rand statistic (21), which is perhaps
the most widely used of the measures available for comparing different clus-
terings of the same set of objects.

Finally, it may be of interest to study the performance of a measure across
the entire ranking resulting from a similarity search, rather than the perfor-
mance for some fixed number of nearest neighbors. In this case, the most pop-
ular approach is the use of a cumulative recall graph, which plots the recall
against the number of compounds retrieved (i.e., a/A against n using the nota-
tion of Table 1). The best-possible such graph would hence be one in which the
A relevant documents are at the top of the ranking, i.e., at rank-positions 1, 2,
3, . . ., A (or at rank-positions, N – A + 1, N – A + 2, N – A + 3, . . ., N in the
case of the worst-possible ranking). The use of such diagrams is exemplified by
studies of similarity searching using physicochemical descriptors (12) and of a
range of virtual screening methods for searching agrochemical datasets (22). The
cumulative recall plot is closely related to the receiver operating characteristic

(ROC) curves that are widely used in signal detection and classification problems
(23). An ROC curve plots the true positives against the false positives for differ-
ent classifications of the same set of objects; this corresponds to plotting
a against n – a using the notation of Table 1, and thus the shape of an ROC
curve tends to the shape of a cumulative recall plot when n >> a. An example of
the use of ROC plots in chemoinformatics is provided by the work of Cuissart et
al. on similarity-based methods for the prediction of biodegradability (24).

2.1.3. Use of Quantitative Data

The similar property principle can also be applied to the analysis of datasets
for which quantitative bioactivity data are available, most commonly using a
simple modification of the “leave-one-out” classification approach described
above. Here, the predicted property value for the target structure X, P(X), is
taken to be the arithmetic mean of the observed property values of the selected
nearest neighbors. This procedure results in the calculation of a P(X) value for
each of the N structures in a dataset, and an overall figure of merit is then
obtained by calculating the product moment correlation coefficient between the
sets of N observed and N predicted values. This approach can equally well be
applied to the evaluation of clustering methods, with the predicted values here
being the mean of the other compounds in the cluster containing the chosen
molecule, X.

This application of the similar property principle was pioneered by Adamson
and Bush (25,26) and has since been very extensively applied. For example,
Willett and Winterman used it in one of the first detailed comparisons of mea-
sures for similarity searching (27), and it also formed the basis for Brown and
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Martin’s much-cited comparison of clustering methods and structural descrip-
tors for compound selection (28).

2.2. Molecular Diversity Methods

2.2.1. Introduction

The principal aim of molecular diversity analysis is to identify structurally
diverse (synonyms are dissimilar, disparate, and heterogeneous) sets of com-
pounds that can then be tested for bioactivity, the assumption being that a struc-
turally diverse set will generate more structure-activity information than will a
set of compounds identified at random. The sets of compounds can be selected
from an existing corporate or public database, or can be the result of a sys-
tematic combinatorial library design process (4,5).

Many of the comments that were made in Subheading 2.1.1. regarding sim-
ilarity measures are equally applicable to diversity methods, in that the latter
involve knowledge of the degree of dissimilarity or distance between pairs, or
larger groups, of molecules. Here, however, there is also the need to specify a
selection algorithm, which uses the computed dissimilarities to identify the
final structurally diverse set of compounds, and there may also be a diversity

index, which quantifies the degree of diversity in this set. It is thus important,
as with similarity measures, to isolate the effect of the various components of
the diversity methods that are being analyzed in a comparative study. There
have been many such comparisons, e.g., refs. 28–33. Here, we focus on diver-
sity indices because it is these that measure the overall effectiveness of a
method. (In fact, while an index is computed once a selection algorithm has
completed its task, there are some types of algorithm that seek explicitly to
optimize the chosen index, so that the current value of the index drives the
operation of the selection algorithm.)

Many of the early evaluations of the effectiveness of diversity methods used
structure-based diversity indices, such as functions of intermolecular dissimi-
larities in the context of distance-based selection methods or of the numbers of
occupied cells in partition-based selection methods (4). A wide range of such
indices has been reported, as discussed in the excellent review by Waldman et al.
(34). They do, however, have the limitation that they quantify diversity in chem-

ical space, whereas the principal rationale for molecular diversity methods is to
maximize diversity in biological space (35), and we hence focus here on indices
that take account of biological activity.

2.2.2. General Screening Programs

We have noted the importance of the similar property principle, which would
imply that a set of compounds exhibiting some degree of structural redundancy,
i.e., containing molecules that are near neighbors of each other, will also exhibit
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some degree of biological redundancy; a structurally diverse subset, conversely,
should maximize the number of types of activity exhibited by its constituent
molecules. It should thus be possible to compare the effectiveness of different
structure-based selection methods by the extent to which they result in subsets
that exhibit as many as possible of the types of activity present in the parent
dataset. Maximizing biological diversity in this way is the principal aim of gen-
eral screening programs, which aim to select molecules from a database (or
design combinatorial libraries for synthesis) that exhibit the widest possible
range of different types of activity. An obvious measure of the diversity of the
resulting compounds is hence the number of types of activity exhibited by
them. This can be easily tested using one of the public databases that contain
both chemical structures and pharmacological activities, such as the MACCS

Drug Data Report (MDDR, at URL http://www.mdli.com/products/mddr.html)
or the World Drugs Index (WDI, at URL http://www.derwent.com/worlddrug-
index/index.html) databases. Thus, in one of the earliest studies of methods for
comparing diverse database subsets, Snarey et al. compared a range of maxi-
mum dissimilarity and sphere exclusion methods for dissimilarity-based com-
pound selection by means of the number of different types of activity present
in subsets chosen from molecules in the WDI database (31); this approach has
been adopted in several subsequent studies.

2.2.3. Focused Screening Programs

In a focused screening program, the aim is to select molecules from a data-
base (or design combinatorial libraries for synthesis) that provide the maxi-
mum amount of information about the relationships that exist between
structural features and some specific type of biological activity. If these data are
qualitative in nature, then a simple count of the active molecules present will
suffice to quantify the degree of biological diversity. However, at least some
account must additionally be taken of the chemical diversity that is present, to
avoid a high level of diversity being ascribed to a cluster of highly similar mol-
ecules (such as “me too” or “fast follower” compounds in a drug database).
An example of this approach is a comparison of binning schemes for cell-based
compound selection by Bayley and Willett (36) that selected one molecule from
each cell in a grid (thus ensuring that the selected molecules were structurally
diverse) and then noted how many of these selected molecules were bioactive
(thus quantifying the biological diversity).

Once interest has been focused on some small volume of structural space,
large numbers of molecules are synthesized and tested (and often re-tested in
the case of HTS data), and the results of these experiments used to develop a
quantitative structure-activity relationship (QSAR). It has for long been claimed
that the use of diverse sets of compounds will enable more robust QSARs to be
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developed than can be developed using randomly chosen training sets. That
this is in fact the case has been demonstrated recently by Golbraikh and
Tropsha (37), and one can hence quantify the effectiveness of a compound
selection method by the predictive power of the QSARs that can be derived
from the compounds selected by that method. Quantitative bioactivity data also
lie at the heart of the neighborhood behavior approach of Patterson et al. (33),
which is analogous to the similar property principle but emphasizes the
absolute differences in descriptor values and in bioactivity values, rather than
the values themselves. Specifically the authors state that a meaningful descrip-
tor for diversity analysis is one for which “small differences in structure do
not (often) produce large differences in biology,” and then use this idea to com-
pare a wide range of descriptor types by means of a χ2 analysis; an improved
version of this analysis is described by Dixon and Merz (38).

3. Notes

1. The group in Sheffield has over two decades experience of carrying out compar-
ative studies of similarity (and, more recently, diversity) methods. Perhaps the
most important single piece of advice we can give to those wishing to carry out
comparable studies is the need to use a range of types of data, ideally including
both homogeneous and heterogeneous datasets. Only by so doing can one ensure
the robustness and general applicability of the methods that are being compared.
In particular, one would not wish to encourage the situation that pertained for
some time in the QSAR literature, where a new method was normally developed
and tested on just a single dataset, most commonly the set of steroids (39) first
popularized by Cramer et al. (40).

2. In like vein, we would recommend the use of more than just one evaluation mea-
sure. That said, it is our experience that different measures usually agree as to
the relative merits of different approaches (unless there are only very minor dif-
ferences in effectiveness): even so, it is always worth carrying out additional
analyses to ensure that one’s results are, indeed, independent of the evaluation
criterion that has been adopted.

3. Having criticized the exclusive use of the steroid dataset, it does have the great
advantage that it provides a simple basis for comparison with previous work, and it
would be highly desirable if comparable test-sets were available for similarity and
diversity analyses. To some extent, this is already happening with increasing use
being made of the qualitative bioactivity data in the MDDR and WDI datasets men-
tioned previously; two other datasets that can be used for this purpose, and which
have the advantage that they are available for public download, are the cancer and
AIDS files produced by the National Cancer Institute (at URL http://dtp.nci.nih.gov/).
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Abstract

One of the key questions that must be addressed when implementing a chemoinformatics
system is whether the tools will be designed for use by the expert user or by the “bench scien-
tist.” This decision can impact not only the style of tools that are rolled out, but is also a factor
in terms of how these tools are delivered to the end users. The system that we outline here was
designed for use by the non-expert user. As such, the tools that we discuss are in many cases
simplified versions of some common algorithms used in chemoinformatics. In addition, the
focus is on how to distribute these tools using a web-services interface, which greatly simpli-
fies delivering new protocols to the end user.

Key Words: Chemoinformatics; databases; information systems; web-based tools; computa-
tional tools; combinatorial chemistry.

1. Introduction

Chemoinformatics refers to the systems and scientific methods used to
store, retrieve, and analyze the immense amount of molecular data that are
generated in modern drug-discovery efforts. In general, these data fall into
one of four categories: structural, numerical, annotation/text, and graphical.
However, it is fair to say that the molecular structure data are the most unique
aspect that differentiate chemoinformatics from other database applications (1).
Molecular structure refers to the 1-, 2-, or 3-D representations of molecules.
Examples of numerical data include biological activity, pKa, logP, or analytical
results, to name a few. Annotation includes information such as experimental
notes that are associated with a structure or data point. Finally, any structure
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or data point may have associated graphical information such as spectra or
plots. In all cases the data may be experimental or computed and the mole-
cules may be real or “virtual.”

Considering the vast number of molecules in most corporate databases (not
to mention external sources) and the large quantity of data associated with these
molecules, the need for sophisticated information systems is clear. Modern drug
discovery requires systems that have the ability to access and manipulate large
quantities of data quickly and easily. However, information archival and
retrieval is not enough. It is also necessary to have tools that can effectively
analyze and organize these data in order to make it useful for effective decision-
making. Consequently, chemoinformatics has become an integral part of the
drug-discovery process, from lead identification through development.

Companies face a number of important challenges and philosophical deci-
sions when developing and deploying a chemoinformatics system. One issue is
whether to target tools primarily to the expert user or the “bench scientist.”
Expert tools can be more powerful and flexible, but are generally too complex
to be used by the general scientist community. General-purpose tools must be
simpler in order to make them accessible to the more casual user, but this usu-
ally comes at the cost of reduced functionality. Another issue is the system
architecture. One option is to implement a large, integrated, and usually home-
grown solution. This offers the opportunity to provide a seamless and compre-
hensive system, but it is expensive to develop and support. Another option is to
assemble a collection of commercial off-the-shelf tools that will cover most
applications. This results in a more heterogeneous environment, but does not
require the development of custom software. Other technical issues include
whether the applications run locally, on a server, or using a client–server com-
bination. None of these decisions are easy or clear-cut.

At J&J PRD we have used the following principles to guide the development
of our chemoinformatics platform:

1. Deliver the most generally useful chemoinformatics tools directly to the “bench
scientist” so that he/she can use them without requiring the intervention of a
specialist.

2. Accommodate access to heterogeneous data sources and analysis tools.
3. Make use of commercial visualization and analysis packages where possible.
4. Avoid putting applications directly on the desktop, relying instead on web

deployment.
5. Implement a system that allows rapid application development and deployment

with a minimum of support overhead.

These principles are embodied in the chemoinformatics system outlined
below. This system uses a backend (for database access and computations) that
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is accessible via a simple web-services interface. The underlying platform is the
Pipeline Pilot software package from Scitegic, Inc. (2). We rely on existing
desktop tools for data visualization (e.g., DIVA or Accord for Excel from
Accelrys) (3,4). This architecture is consistent with the design goals laid out
previously. For example, the web interface makes it possible to deliver new
protocols quickly and easily. Once a method has been written and tested on
the server, it is simply posted as a new web service. This eliminates the need to
push new software out to the desktop. In addition, the use of existing desktop
tools not only reduces development time and support costs, it also provides the
user with an already familiar interface. Finally, this platform is very flexible and
allows us to retrieve and manipulate data from multiple and disparate sources.

We will highlight this system by first giving a brief overview of the archi-
tecture, followed by some practical examples that cover several common tasks
in the drug discovery process. The goal is not to give a detailed account of the
methods employed, but rather to illustrate how the system functions in practice.
We will present as examples some of the most widely used chemoinformatics
applications: customized database access, similarity and substructure search-
ing, reactant selection, and library design.

2. Methods

2.1. Overview of the Architecture

The main page for accessing the web-based tools is shown in Fig. 1. This is
the chemoinformatics homepage and it serves as the entry point for several dif-
ferent classes of tools (left-hand column of Fig. 1). The protocols are catego-
rized by the type of task: for example, substructure/similarity searches, database
access, and property calculators. The underlying system driving many of these
protocols is outlined in Fig. 2. The Pipeline Pilot software serves as the main
interface for accessing several different corporate databases and calling third
party programs [via command line, Simple Object Access Protocol (SOAP),
or remote shell calls]. In addition, we make extensive use of methods within
Pipeline Pilot for developing protocols. This functionality is then delivered to
the users’ desktop using the web-services interface. For example, a protocol
can be written that will access the structural and biological data for all com-
pounds for a given project. These data can then be manipulated within the pro-
gramming environment of Pipeline Pilot (e.g., modify units or add descriptors)
to enhance its utility. Once the protocols are finalized, they are placed in a
public area where they become accessible from the interface shown in Fig. 3.

2.2. Database Access

Whether one is interested in data-mining techniques or simply collecting all
the data for a given compound or project, the ability to retrieve data easily and
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accurately from a database is of primary importance. From a bench scientist’s
perspective much of the retrieval of information is focused around the latter of
these two tasks. The types of tools we currently provide to address this need
fall into two categories: ad hoc queries and custom database access protocols
focused around therapeutic team projects. Both are provided using the backend
Pipeline Pilot tools in conjunction with existing desktop visualization tools.
One of the strengths of this approach is the ability to extract data from multiple
databases and join them “on-the-fly” in a way that is transparent to the end user.

2.2.1. Ad Hoc Queries

Before Pipeline Pilot, retrieval of assay data (for us) was done mainly via
RS3 for Excel (5). RS3 allows one to obtain information on a given assay or a
set of assays with queries that are set up by clicking on the folders containing
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the desired data. This query style is appealing, because it is visual, interactive,
and intuitive. The interactive feature makes it easy to expand or focus the
search as needed. However, queries involving several assays can be cumber-
some to set up. An example would be the queries needed to retrieve data for
two or more assays where one wants data if they exist for any of the assays.
The natural construct of RS3 is to impose a constraint upon the existence of
data in a single assay and, therefore, multiple assay queries of this “any” type,
while possible, are not smoothly implemented. Furthermore, RS3 does not allow
for sophisticated manipulation of the data during the retrieval process such as
filtering data based on certain descriptors.

As an alternative, we have made extensive use of the data retrieval and
manipulation functions within Pipeline Pilot to provide more powerful query-
ing capabilities without sacrificing ease of use. Figure 4 shows the user inter-
face for the standard ad hoc assay protocol used by most chemists and
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biologists. The two large boxes each contain a list of all the registered assays
in our database. The top box specifies the primary assays. This means that for
a compound to be returned it must contain an entry for at least one of the
assays that are highlighted. The second box provides the option to return addi-
tional assay data on the first set of compounds. These secondary assay results
are added (if they exist) to the primary assay data for each compound. These
two options allow the user to easily define a complex query. The ability to
manipulate the data as they are retrieved is exemplified by the additional
options shown in Fig. 4. The user has the option of filtering on chemist name,
obtaining notebook information, filtering on assay date, and calculating
Lipinski’s rule descriptors (6).

2.2.2. Custom Database Access Protocols

While the protocol described above has proven very useful in its own right,
it often serves as the first step in designing custom protocols for a team. Once
a user is satisfied with the results returned by the ad hoc query, the next step is
often to hardwire these queries into a protocol that provides “one-button”
access to all the pertinent data for a project. Figure 5 shows such a protocol
used to retrieve data for several assays in a Neuroscience project. This protocol
highlights an additional filtering option that we make use of in many of our
protocols. The text box (“selected_cmpds_from_list”) (7) supports the input of
a list of identification numbers (in our case either “jnjnumber” or “batchid”).
This allows data to be retrieved on select compounds as opposed to all those
tested in the assays. This feature is very popular and involves the use of Perl
within the Pipeline Pilot protocol. All this work is done on the server and the
results are written to a SD file that can be downloaded to the desktop. At this
stage either DIVA or Accord for Excel is typically used to view the files.

2.2.3. Data Mining

We have illustrated the capability of Pipeline Pilot to query all the data on a
set of compounds from the internal database and perform simple filtering on
them. Additionally, the ability of Pipeline Pilot to easily access other (several)
databases (or files) besides the internal database provides us with a very pow-
erful tool for data mining. The utility of accessing multiple databases simulta-
neously is discussed in the following sections. Here we give an example of
how being able to access different databases, other than the in-house one, and
perform sophisticated filtering on an the data is in itself a tremendous asset.

Figure 6 shows a Pipeline Protocol where the Available Chemicals Directory
(ACD) (8) was mined for reactants useful in alkylation. This protocol high-
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lights many of the filtering methods available within the Pipeline Pilot interface.
In this case compounds were removed that had high acceptor or donor counts,
did not contain a Br or Cl, and contained a Br or Cl attached to a phenyl ring
(the latter two cases make alkylation impossible). The resulting subset of ACD
compounds was useful [to the computer-aided drug discovery (CADD) group]
in modeling possible substitutents to be added to an existing template being
used in lead refinement in immunology.

2.3. Similarity and Substructure Searches

2D similarity and substructure searching are among the most widely used
methods for mining structural data (9). The basic principle of these methods is
that compounds with structural features in common will have similar properties,
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Fig. 6. Pipeline Pilot protocol used to filter reactants useful in alkylation.



often including biological activity (10). The intuitive nature of this concept
undoubtedly has contributed to the popularity of these methods, which makes
them perfect candidates for generally available applications. At J&J PRD,
similarity and substructure searching have proven to be powerful tools that are
widely used to probe internal and external databases for compounds similar to
known “actives” or other structures of interest (e.g., literature structures). One
of the most systematic applications is following up on high-throughput screen-
ing (HTS) hits. In addition, these methods can be used to search for structurally
relevant reactants or when “brainstorming” for new chemotypes.

2.3.1. Similarity Searches

Figure 7 shows the web interface for our Pipeline Pilot–based similarity
search engine. For similarity searching a connectivity fingerprint (available
within the Pipeline Pilot software) is used and the Tanimoto coefficient is cal-
culated. In the text box (labeled “JNJNumberList” under “Parameters”) one
can type or paste (e.g., from an Excel sheet) a list of identification numbers
(“jnjnumber,” “batchid”) to be used as probes for the search. Alternatively, an
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SD structure file or a file containing a list of identification numbers [Excel or
Comma Separated Value (CSV) format] can be uploaded. In the Excel or CSV
cases the protocol will automatically look up the structure that corresponds
to the identification number, as it does for the text box input. A useful fea-
ture (see “Databases” under “Parameters” in Fig. 7) is the ability to search
multiple databases in a single search. This is made possible by the use of Perl
in the Pipeline Pilot protocol. The Perl code is very general and easily allows
for the addition of new databases as they become available, thereby further
increasing the versatility of this protocol.

2.3.2. Substructure Searches

Both DIVA and RS3 provide some functionality in terms of substructure
searches (SSS), although it is somewhat limited. For example, DIVA searches
can only be performed on data that have already been queried from the data-
base(s). This pre-queried data need to be readily available to DIVA either via
RS3 or as an SD file. In the case of RS3, the inclusion of multiple data sources
(e.g., searching the corporate database and an external vendor library) is not
trivial. As a result, while DIVA and RS3 are very useful for SSS under certain
conditions, they are not as robust when compared to the Pipeline Pilot protocol.

Like the similarity protocol, the user interface for the Pipeline Pilot SSS
protocol supports multiple databases and multiple probes in a single query. The
input of the probe molecule(s) is accomplished using a SD file, which can be
generated in most standard chemical drawing programs. This file is supplied as
one of the inputs in the SSS interface. The use of identification numbers is not
as applicable here as it is in the case of the similarity protocol since we are
most likely not using existing molecules as substructures. Consequently,
textbox input is not an option nor is the upload of a list of numbers in CSV or
Excel format.

2.4. Library Design

The protocols developed for library design highlight the trade-off between
providing a user friendly interface versus providing a more versatile tool for the
expert user. For example, in the enumeration interface that will be outlined
below we have sacrificed the ability to look at complex multistep reactions for
the sake of providing an interface with a few intuitive options. One of the keys
to the implementation of this system was the integration of existing desktop
tools. In the example outlined below, ISIS/Draw and ISIS/Base (11) are used
for defining the reaction scheme and queries, Pipeline Pilot provides the enu-
meration engine and selection and filtering routines, and the visualization is
accomplished with DIVA or Accord for Excel. The integration of these tools is
best illustrated by stepping through a library design example.
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2.4.1. Defining the Reaction

The enumeration engine within Pipeline Pilot uses REACCS RXN files to
define the chemistry (12,13). These files can be easily generated using
ISIS/Draw or they can be exported directly from the reaction browser of
ISIS/Base. For the example here, we start with the reaction browser (Fig. 8).
Once the desired reaction is found [in this case a ring formation starting with
aminonitriles and nitriles (14)] it is exported from ISIS/Base as a RXN file.
This file can be used directly for the enumeration, or it can be modified using
ISIS/Draw. In this case the nitrile is modified to define a more generic trans-
formation (Fig. 9). The key element to specifying the reaction is the atom-to-
atom mapping that can also be seen in Fig. 9. This defines which atoms are
kept (all reactant atoms that are not mapped to products are deleted) and
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defines the placement of the reactant atoms in the final product (which can
include stereochemistry information).

2.4.2. Reactant Selection and Filtering

The selection of reactants can be accomplished through two different inter-
faces that use substructure and similarity searches, respectively. The interface for
the substructure searching protocol is shown in Fig. 10 (15). At the top of the
page is a box that lists the databases that can be searched. In addition there is an
option to upload a SD file as the search database. Below this box is a list of
functional groups with a set of radio buttons that allow users to define their query.
For each group they can specify whether they want it to exist at least once
(“Must Exist”), only once (“Exist Only Once”), or not at all (“May Not Exist”).
The default for each group is to not include it in the query (“No Preference”). The
underlying methodology is a predefined set of individual queries (in this case
substructures drawn with ISIS/Draw and saved as “mol” files) that are combined
at run time into the appropriate Boolean expression (16). For the example here
we have chosen to find all compounds with one nitrile group and none of the
other functional groups. We also provide the user with the option of searching
a custom substructure query. This method was used to find the R1 reactant
set (aminonitriles).
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Fig. 10. Reagent selector tool. Here we have chosen to look for all compounds that
contain only one nitrile and none of the other functional groups.



At this stage several different algorithms could be applied to filter the reactant
list (17,18). The simple example we use here allows one to filter reactants based
on preferences for vendors. This filter is easy to implement using the Pipeline
Pilot web interface (Fig. 11). Using this filter, compounds only available from
vendors in the “vendor_reject” list are removed. The remaining compounds are
then sorted so that reactants from preferred vendors are listed first.

2.4.3. Enumeration

Once the final reactant lists are prepared, they are supplied along with the
RXN file defining the reaction to the enumeration engine using the web inter-
face shown in Fig. 12A. This interface provides a general framework for spec-
ifying up to three reagent files (R1, R2, and R3 inputs). The interface also
provides the user with two options for the enumeration. First they can choose
whether or not they would like a subset of the library returned or not (simple
random percent filter). This smaller subset can be visualized in a web page to
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“Vendor Filter” protocol for selecting reactants.



80 Bembenek et al.



check the enumeration before downloading the full library set. The second
option determines how reactants that map multiple times are handled. For
example, if a compound in the R2 list had two nitrile groups, the user can spec-
ify whether that compound should not be used, used once (at the first mapped
site), or reacted on each mapped site.

Although we have made use of SD files up to this point, at this stage we
switch to SMILES files (19). This becomes necessary because even for small
libraries the file size for a fully enumerated set can be quite large. For example,
a sample library of just 2500 compounds resulted in 4.85 MB SD file while the
SMILES file was only 384 KB. The one caveat with the SMILES format is
that there is no standard for handling data fields. Our solution was to reformat
the SD file type data field tags into the SMILES file,

SMILES_STRING ;<Data_1>val_1,val_2;<Data_2>val_1,val_2 . . .

where “Data_N” is the property name and “val” . . . “val_N” are all the values
associated with that property. Subsequent processing of the library can then be
done on this smaller file. Using this format we are able to easily track the
MFCD numbers (or some other tracking number) for the reactants that go into
each enumerated compound (Fig. 12B). These are used later to extract final
reactant lists.

2.4.4. Final Library Selection

Just as was the case for the reactant filtering, many methodologies exist for
selecting library subsets for synthesis (18,20–29). For this example library we
used a simple “Rule of 5” type filter to select a subset of compounds (6). After
filtering, the final step in the process is to extract the reactant lists from the
selected library subset. Because in each step of the procedure outlined above
we have maintained the MFCD numbers for all the reactants (tagged by reactant
number), this is simply a matter of extracting these numbers from the final
library. For each of the compounds we provide the molecule name, list of ven-
dors, MFCD and CAS (if available) numbers, molecular weight, and information
about whether the reactant is available in-house (Fig. 13).
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reactants that map multiple times to the substructure as defined in the RXN file is set.
These compounds can be rejected, reacted once, or they can be reacted at each match-
ing site. The output of the library subset (B) can be visualized in a web page before
downloading the entire library.



3. Discussion

The ability effectively to access and manipulate chemical and biological data
is crucial to the drug-discovery process. Given the number of compounds (inter-
nal and external) and corresponding data generated by pharmaceutical research,
this ability is a necessity for good information-driven decision-making. The
system we have outlined here accomplishes this task by successfully tying
together several commercially available packages and making extensive use of
web services for the rollout of tools to the end user. Specifically, we have
demonstrated that Pipeline Pilot along with commercially available desktop
tools such as DIVA and Accord can be integrated to provide a comprehensive
chemoinformatics system. There are many advantages to this approach. For
example, because the server (Pipeline Pilot) can access multiple data sources
and has extensive facilities for data manipulation, we can deliver customized
data management tools rapidly that draw from disparate data sources. This
approach has the advantage of being relatively independent of any one partic-
ular data structure, and provides a great deal of flexibility. New databases can
be easily incorporated via Pipeline Pilot obviating the need to clean, filter, and
export a new data source to a common data repository. From an implementation
perspective, this architecture is appealing because it involves little modifica-
tion of the standard desktop system supplied to users. As a result, there is no
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client that needs to be validated, updated, or propagated across the discovery
organization. This greatly simplifies the task of maintaining the system.

Of course, there are limitations to this approach that must be kept in mind.
First, because we use commercially available components for the data visual-
ization, we are tied to the standard file formats. For the most part these formats
are sufficient, but in certain cases they can be limiting. For example, there is no
standard for handling multiple entries for a single data field. This becomes an
issue when retrieving assay results, because in many cases more than one
experiment has been run. Second, this system requires a robust and fast network
since many file uploads and downloads to the server are involved. However, in
practice we have found these issues to be manageable.
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Application of Chemoinformatics 
to High-Throughput Screening

Practical Considerations

Christian N. Parker and Suzanne K. Schreyer

Abstract

The objective of this chapter is to summarize and evaluate some of the most common
chemoinformatic methods that are applied to the analysis of high-throughput-screening data. The
chapter will briefly describe current high-throughput-screening practices and will stress how the
major constraint on the application of chemoinformatics is often the quality of high-throughput-
screening data. Discussion of the NCI dataset and how it differs from most high-throughput-
screening datasets will be made to highlight this point.

Key Words: High-throughput screening; chemoinformatics; NCI dataset.

1. Introduction

Screening (and now high throughput screening [HTS]) has always been the
method of choice for identifying novel ligands to biological targets (1). Even
with new methods for detecting ligand binding such as NMR and crystal-
lography (2,3), or the application of virtual screening methods using protein
structures (4,5), there still comes a point at which the compounds of interest
must be tested (screened) for activity. As the numbers of compounds available
for screening increases (at present there are approx 2 million compounds
commercially available through ChemNavigator), advances in assay miniatur-
ization and screening throughput continue to allow more compounds to be
tested. However, as more sophisticated assay endpoints are becoming available
to monitor increasingly complex biological processes, and so monitor more
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drug targets, the costs associated with screening become larger. These costs
increase further now that screening is being used to identify ligands even for
proteins of unknown function (so as to identify function) in an effort to validate
newly discovered genes as potential drug targets (6,7). As the number of com-
pounds screened becomes larger and larger and the complexity of the analysis
increases, the need for methods to help visualize, organize, and exploit these
data becomes of increasing importance. Hence, the need for chemoinformatic
methods of data analysis. The challenge of being able to organize and under-
stand screening data is made even more difficult due to the intrinsic errors pre-
sent in screening data. This uncertainty is magnified when one considers that
often different assay formats for the same target can give differing results (8,9).

This chapter will provide a critical review of examples where chemoinfor-
matics has been applied to screening data and to highlight the difficulties in
routinely applying such methods. Chemoinformatics can be applied before a
screening campaign has begun or applied to data that have been collected; in
either case the role of chemoinformatics is to help organize, visualize, and thus
suggest explanations for the data. Organization and modeling of the data allow
hypotheses to be generated that can identify possible false positives or false
negatives by identifying differing classes or groups of compounds that may be
working by a similar mechanism (10). Therefore, screening can be thought of
as one of the “omic” sciences (11), where the aim of the experiment is to
obtain, in an unbiased manner, large amounts of data describing how a system
responds to different stimuli (in the case of screening structure activity infor-
mation). These data are then used to develop hypotheses from a variety of
different analyses that can be experimentally tested using standard hypothesis-
driven science. Many different chemoinformatic methods are proprietary,
making their comparison and evaluation difficult. Additionally, even though
many of the methods are applied to the NCI cancer or AIDS datasets, such
comparisons are of limited value for assessing their utility for data-mining
HTS datasets as these datasets do not reflect the data quality or library design
usually generated from HTS. Finally, the chapter will suggest possible improve-
ments to the application of chemoinformatics to screening and how these
should be assessed.

2. Practical Aspects of High Throughput Screening

HTS has become accepted as a separate area of expertise within the drug-
discovery process, requiring scientists able to work at the interface of chemistry,
biology, robotics, statistics, database management, and chemoinformatics. Any
high throughput screen begins with a series of compounds, usually available as
a library of pre-plated DMSO stock solutions. These compound mother plates
are then used to transfer compounds to an assay plate where the biological test
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is conducted, following addition of reagents and incubation, and the assay
signal is measured. The results are usually converted to a percentage inhibition
or fold stimulation (depending on the assay format) and finally the data are
stored in a relational database that links the compound structure to the biolog-
ical data.

The important points to note are that often the vast majority of compounds
are tested just once, at a single concentration, and the results are converted to
a percentage inhibition. The result of this is that the error associated with any
data point may be quite large and the dynamic range of the data is limited to
essentially a range of 1–100. As will be discussed below, this places important
constraints on the significant information that can be successfully extracted
from HTS data.

3. Application of Chemoinformatics to Screening

As will be briefly discussed in this section, chemoinformatics has been used
to aid screening in a number of different ways, including (1) library design,
(2) similarity searching and clustering, (3) data modeling, and (4) experimen-
tal design of screening strategies.

3.1. Library Design

As HTS became available, there was much debate as to the value of library
design with a well-articulated argument that with the development of HTS
technologies it should be possible to screen every available compound and not
to miss any potential leads (12). However, this may not be feasible as the num-
bers of compounds that could be synthesized are astronomically large with esti-
mates ranging from 1018 to 10200 (13,14). One estimate of the number of
possibly pharmaceutically relevant small molecules was made by Villar and
Koehler (15) with the commonly used ISIS-MDL molecular descriptors, this
gave a credible estimate of 1049 possible molecules. Even if this is a fivefold
overestimate of the number of suitable drug-like compounds, this still leaves a
possible chemistry space of approx 100 million. So for practical reasons a
number of different pharmaceutical companies have chosen to make selections
of compounds for screening from either their internal or vendor compound
collections and compounds that could be synthesized around combinatorial
scaffolds, in order to maximize the efficiency of their screening efforts.

The selections of compounds are made using a variety of methods, such as
dissimilarity selection (16), “optiverse” library selection (17), Jarvis–Park clus-
tering (18), and cell-based methods (19). All these methods attempt to choose
a set of compounds that represent the molecular diversity of the available com-
pounds as efficiently as possible. A consequence of this is that only a few com-
pounds around any given molecular scaffold may be present in a HTS screening
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dataset. Consistent with this statement is the observation by Nilakantan et al.
(using historical screening data and ring-scaffold descriptors of the molecules
tested) that it may be necessary to test as many as 100 compounds from a par-
ticular group of related compounds in order to be confident that actives in this
group of compounds would have been identified (20). We have conducted a
similar empirical analysis of our own historical screening data using molecular
equivalence numbers (structural browsing indices) (21) to organize the com-
pounds similarly to Nilakantan et al. This analysis showed that more than
30 compounds from any group of compounds needed to be tested to determine
if a particular compound scaffold might contain actives. This estimate was
determined after analysis of screening data where the compounds were first
grouped according to their ring scaffold, then second by the identifying the
ring scaffolds that contained no actives. Thus, it was possible to show that scaf-
folds containing more than 30 compounds, all of which were inactive, would
not contain actives even if additional such compounds were tested. Clearly, the
density with which chemistry space needs to be explored may be greater than
was initially thought and may explain the earlier assertions that all compounds
need to be tested in order not to miss a potential lead (Fig. 1).

As mentioned above, it is now common for pharmaceutical companies to
select a diverse set of compounds for screening that represent the available
compounds (either internal or commercially available). Yet, this is not so for
compound collections that have grown as sets of compounds, have been syn-
thesized, or have been acquired for particular projects. This is an important
reason why many examples of data-mining techniques when applied to the NCI
dataset work so well and may help explain why such methods often do not
perform as well against different HTS datasets (22).

One approach to screening subsets of available compounds is to screen sets of
compounds that, although not representative of the molecular diversity of the
available compound collection, do contain as much structure activity relationship
information as possible. An example of this was the “Informer Library” strategy
proposed by CombiChem (which was eventually purchased by DuPont
Pharmaceuticals in 1999) (23). Unfortunately, there have been no published
applications of this screening strategy that assess its success or failure.

3.2. Clustering and Similarity or Nearest-Neighbor Searching

A consequence of screening dissimilar libraries is that by their very nature
they should contain only a small representation of any particular scaffold. As a
result, there are usually few actives of similar structure; this prevents the for-
mulation of hypotheses as to the possible substructure responsible for activity.
Thus, similarity searching around initial hits is very important to permit suffi-
cient information to be acquired to allow such hypotheses to be made and
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Fig. 1. Empiric observation that more than approx 20 compounds from any scaffold
need to be tested in order to be sure that an active will be found. (A) This shows the
results from a whole cell assay in which the compounds have been classified using the
Level 1 Ring System of the Structural Browsing Index (SBI) also known as molecular
equivalence numbers or meqnums, which is the most-detailed level. The most-populated
SBI containing only inactives is labeled 1, it contains 16 compounds. The most pop-
ulated SBI containing actives is labeled 2. (B) Looking at only the compounds present
in the most-populated SBI (2 above) and arranging the compounds in this SBI ran-
domly, the smallest set of compounds in which an active (indicated by +) can be found
is approx 30 compounds.



tested. Another application of similarity searching has been the discovery of
compounds with similar biological activity but different chemical structure (or
at least different enough to allow patenting of the new structure); this has been
termed “leapfrogging” or “scaffold hopping” (24,25).

Recently there has been debate over the validity of the assumption that sim-
ilar compounds behave similarly, with the observation that compounds similar
to a probe molecule may not have the desired activity (26). This observation
should not really come as a surprise when one considers that often the molec-
ular descriptors used for similarity searching of large databases do not take
into account the stereochemistry or salt forms (which can have vastly different
aqueous solubilities) of the compounds. In addition, generation of most QSAR
models requires a range of activities spanning 1000-fold, and yet most HTS is
conducted at a single concentration. So it should be obvious that primary
screening data can not detect the subtle structure activity relationships present
in a class of active compounds. It is for this reason that when following up on
confirmed hits from a high throughput screen we routinely assay similar com-
pounds (even if they tested inactive in the primary screen) and will conduct
dose responses starting at concentrations greater than the original screening
concentration, if possible.

It should be noted that comparison between different similarity methods
applied to different assays is further compromised by differences in the
compound collections and differences in the molecular descriptors used. For
example, Martin and Brown (27,28) have recommended using Wards Clustering
with MACCS keys and a similarity cutoff of 85% for clustering compounds
with similar biological activity. Yet this estimate was derived from only a lim-
ited number of screens using only the Abbott compound collection. Another
example where published results may be difficult to extrapolate is that of
Stanton et al. (24), which presented a logistic regression model relating the
biological activity of the compound to its similarity to an initial search com-
pound. While this example was derived from the results of 11 different simi-
larity searches, it used only one biological assay and the BCUT molecular
descriptors used to calculate similarity were normalized to the collection of
available compounds. Therefore, these results should not be extrapolated to
other biological screens or different chemistry spaces, making it impossible to
apply conclusions drawn from this data set to other compound libraries.

Two recent papers further highlight the difficulty of choosing which simi-
larity searching method to use (29,30). Given the vast array of different mole-
cular descriptors available and the vast number of different similarity measures,
this field has been the subject of many publications espousing different meth-
ods. As similarity searching and clustering are the easiest, yet very useful,
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chemoinformatic techniques available to screeners, they continue to be the
subject of continued improvements and alterations.

3.3. Methods for Modeling Data

As with measures of similarity, this subject is under constant development
with different data-mining packages using various data-mining algorithms being
described. These include recursive partitioning, rule-based organization of
screening data, binary QSAR, pharmacophore modeling, and design of exper-
iment methods.

3.3.1. Recursive Partitioning

Recursive partitioning was originally called the decision tree method (31);
the goal of this method is to divide the dataset up using a series of simple rules,
i.e., divide the dataset between compounds with or without a certain group or
physical characteristics. Using such a series of rules, each generating an addi-
tional branch in the decision tree, it is possible to classify compounds into
groups with similar structural and biological features. The advantage of this
methodology is that it can work with very large datasets with large numbers of
descriptors. Recursive partitioning is possibly the most commonly used data-
mining method applied to HTS data (32). This may be partially due to the
groundbreaking efforts of S. Young and co-workers at GlaxoSmithKline.
Initially, this technique was used to retrospectively model data to help in the
identification of suitable lead compound classes for further follow-up and eval-
uation (33). However, this was expanded to data modeling and used prospec-
tively to guide subsequent sequential rounds of directed screening (34). In these
earlier studies the screened compounds were described using atom-pair descrip-
tors owing to the computational ease with which these descriptors could be
generated and presented as binary descriptors. However, additional fragment-
based descriptors (35) as well as whole molecule descriptors (36,37) have also
been applied to recursive partitioning. The value of this method is apparent by
the fact that it has been accepted and exploited by other groups (38) and other
recursive methodologies have been developed (39). Not only have novel
descriptors been used to improve the performance of recursive partitioning but
also strategies to generate multiple decision trees and using the average pre-
diction of these trees to better model the data, i.e., Decision Forests (40), and
combining recursive partitioning with K nearest neighbors (41).

3.3.2. Rule Based Evaluation

Methods in which compounds are described using predefined molecular sub-
structures have been applied to HTS data usually because of the ease with
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which such molecular descriptors can be generated (42,43). However, such
descriptors may have the disadvantage that relationships between compounds in
different categories can be lost. This has been addressed with the LeadScope
software package, which arranges the groupings hierarchically so as to maintain
the relationship between compounds. Other means of categorizing compounds
by the structural features they contain include ring-based heuristic systems (44)

and extended to structural browsing indices (43), which categorize compounds
dependent on a dictionary of structural features. The compounds are readily
partitioned in these molecular equivalence classes based on the structural fea-
tures present in the compounds, and these molecular equivalence classes can
then be ordered so as to maintain the relationship between the particular
classes. As initially developed, these methods function mainly as tools for the
visualization and organization of HTS data.

This approach to organizing HTS data has evolved, with novel methods
being developed to identify larger associations of substructures with activity,
using recursive partitioning and simulated annealing to further optimize the
possible associations (34).

3.3.3. Binary QSAR

Another approach that has been described for modeling HTS data is Binary
Quantitative Structure Activity Relationships (Binary QSAR) (45). This method-
ology uses a Bayesian approach to correlate structural features present in a com-
pound with activity. A very similar strategy has been described for identifying
substructures that are associated with activity, called CASE (46), and this has
been extended to include further structural and physicochemical modulators to
allow more accurate modeling of the observed activity (47). These methods have
not only been used to model existing data describing inhibition of tubulin poly-
merization, but have successfully been used to guide subsequent rounds of
screening to identify a novel lead compound (discodermolide) that has been
taken on for further evaluation and drug development (48).

As with recursive partitioning, binary QSAR has been the focus of continued
development with novel molecular descriptors being evaluated (49). As the
number of potential descriptors has grown, methods to select the most appro-
priate descriptors, such as binary or whole molecule descriptors, have been
described (50). The methodology has been expanded to include kernel dis-
crimination of activity data (51). It might be expected that such a methodology
might have a better chance of dealing with HTS data where the uncertainty, or
error, associated with the activity data is usually greatest around the active/inac-
tive cutoff. This method therefore tries to include within the model this uncer-
tainty by inclusion of a kernel function to describe the error associated with the
original activity estimate. One of the strongest points of this approach is that it
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utilizes nonparametric statistics and thus makes no assumption about the dis-
tribution of error in the data making the method robust to noise in the dataset.
Another strength of this method is the acceptance by the authors that no one
method for predicting activity is sufficient, especially as the goal of HTS is to
identify as many different classes of active molecules as possible.

The application of binary QSAR presented by Gao and Bajorath (52) high-
lights one of the common weaknesses present in data-mining literature, where
the reported activity of a set of known compounds is taken as defining activity,
and this limited set of compounds are then added to a much larger set of com-
pounds (say the MDDR), which are arbitrarily designated as inactive. Although
this assumption can generally be accepted, it fails to take into account that in
reality the assay may well pick up a number of false negatives, false positives,
or even true positives not present in the artificial training set. For example, a
training set of quinolone compounds used to develop a model for inhibition of
topoisomerases, while possibly able to identify other classes of similar com-
pounds such as doxorubicin or 9-aminoacridine, would fail to identify topoi-
somerase inhibitors such as cyclothalidine, novobiocin, or microcin B17, all of
which inhibit topoisomerases but which act by very different mechanisms at
different sites on the target (53). It also overlooks the possibility that true pos-
itives may be identified that can be used for different therapeutic indications. In
fact exploitation of such side activities has been used as the starting point for
novel drug discovery (54).

3.3.4. Pharmacophore Modeling

Pharmacophore modeling has been used in library design once common
pharmacophores from known actives have been identified. Initially designed
for smaller datasets, pharmacophore modeling is being increasingly applied to
HTS data (55,56). The advantage this methodology offers to the researcher is
that it suggests common structural themes even from a diverse set of active
compounds. This can then help rationalize the observed activity and much more
quickly suggest directions in which the actives can be modified to optimize
activity (i.e., helping in the hit to lead optimization stage of discovery).

Although the programs for this type of application were initially developed
for relatively small numbers of compounds, they have also been applied to sets
of screening data. Software to identify common structural features associated
with active compounds, yet not present in the inactive compounds, using 2D
descriptions of the compounds has been developed (57,58).

The one caveat common to all these methods is that the model is only able
to perceive compounds that fit into the pharmacophore known for the target.
This means that even for targets of known function, new hits will only be iden-
tified that are perceived to be similar by the program to those already identified.
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3.3.5. Design of Experiments (DOE)

While not exactly the same as the methods described above in that DOE
cannot be applied retrospectively to diverse datasets, it has been used very
successfully to guide the selection and evaluation of compounds from combi-
natorial libraries (59,60). However, DOE has been successfully applied only
in cases where limited libraries of related compounds (e.g., peptides) were
being evaluated. The reason for this is intuitively obvious, as one of the
assumptions of DOE is that variability in the descriptors is continuous and
related to activity over a smooth response surface, so that trends and patterns
can be readily identified. With HTS data both of these assumptions are gener-
ally not true, as molecules can display discontinuous responses to changing
features, and the SAR of even related compounds does not map to a smooth
continuous response surface (for example, Fig. 2).

A successful application of DOE to a high throughput screening campaign
remains to be reported in the literature.

3.3.6. Data Shaving

All the previously described methods use information from active compounds
to choose new compounds for further testing. However, this makes the assump-
tion that the chemistry space has been tested evenly and that false positives
or negatives are not a significant source of error. Analysis of a series of Pharma-
cia datasets derived from different screens using three sets of diverse compounds
reveals that, even though these libraries sample the same chemistry space (Fig. 3),
they do not overlap. This can be seen most clearly by comparing the molecular
equivalence number or structural browsing indices (SBI) in which actives were
identified from the three libraries (Fig. 4). This figure shows that in a number of
cases actives from a particular SBI are present only in one of the three libraries.

To address this issue the concept of “data shaving” has been introduced (61),
in which screening data are used to identify structural features that are com-
monly associated with inactive compounds. Then, in subsequent rounds of
screening, compounds containing such features can be deprioritized. In effect
this presents a logical strategy to generate rules for when to stop screening cer-
tain types of compounds that may be inactive and to thus focus on either
classes of compounds containing actives or on classes of compounds that have
not yet been explored sufficiently to generate a “stopping rule.”

In concept this is very similar to the molecular fingerprint scaling suggested
by Xue et al. (62) or activity-weighted chemical hyperstructures (63) in which
a consensus fingerprint or pattern (hypergraph) is computed for a series of com-
pounds acting on a common target. This method gives additional weight to the
structural features found associated with active compounds. Data shaving in
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Fig. 2. Example of rough activity landscape. This figure shows the activity land-
scape for a series of related antibacterial compounds plotted in using the 2D BCUT
descriptors to arrange the compounds. (A) Shows how the compounds are arrayed in a
2D representation of the chemistry space with the height of the marker being propor-
tional to the minimum inhibitor concentration of the compounds [the smaller the min-
imum inhibitory concentration (MIC) the more potent the compound]. (B) This second
panel presents the upper figure as a 2D figure to enhance the sharp cutoff between
active and inactive compounds, emphasizing the point that activity landscapes are rarely
smooth continuous functions.



contrast identifies features common to inactive compounds. This has the fol-
lowing advantages: (1) the majority of screening data identify inactive com-
pounds, so rules are generated on greater amounts of data, and (2) the error
associated with inactivity may have less impact on the validity of the model
generated. Then regions of chemistry space occupied predominantly by inactive
compounds are removed from subsequent analysis, generating a dataset much
more evenly distributed around active compounds to be used to model features
conferring activity.
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Fig. 3. Coverage of chemistry space by four overlapping sublibraries. (A) Different
diversity libraries cover similar chemistry space but show little overlap. This shows
three libraries chosen using different dissimilarity measures to act as different repre-
sentations of the available chemistry space. The compounds from these libraries are
presented in this representation by first calculating the intermolecular similarity of each
of the compounds to all of the other compounds using fingerprint descriptors and the
Tanimoto similarity index. Principal component analysis was then conducted on the
similarity matrix to reduce it to a series of principal components that allow the chem-
istry space to be presented in three dimensions. 



3.3.7. Different Methods Applied to One Project

Given the large number of different molecular descriptors and data-mining
methods available, it is increasingly difficult to identify the appropriate ones to
use for the analysis of data from any given screen. One approach that has been
suggested to circumvent this is to use the strategy of consensus scoring devel-
oped for improving virtual docking of ligands to protein structures (64). In this
approach a series of different methods are used to score the affinity of a com-
pound for a given protein target; the results from the different methods are then
rank ordered and combined in order to arrive at a consensus score for a given
set of compounds.
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Fig. 3. (continued) (B) The non-overlapping nature of these different libraries is
emphasized if one only considers the active compounds identified in a given screen
from these libraries. As shown below almost none of the active compounds overlap
and many appear in regions of space where no similar and active compounds from the
other libraries were found.



We have applied a similar strategy to the expansion and evaluation of hits
identified from one screen using a total of five different methods to identify
additional compounds similar to the original hit. Table 1 lists the different
methods used and the relative success rates of the different methods in identi-
fying additional actives. Although it is not possible to give details concerning
this experiment, one feature that should be highlighted is how the different
methods each identified not only compounds with similar scaffolds to the ini-
tial hit, but also new actives with slightly different scaffolds, enlarging the
choice of compounds for subsequent expansion. The fact that each method gen-
erated similar but not totally overlapping compounds for subsequent testing
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Fig. 4. Comparision of molecular equivalence numbers or structural browsing
indices (SBI) containing active molecules from four different sublibraries. This figure
shows how, even though the libraries described in Fig. 3 occupy similar chemistry
spaces, they still undersample certain areas so that some active classes are only found
when screening one particular sublibrary and not the others. This figure takes the
active compounds represented in Fig. 3B using structural Browsing Indices and
shows which library the actives came from. This serves to emphasize how active
compounds with particular structural features may be identified in only one of
the three sublibraries, e.g., compounds containing the SBI 7704 are only found in the
CAC sublibrary.



and follow-up reiterates the point made by Harper et al. (51) that no one
method will be able to fully describe the structure activity relationships present
in HTS data.

4. Critical Review of Chemoinformatic Applications

Although there have been a great number of publications describing poten-
tial chemoinformatic methods for screening strategies, most describe methods
applied retrospectively to screening data. These methods have great value in
helping to model, explore, and ultimately understand the screening data; to
improve the choice of actives for follow up; and to direct subsequent lead opti-
mization. However, such strategies are rarely applied prospectively to screening
campaigns. This is not due to a reluctance of the screeners to apply such strate-
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Table 1

Results of Multiple Methods to Model HTS Screening Data
and to Then Identify Novel Hits

Method Hits Rate

Random Screening 0.45%
Identification of additional compounds for testing similar to an initial hit using the
following methods:

Similarity Searching Methods
SBIa 18%
Cousin Descriptorsb 26%
BCUT Descriptorsc 2%

Data Modeling Methods
Binary QSARd 5%
Recursive Partitioninge 2.2%
Data Mining with Enterprise Miner f 16%

aSimilar compounds were chosen by selecting untested compounds with common cyclic ring
systems using the SBI descriptors (43).

bCompounds were chosen for further testing using Cousin fingerprint descriptors (73) and
the Tanimoto similarity coefficient with a 67% similarity cutoff.

cSimilar compounds were selected for further testing using BCUT descriptors and Euclidean
distance to identify the untested compounds closest to the initial hit (24).

dA Binary QSAR model was created using the initial screening results and then used to select
additional compounds for testing as described previously (50)

eRecursive partitioning, using the ChemTree software package (available from Golden Helix,
http://www.goldenhelix.com/recursivepartitioningbenefits.html), was used to model the initial
screening data. Then the bin containing the target compound was used to select compounds for
further testing.

f The Enterprise Miner software package was used to model the initial screening data and
select additional compounds for testing as described previously (74)



gies, but rather the constraints of reality. Sets of compounds for screening are
often chosen using some diversity function and then are made up as a master
set of compound plates that are then replicated for use in subsequent assays.
Such a screening library will often represent a sizable portion of a corporate
compound collection. Unless there is a dedicated effort to synthesize or pur-
chase compounds suggested by some chemoinformatic strategy, there is little
opportunity to follow such a sequential screening strategy. Although the appli-
cation of any screening strategy could be started using such a library chosen for
its diversity, there are often difficulties in following up on these data in a
sequential manner because of the need to “cherry pick” out the suggested com-
pounds for subsequent testing. Challenges facing this apparently simple oper-
ation include such minor aspects as compound availability, compound stability,
and the resources to plate and track the newly ordered compound sets. To date
there have been very few efforts to overcome these logistic issues (65,66).

The other issue that arises is the quality of the screening data and the redun-
dancy (or lack of it) present in such data sets. Although statistical methods
have been applied to evaluate the quality of screening data (67,68), these meth-
ods fail to reflect all the variability of screening data. One statistic that has
gained widespread acceptance is the Z′ value, which seeks to relate the vari-
ability between the positive and negative screening data and the size of the
signal to give a signal value that relates to assay quality. Figure 5 shows the
intraday variability for four assays that have been run in our laboratory and
the associated Z′ values for these assays. It should be obvious that, although
high throughput assays with large signal to noise and relatively small assay vari-
ability can be designed, the data variability is still usually much greater than
assumed by most computational chemists. There are two major reasons for this:

1. The error associated with the data is not evenly distributed, being largest for data
close to the activity cutoff point, making it even harder to associate active/inactive
designations to compounds. Figure 6 illustrates this by plotting the variability
associated for each compound, tested in duplicate in one assay, versus the average
activity for each compound. This point makes the comparison of different
chemoinformatic methods difficult, as not only are different datasets used but that
different methods for defining active/inactive cutoffs are used.

2. The second factor that contributes to this variability is that in most high through-
put screens the compounds are usually only tested once, at a single concentra-
tion. Consequently, differences in compound concentration and purity will have a
large effect on the accuracy of the assay data. The differences in compound con-
centration can be due to differences in compound preparation or compound
stability in dimethylsulfoxide (DMSO). The concentration of the test com-
pound can even be varied depending on the length of time the DMSO stock solu-
tion is exposed to the atmosphere, as DMSO can take up water (69,70).
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4.1. Issues Associated with the NCI Datasets

The most commonly used dataset for testing potential data mining
packages is the NCI Tumor-Screening data set, which is publicly available
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Fig. 5. Comparison of assay variability and Z′. This figure serves to highlight that,
while assays with excellent Z′ values can be developed, their reproducibility is still
less than would be required for computational modeling. As discussed in the text, this
is a function of single-point, single-concentration activity determinations.



(http://dtp.nci.nih.gov/webdata.html). Yet this dataset reports the activity of
compounds tested with a dose response, not at a single concentration, and
against a whole battery of cell lines. Another reason why this dataset does not
accurately reflect the data quality usually generated by high throughput screens
is that this compound collection has historically been acquired by expanding
around compounds of interest and not designed for maximal diversity, as are
many of the screening collections currently used in large pharmaceutical com-
panies. Figure 7 graphically displays the distribution of intramolecular simi-
larities for four Pharmacia compound collections, three of which were designed
to sample chemistry space as effectively as possible (the DT, BRO, and CAC
libraries) and one that was accrued over time as compounds were obtained for
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Fig. 6. Error structure of HTS results. This figure shows how the reproducibility of
activity data varies with differences in activity. The circles represent compounds des-
ignated as inactive and crosses designate active compounds. From this figure it is obvi-
ous that assay variability is closest at the cutoff between active and inactive compounds.

Fig. 7. (see facing page) Comparison of the intramolecular similarity distribution for
four compound collections versus the NCI collection. This figure shows the intermol-
ecular similarity (calculated using the Tanimoto similarity coefficient using ISIS fin-
gerprint descriptors) between each compound in each library. The first panel shows
how the NCI dataset contains many identical compounds (or salts of the same com-
pound) that have been submitted for testing.
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internal projects (the HIS Library). Comparing the distribution of intermolec-
ular similarities between these libraries it is apparent that the NCI and HIS
compound collections contain many more similar compounds than the dissim-
ilarity libraries. This introduces redundancy into the data so that structural fea-
tures, common to related compounds, will have been tested multiple times, thus
making any inference about the structural features present in these compounds
more valid. In addition, the NCI dataset differs in the types of structures present
from most pharmaceutical compound collections in that it has many more
simple alkyl compounds lacking ring systems and many more natural products
containing many large ring systems (Fig. 8). This difference is probably due to
the desire of pharmaceutical companies to populate their screening libraries
with compounds that comply with heuristic rules such as the “Rule of Five,” or
rules to limit the number of rotatable bonds a compound should have (71,72).
From this discussion it has been shown that, although chemoinformatics is of
great value in the analysis of screening data, the scarcity of actual screening data
(with its associated errors and inadequacies) means that novel methods are rarely
evaluated using primary screening data. It is possible, though, that this situation
may change as the number of academic laboratories undertaking screening efforts
increases. Already the availability of public databases of gene sequence infor-
mation and small molecule and protein structures, and even databases of protein/
ligand structures have played an important role in driving the development of
software for analysis and prediction. There is an effort to develop such a public
database of screening data which will surely help to stimulate the development of
new data mining methods (http://iccb.med.harvard.edu/chembank/).

5. Summary

This chapter has outlined the ways in which chemoinformatics is being
applied to HTS projects, from the earliest stages of library design and organiza-
tion of the compounds into coherent groups to the final stage of identifying addi-
tional compounds similar to confirmed hits in order to develop rudimentary
structure activity relationships. In essence chemoinformatics both lays the foun-
dations for an “omics’ screening strategy (by ensuring that a diverse representa-
tive group of compounds are screened) and then helps to refine and organize the
data allowing hypotheses concerning the data to be generated, and then expand-
ing the hypotheses by identifying compounds similar to hits of interest for fur-
ther evaluation. This chapter has in addition highlighted the constraints that are
inherent within screening data and how these constraints limit which chemo-
informatic methods are of use and how such methods can be implemented.
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Fig. 8. Comparison of the different ring sizes present in the NCI with the
Pharmacia CAC pharmaceutical library. (A) Histogram of the distribution of ring
system size present in the NCI dataset. Note the approx 2000 compounds with no ring
system and the large number of very large cyclic ring systems (larger than 30 and as
large as 95, NCI compound # 683343). (B) By comparison the CAC library contains
very few compounds with no cyclic system and the largest cyclic system is 28.
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Strategies for the Identification and Generation
of Informative Compound Sets

Michael S. Lajiness and Veerabahu Shanmugasundaram

Abstract

Mounting pressures in pharmaceutical research necessitate ever increasing efficiency to lower
cost and produce results. This is especially true in the realm of high-throughput screening (HTS)
where large pharmaceutical companies historically test many hundreds of thousands of com-
pounds in the search for new drug leads. As a result of this pressure the old mantra of “screen
them all” is rapidly becoming a phrase of the past and the search for new, more efficient meth-
ods for discovering leads begins. This chapter will describe some of the methods, techniques, and
strategies that have been implemented at Pharmacia that attempt to identify compounds that are
likely to provide the most useful information so that one might discover solid leads rapidly.

Key Words: Prioritization; compound quality; structural diversity; consensus scoring; regu-
larization; molecular complexity; structural alerts; biological promiscuity.

1. Introduction

The race to find the next blockbuster has never been more important in the
pharmaceutical industry. The very existence of many companies may depend on
the timely discovery of new chemical entities that can be developed into the
next Celebrex® or Lipitor®. Adding to this is the need to reduce cost and
increase shareholder value. Consequently, the productivity of the pharmaceutical
industry has dramatically fallen short of its own expectations (1).

1.1. Screening Everything is too Costly

Pharmaceutical companies house many hundreds of thousands to more than
a million compounds in their corporate repositories. So as not to miss potentially
interesting compounds in screening, a common strategy is to “screen them all.”
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Given the cost of screening of up to $1/well or more, it doesn’t take an accoun-
tant to figure out that the cost of screening the whole collection is very high.
But do we need to test everything?

A well-known principle is that “similar compounds have similar activities.”
While not uniformly true, it still holds in enough cases that similarity search-
ing is an accepted way of finding other interesting compounds based on a
known lead or hit. Given the similarity principle and the rising costs in drug
discovery and development, can we in good faith recommend screening every-
thing as a cost effective way to discover need leads? We think not.

1.2. More Data Are Not Necessarily Better

“It’s hard to see the forest for the trees” is an expression that most have
heard. It’s also one that relates a truism. Sometimes less is actually more.

Let’s say you are a carpenter and are looking for a nice tree to cut down so
you can build a cabinet. You walk to a 1-acre woods and, it being a small tract
of land, you quickly choose a nice oak tree. Imagine if you were selecting a
tree from a 10 square mile tract. You might be tempted to look and look and
look for the best tree you could find. It may very well turn out that selecting a
good tree from the 1-acre plot will move you faster to your goal of building a
cabinet than looking at the larger tract and choosing the absolute best tree. It’s
all about how you utilize your search space.

There are often many results obtained during HTS that confuse and point
scientists in the wrong direction. These false positives are due to many factors
such as aggregation, metal chelation, insolubility, and reactive and unstable
compounds. The sheer volume of data makes it hard to visualize the results
and understand what the data are telling you. The fact is that many of these
false leads can be avoided by intelligent treatment of the results.

1.3. A Typical HTS Problem

A typical problem encountered in HTS is when a biological assay identifies
many thousands of compounds as being active. The sheer number of com-
pounds makes it impossible to perform concentration–response experiments in
a timely manner. A common practice in this situation is to raise the definition
of activity. For example, one might have an initial list of 50,000 actives after
screening 1,000,000 compounds (a 5% hit rate) and arbitrarily setting a per-
centage inhibition cutoff to 75% inhibition or higher may lower the number of
hits to a more manageable size of 10,000. Even after such a reduction, the
remaining compounds may still contain compounds that have rule-of-five
scores over 2, cLogP’s over 7, or molecular weights greater than 800. In addi-
tion, the list may contain a large number of highly similar compounds. Clearly,
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there must be a better way to reduce the number of compounds while keeping
the most interesting and informative compounds in the list.

1.4. What to Do?

Obviously, one could choose to ignore the issues mentioned above and just
screen as many compounds as desired and selecting hits starting with the most
active first. Another possibility is to filter the lists of hits based on other crite-
ria. Yet another, more attractive possibility is to have a medicinal chemist
review the list and eliminate the ones he/she doesn’t like. However, there are
two problems with this idea. First, there are not enough medicinal chemists
available to review lists of thousands of compounds in a reasonable amount of
time. The second problem is that medicinal chemists are inconsistent.

1.5. Medicinal Chemists are Inconsistent

In a recent study at Pharmacia it was found that medicinal chemists were
inconsistent in the compounds they reject (2). In addition, it was also observed
that individual medicinal chemists don’t consistently reject the same compounds!

In this study, 13 experienced chemists reviewed the same list of 250
compounds that were previously rejected by a senior medicinal chemist. These
250 compounds were broken down into 23 lists. Each chemist reviewed from
one to three lists. Figure 1 contains a histogram that indicates how many
compounds were consistently rejected. As one can see in this figure, only one
compound was rejected from the 23 lists by all the 13 chemists. Figure 2 illus-
trates how consistent the 13 medicinal chemists are to themselves when review-
ing the same list of 250 compounds organized differently.

The obvious conclusion from the Pharmacia study is that chemists are
inconsistent and cannot be relied upon to consistently select the same com-
pounds to form informative sets of compounds. So, if chemists are biased,
how can one consistently and intelligently create interesting and informative
sets of compounds?

1.6. Computational Methods

One answer to this dilemma is to use computational methods to identify the
most interesting and informative compounds to pursue. Several workers have
devised rules to identify undesirable or desirable compounds (3–12). These
applications generally rely upon hard rules or structural criteria applied with
limited focus to define interesting compounds. For example, the rule-of-five
utilizes a score of 0–4 and is meant to assess bioavailability issues alone. Triage
methods eliminate compounds that violate one or more of a variety of rules,
which results in a limited set of compounds passing all filters. This is in some

Strategies Using Informative Compound Sets 113



sense the best set of compounds. However, this set may contain many similar
compounds and also may have excluded many interesting compounds that only
violated a single criterion by a small amount. The problem with these
approaches is that they ignore the fact that interesting compounds reside in a
complicated multivariate space and by focusing on one or two parameters one
can easily eliminate great lead compounds.

It is suggested in this chapter that it is better to use prioritization methods,
which utilize a series of soft scores so that compounds with the most interesting
profile rank higher and compounds with the least desirable profile rank lower.

114 Lajiness and Shanmugasundaram
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Fig. 2. Average consistency (similarity) of a chemist in rejecting the same compounds.



2. Custom Prioritization Software

Custom software was developed to perform compound prioritization. The
objective of this work was:

• Faster and more consistent decision making.
• Reprioritizing compounds rather than eliminating some of them completely from

hit-lists.
• To encourage rapid interaction with medicinal chemists, not eliminate need for

their opinion.

The software utilizes a wide variety of information contained in corporate
databases to identify interesting compounds with lead-like features. These fea-
tures of a compound are grouped into several categories and are combined to
create scores that define fairly independent measures of a compound’s suit-
ability for follow-up evaluation. These scores are then combined to create a
composite score that weights the features according to project team objectives.

One important result of this type of a score is that project teams are forced
to address what makes a compound interesting. Another effect is that the resul-
tant scores are unbiased and consistent. Needless to say, the software and scor-
ing system evolves as more results become available and as the goals of the
collaboration changes.

2.1. Score Components

There are four component scores that can be used to assess how informative
and desirable a compound might be. These scores are as follows:

• Q-score Compound quality score based on molecular weight, biological promis-
cuity, and other data commonly accepted to measure lead-like properties of a
compound.

• B-score Biological profile score based on potency, selectivity, and toxicity of a
compound.

• D-score Dissimilarity score based on Tanimoto-like similarity among compounds
in the “set.” This will ensure that compounds from different structural classes are
prioritized higher.

• S-score Similarity score based on Tanimoto similarity to selected desirable
compounds.

It should be noted that the S-score will not be discussed any further in this
chapter except to say that this score can be used to bias the prioritization toward
particular compound classes. These scores are then combined into a Composite-

score, which is a linear combination of the above scores with weights reflecting
relative “worth” of each component.
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2.2. Q-score or Quality Score

The Q-score is composed of a number of components. Some of these are
listed below.

• Rule-of-five score.
• Molecular weight.
• clogP.
• Number of rings.
• Presence of a structural alert.
• Estimated solubility.
• Molecular complexity.
• Biological promiscuity.
• Other parameters.

Much has been written in the literature regarding the desirable levels of
many of these features (3–12). Owing to space and other limitations, we will
briefly describe three of these features. These are biological promiscuity,
molecular complexity, and estimated solubility.

2.2.1. Biological Promiscuity

Biological promiscuity is a term first suggested by Lajiness in 1998 to
describe the tendency of a compound to be found active in multiple, unrelated
assays. It is clearly related to Shoichets’ notion of “pathological” compounds.
Aggregation is one reason that compounds appear to be promiscuous (13–16).
The Biological Promiscuity Index (BPI) is essentially an empirical probability
value and ranges from 0 to 1. The index relates the proportion of compounds
exhibiting promiscuity (activity in multiple unrelated assays) given the number
of assays that a particular compound has been tested in. To illustrate this,
Fig. 3 shows the relationship between the BPI and the number of nonantibiotic
assays reporting a compound as active.

In general, antibiotic assays are not used in calculating biological promiscu-
ity, because many compounds that are active against one species of bacteria are
often active against many others. It should also be noted that these data were
generated based on the vast collection of historical screening data accumulated
at Pharmacia over the last 20 yr. Preliminary visual data analysis indicated
that many compounds exhibiting high biological promiscuity are often com-
pounds eliminated by chemists upon review. It is also interesting to note that
these compounds are generally not identifiable by any other type of filter that
the authors are aware of. Thus, it forms a valuable component in the creation
of the quality score.
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2.2.2. Molecular Complexity

The authors feel that compounds need to be sufficiently complex in order
to provide a significant level of information content. On the other hand, com-
pounds that are too complex may be viewed as undesirable. A number of
measures for characterizing molecular complexity have been developed over
the years. Complexity has been defined in terms of size, elemental composition,
topology, symmetry, and functional groups present in a molecule (17,18). In the
present work, we have applied a simple, chemically intuitive measure devel-
oped by Barone and Channon (18). This approach is based on a simple additive
model, where values are assigned to specific classes of molecular features such
as the types of atoms and bonding patterns, and the number and types of rings.
This is illustrated in Eq. 2.1:

(2.1)

where the Barone–Channon complexity index CBC is composed of a Brings term,
which is a “ring term,” a Bcnt term, which accounts for atom connectivity/
valency, and a Batom term for atom types.

More explicitly,

(2.2)

where Ri
ringsize is the number of atoms in the ith ring

(2.3)
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where Natoms (v) is the number of atoms with connectivity/valency equal to v = 1,
2, 3, or 4, and

(2.4)

where Ncarbon is the number of carbon atoms and Nhetero is the number of hetero
atoms in the molecule.

2.2.3. Estimated Solubility

The aqueous solubility of a compound is a very important molecular quality
component. At Pharmacia, Gao et al. (19) have reported a method for estimat-
ing the aqueous solubility of organic compounds using a QSPR approach. Their
analysis included 930 diverse compounds that were analyzed using principal
component regression. The diverse compounds were selected using MACCS
fingerprints and a BCUT chemistry space. The derived model had an r 2 of 0.92
and a q2 of 0.91. The QSPR model was validated using 209 compounds not
included in the training set and the absolute error for the test set was 0.40 log Sw.
This model is readily available through Cousin/ChemLink, the chemoinformatics
database system developed at Pharmacia.

2.2.4. Scoring Strategy

The strategy used to define the Q-score was to first define the components
that would contribute to the score and the relative weights that should be
assigned to each component. Q-score would then be calculated and a training
set of compounds ranked. These results were reviewed and weights adjusted
accordingly until deemed acceptable. Once the compounds were ranked accept-
ably, the resultant score was then transformed and regularized (a process
described below) to obtain a normalized distribution ranging between 0 and 1.

A discrete-style scoring scheme is illustrated in Fig. 4, and Fig. 5 contains
an example that shows a linear-style scoring scheme. In either case, the net
result is that one identifies a portion of the range of a particular feature such as
molecular weight and assigns a score that is reflective of the desirability of
that value.

Once all of the component scores are defined and calculated, one can then
compute the Q-score by forming a linear combination of the components. For
example, Q-score could be computed using the formula shown in Eq. 2.5:

(2.5)
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where ai = weight for component i, si = regularized score for component i,
component i = molecular weight, cLogP, ROF score, . . . n components.

Note that weights may be either intrinsic or extrinsic. This means that one
can build the weight into the range of the scores themselves or assign an
explicit weight later if the components are all on the same scale. For example,
the range of the scores used for the BPI could be from 0 to 50 and the range for
molecular weight could be from 0 to 100. Thus, molecular weight would poten-
tially have twice the weight of the BPI. It should be noted that in Eq. 2.5 the
numerator is divided by the sum of the weights. This is done, assuming the
components themselves are in the range 0–1, so that the Q-score also ranges
between 0 and 1.
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Fig. 5. Example of a continuous treatment of a component score.



2.3. B-score or Biological Score

The biological score is meant to reflect how well a compound performed in
an assay or series of assays. In the case of HTS, one might have a single inhi-
bition value in which case no sophisticated scoring needs to be done. In other
cases a variety of IC50 or Ki values might be available that attempt to define
potency, selectivity, and toxicity. Thus, one can envision a series of assays that
result in IC50 or Ki values that reflect absolute potency, a selectivity ratio, and
an efficacy/toxicity ratio. Often project teams are interested in compounds that
are at or near the nanomolar level of potency. However, one might also desire
far less activity or more selectivity versus a related target. Thus, a ratio of IC50s
might be appropriate to define selectivity. Also, if there is a corresponding tox-
icity endpoint, one could also envision a toxicity ratio. After suitable normal-
ization and regularization, one could obtain a Potency score (PS), a Selectivity
score (SS), and then a Toxicity score (TS). One then could construct a Biologi-
cal score (BS) that combines the three as shown in Eq. 2.6:

(2.6)

As was done for the Q-score, the numerator sum was divided by the sum of the
weights so that the B-Score ranged between 0 and 1.

2.4. Important Features of Scores and Statistics

2.4.1. Normalization

The goal of the prioritization scheme is to design the scores so that the over-
all worst looking compounds are de-emphasized and the best looking com-
pounds are moved toward the top of the list. Thus, it is important to ensure
that the best and the worst compounds are clearly separated and that the vast
bulk of the population is in the middle. The normal distribution is ideally suited
for this and thus it is advantageous to transform our component scores into a
normal-like distribution. EnterPrise Miner® from SAS Institute was used to do
this as it has a maximize normality transformation built into it.

2.4.2. Regularization

Essentially what we are trying to do in this attempt at prioritization is to
combine apples and oranges to make a tasty fruit salad! If the recipe called
for equal proportions of apples, grapes, and watermelon one would NOT use
5 apples, 5 grapes, and 5 watermelons! Obviously such a fruit salad would be
dominated by the watermelon since it is so much bigger. Thus, one needs to
make sure that the scale of each of the components is adjusted so that one can
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purchase the right amount and make the best fruit salad possible. This process
is sometimes called regularization and can be simply computed by the follow-
ing formula shown in Eq. 2.7:

(2.7)

Score or Diversity Score

The D-score is computed using the maximum dissimilarity algorithm of
Lajiness (20). This method utilizes a Tanimoto-like similarity measure defined on
a 360-bit fragment descriptor used in conjunction with the Cousin/ChemLink
system (21). The important feature of this method is that it starts with the selec-
tion of a seed compound with subsequent compounds selected based on the max-
imum diversity relative to all compounds already selected. Thus, the most obvious
seed to use in the current scenario is the compound that has the best profile based
on the already computed scores. Thus, one needs to compute a “preliminary
consensus score” based on the Q-score and the B-score using weights as defined
previously. To summarize this, one needs to

• Compute the normalized and regularized component scores (B-score and Q-score)
• Compute the preliminary consensus score (e.g., Q-score + .5*B-score)
• Rank the compounds based on the preliminary score
• Choose the best scoring compound as the dissimilarity seed
• Compute the dissimilarity score and transform it appropriately

The intent of the diversity score is to ensure that methyl-ethyl-propyl-butyl
compounds won’t all rank near the top and that lower scoring (on other mea-
sures) compounds that are structurally novel will be evaluated more favorably.

2.6. Final Consensus

After all the individual scores have been computed and transformed appro-
priately, one can define the consensus score. This score should weight the
various components according to the desires of the project team. For example,
the Consensus Score (CS) could be define as:

(2.8)

This function weights compound quality the highest followed by performance
in relevant biological assays, followed by diversity. It is really not necessary to
regularize this score but can be done to be consistent with the other scores.
Many different weights can be used and will result in greater or lesser empha-
sis being placed on diversity, quality, or the biological profile.
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As in the computation of all the scores, one needs to check to make sure that
the rank-ordered compounds are reasonable. In the early stages of development
of this prioritization method there was a great deal of adjustment to the scoring
functions to match medicinal chemists’ and project team members’ opinions.

An example of a final consensus list can be seen in Fig. 6. In this figure
one can see the Q-score and B-score and the computed preliminary consensus
score. On the basis of the preliminary consensus, NP-103930 was chosen as the
best compound and selected to be the dissimilarity seed. After the maximum
dissimilarity calculation, the diversity score was input and the final consensus
score was calculated. As one can see from this figure, the first compound in the
preliminary run remains the best. The second compound from the preliminary
run does not appear in this list as it was very similar to the NP-103930 and was
de-prioritized and moved down the list accordingly. Also the 155th compound
in the preliminary ranking moved up the 14th rank because it was considered
as a structurally novel compound. This, we feel, illustrates the power of this
approach. Compounds with the most desirable properties move up the list and
compounds with less desirable properties move down the list.

2.7. Forming Priority Lists

Once the final consensus score has been calculated for all compounds, the
lists were divided into smaller compound sets for convenience. In one particu-
lar example, the total set was split into 6 sets of approx 400 compounds each.
This is illustrated in Fig. 7. Selected lists were then sent out for plating and
subsequent testing.
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3. Results

For a variety of reasons we are not able to show the detailed results as to
how the method allowed us to identify interesting compounds more quickly.
What we are able to show is the distribution of compounds relative to various
component measures, which illustrates that for the vast majority of cases the
top priority lists contain the best looking compounds and the lowest priority
lists contain the worst looking compounds.

In this section the results of a prioritization in terms of component distribu-
tions will be given for a set of approx 2,400 compounds that were divided into
6 priority lists.

In Figs. 8–10 one can see that the distribution of average potency, selectivity,
and average efficacy/toxicity ratio is exactly as one would desire. One can
conclude that list 1, the highest priority list, contains the most efficacious
compounds based on the degree of testing performed so far.

Average Quality (based on Q-score) for each of the six lists is illustrated via
histograms in Fig. 11. Clearly, list 1 contains the highest quality compounds
and list 6 contains the worst in terms of compound quality.

Figures 12–14 indicate that the distributions of average molecular weight,
average rule-of-five score, and average biological promiscuity have trends
consistent with the goal of the priority lists.

However, in Fig. 15, the graphic clearly shows that list 1, the highest prior-
ity group, does not have the best estimated solubility. This might indicate that
the weight assigned to estimated solubility was not as high as it could be to
force the overall prioritization procedure to select compounds so as to make the
average more in line with the desired prioritization. It should be pointed out,
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however, that there may be no way to adjust the weights so that all of the
parameters will be distributed as desired.

Figure 16 shows that compounds with structural alerts, substructural fea-
tures that are generally not wanted in drug candidates but may be acceptable in
lead compounds, are pushed back into the fifth and sixth lists.

Somewhat surprisingly the lists contain compounds with structural diversity
much in line with what was desired. What is plotted in Fig. 17 is the distribu-
tion of similarity values between compounds contained in a priority list. Thus,
lower similarity values reflect more diversity. Clearly, list 1 contains the most
diverse compounds and lists 3 and 4 the least diverse. It should be pointed out
that lists 5 and 6 both contain very diverse compounds, but these compounds
were most likely placed into these groups due to poor scores in other areas.
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4. Summary and Conclusions

What has been described in this chapter is an approach where one prioritizes
compounds for follow-up screening instead of filtering. One starts with a list of
compounds ordered by some parameter such as percentage inhibition and then
calculates scores that are reflective of various measures of desirability. These
scores are combined into a consensus score and then are used to reprioritize the
list so that compounds with desirable features are near the top of the list and
less desirable compounds move near the bottom of the list. These compounds
can be organized into groups to facilitate analysis. It is anticipated that this is
a dynamic process and evolves as more experience is gained.
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Fig. 10. Distribution of average efficacy/toxicity ratio grouped by priority list.

Fig. 11. Distribution of average quality grouped by priority list.



Fig. 12. Distribution of average Molecular Weight grouped by priority list.

Fig. 13. Distribution of average Rule-of-Five score grouped by priority list.

Fig. 14. Distribution of average biological promiscuity index grouped by priority list.



Fig. 15. Distribution of average solubility grouped by priority list.

Fig. 16. Distribution of structural alerts grouped by priority list.

Fig. 17. Distribution of diversity grouped by priority list.



It seems clear that eliminating compounds from consideration based on one
or two parameters is not ideal and that prioritizing compounds based on a more
complete multivariate landscape of properties is more appropriate. Prioritization
may not be as good as expert medicinal chemistry opinion, but it’s cheaper,
unbiased, more consistent, and more readily available.
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Methods for Applying the Quantitative
Structure–Activity Relationship Paradigm

Emilio Xavier Esposito, Anton J. Hopfinger, and Jeffry D. Madura

Abstract

There are several Quantitative Structure–Activity Relationship (QSAR) methods to assist in the
design of compounds for medicinal use. Owing to the different QSAR methodologies, deciding
which QSAR method to use depends on the composition of system of interest and the desired
results. The relationship between a compound’s binding affinity/activity to its structural properties
was first noted in the 1930s by Hammett (1,2) and later refined by Hansch and Fujita (3) in the
mid-1960s. In 1988 Cramer and coworkers (4) created Comparative Molecular Field Analysis
(CoMFA) incorporating the three-dimensional (3D) aspects of the compounds, specifically the
electrostatic fields of the compound, into the QSAR model. Hopfinger and coworkers (5) included
an additional dimension to 3D-QSAR methodology in 1997 that eliminated the question of
“Which conformation to use in a QSAR study?”, creating 4D-QSAR. In 1999 Chemical
Computing Group Inc. (6) (CCG) developed the Binary-QSAR (7) methodology and added novel
3D-QSAR descriptors to the traditional QSAR model allowing the 3D properties of compounds
to be incorporated into the traditional QSAR model. Recently CCG released Probabilistic
Receptor Potentials (8) to calculate the substrate’s atomic preferences in the active site. These
potentials are constructed by fitting analytical functions to experimental properties of the sub-
strates using knowledge-based methods. An overview of these and other QSAR methods will be
discussed along with an in-depth examination of the methodologies used to construct QSAR
models. Also, included in this chapter is a case study of molecules used to create QSAR models
utilizing different methodologies and QSAR programs.
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1. Introduction

The underlying theory of Quantitative Structure–Activity Relationship
(QSAR) is that biological activity is directly related to molecular structure.
Therefore, molecules with similar structure will possess similar bioactivities
for similar proteins/receptors/enzymes and the changes in structure will be rep-
resented through the changes in the bioactivities. The best general description
of a QSAR model is

(1)

There are several QSAR methods to assist in the design of compounds for
medicinal use and deciding the method to use depends on the system of inter-
est. The origin of the concept of QSAR is a debated topic, with most agreeing
(9) that QSAR as we know it today originated with the works of Hansch and
Fujita (3) and Free and Wilson (10) in 1964. In 1988 Cramer and coworkers
developed Comparative Molecular Field Analysis (CoMFA) (4), which incor-
porates the three-dimensional (3D) aspects of the compound, specifically the
electrostatic fields, into the QSAR model. CoMFA is a method of describing
the 3D structure–activity relationships in a quantitative manner and is an
improvement on traditional QSAR by taking into consideration 3D structures,
steric regions, and the electrostatic nature of molecular substituents. CoMFA
differs from traditional QSAR techniques because it is a representation of
steric and electrostatic fields of the ligand on a 3D grid thus producing an
image that can be viewed and compared (4). There are two major points of
contention with CoMFA, (1) the alignment and (2) the conformation of the
molecules in the study. Following the development of CoMFA, the addition of
3D descriptors for traditional QSAR (6), 4D-QSAR incorporating ensembles
of molecular conformations (5), Binary-QSAR (7), and Probability Receptor
Potentials (8) have been devised to aid in computer-aided drug design. This
chapter is not meant to be the “holy grail” of QSAR, but an explanation of
how each part of the QSAR process fits together and influences potential suc-
cesses and failures, while also highlighting the benefits and pitfalls of the
methods used to create the models.

The underlying process of creating a QSAR model is shown in Fig. 1A.
The process starts by collecting the molecules of interest and calculating all
possible descriptors. Next the significant descriptors are selected and a model
is created. If the correct descriptors are selected, the model will produce good
results when evaluated on the Test Set. Normally a poor model is constructed
and a modified or new set of descriptors is chosen and the process is repeated.
Once a good model is found, it is used to design novel compounds for the
system of interest. Unfortunately this is all that is typically understood or seen
when using a QSAR package such as QuaSAR (6), CoMFA (4), SOMFA (11),
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Fig. 1. General methodology of a QSAR Study. (A) Underlying process of creating
and using a QSAR model. Molecules are collected and descriptors are calculated. The
model is created using the Training Set and the model is then tested on the Test Set. If
the model has a bad correlation to experimental values, the descriptor set is modified
or a new set of descriptors is selected. Otherwise the model is dissected and novel lig-
ands are designed using the information from the descriptor set. (B) Different methods
of performing the same task in the creation of a QSAR model. At each point in the gen-
eration of a QSAR model there are several acceptable methods of calculating the
descriptors (this is based on the type of QSAR study), selecting the descriptors, and
creating the QSAR model.



or 4D-QSAR (5). Each QSAR package has a unique method of calculating
descriptors and a standard method for selecting descriptors and constructing
the models. The backgrounds of these methods are typically glossed over in
the user manuals. At each step in a QSAR study (Fig. 1B) there are different
methods for performing the same task, specifically the selection of descriptors
and creation of models. Preparing the molecules for the study appears straight-
forward except the number of choices for the different parameters can be baf-
fling. During the initial setup of a QSAR study, there are no steadfast rules for
implementing many of the parameters, only “rules-of-thumb.” These rule-of-
thumb parameters are the atomic partial charges, the molecular conformers,
alignment of the molecules, and the composition of the Training and Test Sets.
The previous parameters are key features used to monitor and indicate the
outcome of a QSAR study.

2. QSAR Methodologies

The field of QSAR methodology is an ever-evolving field. This section high-
lights the different types of wide-ranging QSAR methodologies based on the
concepts first proposed by Free, Wilson, Hansch, and Fujita, and how the
changes in chemical structure affect the binding of compounds to receptors (9).
The discipline of QSAR originated when chemists noted a relationship between
the structure of a compound and its activity. By the early-to-mid 1930s
Hammett and others devised linear free energy relationships (LFER) between
the influences of benzene polar substituents on side-chain reactions to form
benzene derivatives.

The popularity of commercial programs such as Comparative Molecular
Field Analysis (4,12) (CoMFA) and Catalyst (13) has limited both the evalua-
tion and use of other QSAR methodologies. Often well-known issues associ-
ated with CoMFA and Catalyst have come to be viewed as shortcomings that
simply are accepted as working limitations in a 3D-QSAR analysis. In this
section we challenge this position and present 3D- and nD-QSAR methods that
are able to overcome some of the issues associated with current mainstream
3D-QSAR application products.

Each QSAR package can be characterized by having a particular (a) method
of calculating descriptors, (b) procedure for selecting descriptors, and (c) statis-
tical algorithm for constructing the models. A common characteristic of 3D- and
nD-QSAR methods is the creation of significantly more descriptors than mole-
cules in the study, and the subsequent use of an adaptive search method [Evolu-
tionary (14) and Genetic (15) Algorithms] or Support Vector Machines (16)

(SVMs) to determine the best set of descriptors. The QSAR model is then con-
structed using a multivariate analysis (17,18) method such as principal component
analysis (19,20) (PCA), principal component regression (21) (PCR), partial least
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squares (22,23) (PLS), or artificial neural networks (24,25) (ANN). This section
briefly explains the general classification of QSAR methods.

There are two major points of contention common to all 3D-QSAR method-
ologies, the assignments of alignment and the conformation for the molecules
in a study. The most common reason a 3D-QSAR model fails is that the non-
bioactive conformation of the ligand is used in the QSAR study. Hopfinger (26)

included the additional pseudo-dimension of an ensemble of conformations to
the 3D-QSAR paradigm in 1980, thus creating the field of nD-QSAR. This
additional dimension eliminated the question of “Which conformation to use
in a QSAR study?” A qualitative 3D-QSAR method, Probabilistic Receptor
Potentials (8), calculates ligand atomic preferences in the active site. The poten-
tials for PRP are constructed by fitting analytical functions to experimental prop-
erties of the substrates using knowledge-based methods. Another advance to the
field of QSAR was the development of virtual high throughput screening
(VHTS) methods such as the Binary-QSAR (7) methodology that allows the
incorporation of QSAR methods into HTS and virtual 3D-pharmacophore
screening (27). These QSAR methods have been devised to assist in computer-
aided drug design by contributing different information about how the ligand
interacts with its potential receptor site.

The method for creating a QSAR model is generally automated. The user
enters the parameters (molecules with partial atomic charges designated, align-
ment of molecules, Training and Test Sets, number of descriptors to be used in
the model, the parameters for the selection of the descriptors, and the number
of models to create) and the program creates a QSAR model. This is where
QSAR studies with good intentions go bad. The user envisions the QSAR pro-
gram as a “black-box” able to take this entire set of information and return
novel drug compounds. Instead the user painstakingly sets all the parameters,
the QSAR program calculates the descriptors, and depending on the maximum
number of descriptors desired, creates a model using the Training Set as a tem-
plate. To determine the validity of the model it is internally evaluated using
the Training Set and externally tested on the Test Set. The selection of descrip-
tors and creation of the best model is an iterative process and the QSAR
program creates a myriad of models in the search for the optimal model. The
program returns the best model or a collection of best models. The process
described above is a generalization of the QSAR model creation scheme.

2.1. Receptor Independent (RI) QSAR

There are two types of QSAR studies, those that are interested in the
common and diverse physicochemical characteristics from a selection of bioac-
tive compounds and those that use the interactions between the ligands and the
binding site. In this section the discussion will be focused on the most common
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type of QSAR study, Receptor Independent (RI). The main motivation in
pursuing a RI-QSAR study is the lack of a well-defined receptor or receptor
model. Commonly a RI-QSAR study utilizes one or several of the methodolo-
gies and applications discussed in the following sections.

2.1.1. Traditional (2D-) QSAR Methodology

The original method of conducting a QSAR study was to calculate physico-
chemical descriptors and construct a linear model of the important descriptors.
This methodology for QSAR laid the groundwork for QSAR as it is known
today and as shown in Fig. 1A. The descriptors used are easily recognizable
features of the molecules; the number of double bonds, the number of hydro-
gen bond acceptors and donors, and the log of the octanol/water coefficient to
name a few. The use of ab initio–based descriptors is also possible, such as
the HOMO and LUMO energies of the molecules of interest. Yet for the sim-
plicity that is traditional QSAR it too has drawbacks. The most notable is the
difficulty in taking the important descriptors and modifying the compounds in
the necessary manner. It can be argued that this is true for all methodologies of
QSAR. But how does one increase the LUMO value of a compound? Recently,
the addition of 3D descriptors has added to the pool of possible descriptors, yet
they can be criticized in the same way. The program MOE-QuaSAR from
CCG’s computational suite MOE (28) is currently a good example of a tradi-
tional QSAR program. In this application the molecules are constructed and
their physicochemical descriptors are calculated. Following the calculation of
the descriptors, the important descriptors can be selected based on a contin-
gency test that calculates the contingency coefficient, Cramer’s V, the uncer-
tainty coefficient and the correlation coefficient (R2). Using the results of the
contingency test can help eliminate descriptors that possess the same value for
each molecule and highlight those that correlate well with the experimental
bioactivities. Following the selection of the descriptions, the model is created
and cross-validated. Depending on the validity of the model, descriptors are
removed or added and the model is once again validated. Once a QSAR final
model is completed, it can be used to evaluate novel compounds and aid in the
construction of new drug-like compounds.

2.1.2. 3D-QSAR Methodology

The focus of 3D-QSAR is to identify and quantitatively characterize the
interactions between the ligand and the receptor’s active site. As the title of
the field suggests, the main basis of the QSAR models are the molecules’
3D atomic (Cartesian) coordinates. The interactions between the atomic 3D
coordinates and the receptor are correlated to the bioactivities producing a
3D-QSAR model. There are several methods to achieve the creation of QSAR
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models based on the atomic coordinates. The most widely known 3D-QSAR
methodology is Comparative Molecular Field Analysis (4) (CoMFA) based on
placing the ligands in a 3D grid and using a probe to map the surface of the
ligand based on the ligand’s interaction with the probe. Comparative Molecular
Similarity Index Analysis (29) (CoMSIA) and Self-Organizing Molecular Field
Analysis (11) (SOMFA) QSAR methodologies are based on the same method-
ology as CoMFA. The methodology of CoMSIA is based on aligning mole-
cules using the SEAL (30) methodology, where molecules are aligned based on
physicochemical properties mapped to individual atoms and using these prop-
erties to construct QSAR models. CoMSIA is similar in execution to CoMFA
in the alignment of the molecules on a grid, the use of a probe, and partial
least squares (22) (PLS) to construct the model, yet the interaction energies
calculated by CoMSIA are the steric, electrostatic, hydrophobic, and hydrogen-
bonding properties and not the Lennard-Jones and Coulombic potentials cal-
culated in CoMFA. The probe’s interaction with the ligand is calculated for
each grid point including those inside the molecule’s atomic van der Waals
radius, eliminating the need for cutoffs as in CoMFA. These values are not
direct measurements of similarity for the molecules of interest, but can be indi-
rectly assessed (as measurements of similarity) through the similarity of each
molecule in the dataset with a common probe placed at the grid points. When
determining the similarity of the molecules of interest, the distance between
the probe and the atoms of the molecule is considered using a functional form.
Gaussian-type functions are used to define the distance dependence between the
probe and the atoms of the molecule, thus removing the subjective cutoff limits
and smoothing the distance-dependence energy well (compared to Lennard-
Jones potential). The molecular data are analyzed using the CoMFA (4) PLS
protocol (29). Even with CoMSIA’s similar methodology to CoMFA, the results
obtained from each are significantly different. CoMFA’s results show where
and how (in 3D space) to modify the compounds to increase or decrease their
ability to interact with the receptor. The results of a CoMSIA study express
regions of the compound that prefer or dislike the presence of an identifiable
group (substituent) with a specific physicochemical property (29). Using fun-
damental molecular properties and “mean centered activity,” SOMFA creates a
QSAR model based on molecular shape and electrostatic potentials (ESP) (11).
3D-QSAR methods that do not rely on a grid or alignment are Autocorrelation
of Molecular Surfaces Properties (AMSP) (31), Molecular Representation of
Structures Based on Electron Diffraction (32) (3D-MoRSE), and Comparative
Molecular Moment Analysis (33) (CoMMA). The methods of AMSP and
3D-MoRSE map the physical properties of the ligands to a van der Waals
surface and individual atoms, respectively. The physical properties are trans-
formed into a vector of equal length for all the ligands in the study, eliminat-
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ing the problem of molecular alignment. CoMMA removes the alignment
issue by calculating molecular moments and uses them as descriptors to con-
struct a QSAR model. The qualitative method of Probabilistic Receptor
Potentials (PRP) (8) is able to predict the type of receptor atom most likely
to interact with the ligand thus providing an approximation of the type of
atoms in the active site. The technique of 3D-QSAR is built on methods that
take into consideration the 3D structure of the molecules and their inherent
physical properties (with respect to how the ligand will interact with the
receptor) to construct a QSAR model. All of these methods are receptor inde-
pendent (RI); the models are created without any firm knowledge of the com-
position or 3D structure of the receptor.

None of the QSAR methodologies mentioned in this section are useful if the
3D structures of the ligands are incorrectly constructed. In small QSAR studies
it is possible to build the ligands by hand; in a large QSAR study, that is, using
ligands extracted from a large proprietary database, the need to construct the
ligands quickly and accurately from the molecular information within the data-
base is essential. The need for a method to construct the 3D structures comes
from how the ligands are encoded in the database. Commonly the molecules
are stored in 2D strings of variables; Connection Format, SMILES strings, or
analogous formats are used to facilitate viewing of the database and to reduce
the storage size of the databases. The ability to convert a 2D string of variables
into its 3D molecular structure greatly increases productivity and enables the
scientist to computationally explore the compounds. Thus, the ability to accu-
rately construct molecules from 2D strings is of great importance. The program
CORINA (34) developed by Sadowski et al. was determined (35) to be the most
suitable program for converting 2D structures to 3D representation.

The methodology of 3D-QSAR can be robust for constructing QSAR models
utilizing the structure of the compounds and how they will interact with the
receptor; however, there are several open questions that can complicate any
application of this paradigm. The first and most prominent question is “Which
conformation of the molecule should be used?” This problem is considered
(36) a leading cause of generating non-significant QSAR models, specifically
those created with 3D-QSAR methods (CoMFA, CoMSIA, and SOMFA). The
next question is “How to align the molecules?” The alignment of the mole-
cules might seem rather straightforward from the standpoint of a simple visual
comparison of ligand chemical structures, but alignment becomes a complex
problem within the context of “good receptor binders” binding in different ori-
entations, or modes, than “poor binders.” Thus, a clear and unbiased method of
aligning the molecules for the study is needed such as SEAL (30), FlexS (37),
Superposition of 3D-Structures (38), or FlexAlign (39). The optimal general
way of minimizing the alignment problem is to create multiple alignment
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schemes focusing on different regions of the molecules. This leads to the
question, “Can QSAR models be improved using alignment schemes based
on physicochemical methods such as SEAL (30), FlexS (37), Superposition of
3D-Structures (38), or FlexAlign (39)?” The method of CoMMA frees itself
from the issue of alignment, yet it has not overcome the problems associated
with bioactive conformations and the appropriate atomic partial charge. AMSP
and 3D-MoRSE eliminate the problems of alignment through the mathematical
transformation of the 3D molecular structures into vectors. These methods also
break new ground in the ability to create nonlinear models using ANNs.
CoMSIA is restrained by alignment and conformation issues yet uses differ-
ent molecular interactions as descriptors, thus surpassing CoMFA. SOMFA is
closest in methodology to CoMFA in respect to the use of grids but is not as
statistically rigorous. SOMFA does, however, endure the same traditional 3D-
QSAR methodology impediments. All of these methods, when conditions are
optimal (molecular conformations, alignment, and partial charges) will pro-
duce good QSAR models. In the creation of 3D-based QSAR models it is key
to remember the importance of proper alignment and conformation of the com-
pounds in the study.

2.1.3. nD-QSAR Methodology

The methodology of nD-QSAR adds to the 3D-QSAR methodology by
incorporating unique physical characteristics, or a set of characteristics, to the
descriptor pool available for the creation of the models. The methods of Eigen-
Value Analysis (40) (EVA) and 4D-QSAR (5) are examples of using unique
physical characteristics in the creation of a QSAR model. 4D-QSAR uses an
ensemble of molecular conformations to aid in the creation of a QSAR. The
EVA-QSAR method uses infrared spectra to extract descriptors for the creation
of the QSAR model.

The nD-QSAR methods attempt to overcome the downfalls of most of the
3D-QSAR methods through the use of additional physical properties and/or
degrees of freedom in building the QSAR models. The use of 4D-QSAR elim-
inates the issue of what conformation and alignment to use through the
sampling of multiple conformations and alignment schemes, thus constructing
optimal QSAR models. The EVA method has removed the alignment and
conformation issues that have plagued most of the 3D- and nD-QSAR methods
yet falls prey to the problem of how to extract useful information from a model
constructed with PLS.

2.2. Virtual High Throughput Screening (VHTS)

The ability to use the developed QSAR model to screen compound libraries
is an attractive prospect, yet is difficult to implement. Two types of compound
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libraries can be considered; those composed of analogous compounds
(compounds constructed from a main scaffold with many different possible
substituents) and those composed of molecules with little molecular structure
similarity (company/supplier/research group libraries of compounds). There are
VHTS methods to accommodate each of these cases individually. Binary-
QSAR (7,41) has the ability to screen large libraries of diverse compound
makeup to aid in the preparation of future HTS experiments. The implementa-
tion of virtual 3D-pharmacophore screening (27) is better suited for the exam-
ination of a library of compounds devised from a common scaffold.

2.3. Receptor-Dependent (RD) QSAR

Traditionally, QSAR methods are used to aid in the design of novel com-
pounds without a 3D structure of the receptor. The field of receptor-dependent
(RD) QSAR is used for a QSAR study when the 3D structure of a binding site
is known and can be implemented once an initial compound (analog, pharma-
cophore, scaffold) is bound. RD-QSAR is used to gather binding and interac-
tion energies, as descriptors, from the interaction between the analog and the
receptor. These descriptors cannot be determined without the receptor and can
improve the ability of a QSAR model created using receptor-independent
descriptors. An initial compound does not need to be docked (through simula-
tions) to the receptor if a solved 3D structure of the receptor complexed with
the compound (or similar compound) is available.

There are two methods that have the ability to create QSAR models using
information derived either from a theoretical active site [5D-QSAR (42)] or
from a solved or modeled binding site [FEFF-3D-QSAR (43)]. The methodol-
ogy of 5D-QSAR is similar to 4D-QSAR (creation of an ensemble of confor-
mations) plus the mimicking of the induced fit of the ligand during binding to
the receptor site. The FEFF-3D-QSAR methodology treats the energy terms in
the force field used to estimate the thermodynamics of the ligand–receptor
binding process as descriptors in the development of a “QSAR force field” for
the particular ligand-class/receptor system.

The use of receptor-dependent (RD) QSAR adds to the QSAR model
through the inclusion of ligand–receptor interactions. 5D-QSAR is unique
because it mimics the binding site of the receptor (constructed from experi-
mental data or random placement of physicochemical properties) to aid in the
construction of an optimal QSAR model and to aid in the construction of a
pharmacophore, yet is also alignment dependent. The FEFF 3D-QSAR method
is a true RD-QSAR method using the solved 3D structure of the receptor in the
calculation of ligand–receptor interaction values.

Although ADMET-QSAR methodologies are traditionally not considered RD
methods, a pseudo-receptor may be needed to extract relevant ADMET descrip-
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tors about the system that is not grasped exclusively from the intramolecular
solute test molecule descriptors. Through the implementation of Membrane
Interaction (MI) QSAR (44) (a RD-based method) the extraction of significant
descriptors deduced from interactions between the ligand and a membrane
(“receptor”) is possible, thus leading to a more significant ADMET-QSAR
model. MI-QSAR differs from other ADMET-QSAR applications through the
inclusion of an assumption and a specific set of descriptors in its methodology.
MI-QSAR is a receptor-dependent QSAR method assuming that the phospho-
lipid regions of the cell membrane represent the “receptor” (44). The MI-QSAR
specific descriptors are measures of interaction between the compounds of inter-
est and the cell membrane and a set of membrane–solute intermolecular prop-
erties. These descriptors can be further classified into solute aqueous dissolution
and solvation descriptors, solute–membrane interaction descriptors, and general
intramolecular solute descriptors. The MI-QSAR method is receptor-based,
requiring a 3D structure or model of the receptor and is usually constructed as
a monolayer from the phospholipids that comprise the cell membrane of the
system of interest. The determination of the best placement for the solute mol-
ecule (compound of interest) in the monolayer is by placing the compound (with
the solute molecule’s most polar region oriented toward the headgroup region)
at three different depths (locations with respect to the phospholipid monolayer),
in the headgroup region, in the center region of the aliphatic chains, and in the
tail region of the aliphatic chains. Molecular dynamics simulations (MDSs) are
performed at body temperature with only a single solute molecule in the mono-
layer for each simulation. Separate MDSs need to be performed for each com-
pound; the individual solute molecule is systematically placed at one of the three
positions as described above and molecular dynamics is performed. At the com-
pletion of all the MDSs, the most favorable orientation and locations of each
compound in the monolayer is determined based on energetics (44).

3. Preparing Molecules for a QSAR Study

Before starting the actual QSAR study, it is imperative to have the mole-
cules properly configured with respect to bioactivities, partial charges and
force fields, conformation, alignment, and Training and Test Set construction.
These topics at times seem trivial, however, once the QSAR study is under-
taken, the importance of these concepts will become more apparent. Often
questions regarding “Which partial charges were used?,” “Which force field
was implemented?,” “Was the active conformation used?,” “How were the mol-
ecules aligned?,” “Which molecules comprised the Training Set?” will be
asked. The alignment and conformation of molecules are primary issues when
performing a 3D-QSAR study since these methods are grid-based and rely on
the comparison of molecular interactions (ligand–probe/receptor). The mole-
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cules must be properly aligned for a study to be effective, because poorly
aligned molecular sets create poor models. The models are then created based
on spatial arrangement of the molecules; the space not occupied by any of
the molecules in the study cannot be interpreted (36). Finally the conforma-
tion of the aligned molecules, bent or high-energy conformations, such as those
observed in the transition state or bound conformations of a ligand, will not be
explored if the conformation of the molecule was derived using a geometry
optimization program, individual ligand X-ray structure or by local minima
conformational search methods.

3.1. Bioactivity Data

The bioactivity data can be considered the most sensitive external informa-
tion for a QSAR study. Depending on how the experimental study was con-
ducted, an investigator can have bioactivity data in the form of Kd, Ki, relative
binding affinity (RBA), or IC50 values. These are valid ways of reporting how
well a molecule interacts with a protein; the best bioactivity measure is Kd for
a QSAR study. Kd values are the preferred bioactivity measure because it is a
value of how well a ligand binds to and activates the protein with respect to the
concentration of ligand that dissociates from a known concentration of protein.
Ki is the measure of ligand needed to inhibit the protein. RBA is the value of
a molecule’s binding affinity divided by the binding affinity of a known (com-
monly the native ligand) ligand for the protein. The RBA for the known ligand
is one. Ligands that bind better to the same protein will have an RBA <1 and
ligands which do not bind as well will have an RBA >1. The RBA values are
a method of comparing bioactivities of the same ligand binding to protein
homologs or isozymes and should not be used in the construction of QSAR
models. The bioactivity data reported in IC50 values relate to the amount of
ligand needed to bind or incapacitate 50% of the proteins or cells. This is a
popular method of reporting bioactivity data; the values reported can vary from
lab-to-lab because IC50 values are dependent on the concentrations and ratios
used to perform the experiments.

3.1.1. Transforming the Bioactivities

A standard assumption in QSAR studies is that the models describing the
data are linear. It is from this standpoint that transformations are performed on
the bioactivities to achieve linearity before construction of the models. The
assumption of linearity is made for each case based on theoretical considerations
or the examination of scatter plots of experimental values plotted against each
predicted value where the relationship between the data points appears to be
nonlinear. The transformation of the bioactivity data may be necessary if theo-
retical considerations specify that the relationship between the two variables
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(descriptors and bioactivities) is nonlinear, yet the model is being fit by a linear
method. Assuming the relationship between the original variables and bioactiv-
ities was nonlinear, the transformation of the bioactivities converts the relation-
ship between the variables to a linear relationship. Another reason to transform
the bioactivities is based on evidence gathered by examining the residuals from
the fit of a linear regression model between the original and predicted bioactiv-
ities. The main advantage of transforming data is to guarantee linearity, to
achieve normality, or to stabilize the variance. Several simple nonlinear regres-
sion relationships can be made linear through the appropriate transformations.

3.1.1.1. LOG OF THE BIOACTIVITIES

The simplest and most common method of transforming (45) bioactivity
data is to take the log or negative log of the bioactivities to reduce the range of
the data. The logarithmic transformation is useful when the bioactivities being
analyzed possess a large standard deviation compared to the mean; this is espe-
cially apparent when the bioactivities have a large range (for example the range
0 to 1000 with most of the values occurring between 0 and 100). The use of a
logarithmic transformation has the added effect of dampening variability, reduc-
ing asymmetry, and removing heteroscedasticity, when the error variance is not
constant over all the bioactivity values (45).

3.1.1.2. CENTERING AND SCALING

The practice of centering and scaling the bioactivities and descriptors is to
reduce the dimension of the data (range of the values) because the shifting or
scaling of data does not affect correlations. Subtracting the mean of the values
(µ) from each value (xi) centers the data. The centered data only sets the mean
of the values to zero and does not reduce the range of the values. Scaling the
data (standardizing) performs the reduction in range and is performed sepa-
rately for the bioactivities and the descriptors. The standardized value (z) is
determined from the difference of xi from µ and divided by the standard
deviation (σ) of all the xi values:

(2)

(3)
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3.1.1.3. BINDING FREE ENERGY (∆G)

The conversion of binding affinities (bioactivities) to binding free energies is
the scaling of the natural log (ln) of the bioactivities. This is accomplished
using the equation:

(4)

where R is the gas constant (1.987 × 10–3 kcal mol–1 K–1) and T is the temper-
ature in Kelvin at which the binding affinities were experimentally performed.
The result is bioactivities, normally, expressed kilocalories per mole (kcal/mol).

3.2. Chiral Centers

The chirality of a molecule can have a direct impact on its ability to bind to
the receptor. In traditional QSAR studies the “handedness” of a molecule’s
chiral center(s) is not important unless 3D-Traditional descriptors are being
used. For 3D and nD-QSAR methodologies where the shape (geometry) of the
molecule is used to create the model, the chirality can have a significant impact
on the experimental bioactivities and will have an impact on the QSAR model.
When compiling the molecules for a QSAR study, make certain that chiral
compounds have bioactivities that are chiral-specific. If a 3D or nD-QSAR
model is created using chiral molecules yet the bioactivities are for a racemic
mixture, the model can be flawed. The main reasoning for the correct chirality
is that bioactivities can be directly affected by the chirality of a molecule. Using
a racemic mixture of a compound to determine the binding affinity leaves the
questions “Which chiral orientation is the bioactive molecule?” and “Is one
enantiomer preventing the other from binding?” For example, a 50/50 racemic
mixture of a compound is synthesized, tested, and demonstrates an average
bioactivity for its system. What the experimentalist might not know is whether
the R or S is the more bioactive. Also, is one of the racemates preventing the
other from efficiently performing the desired task? These questions cannot be
answered until the individual R and S enantiomers bioactivities are known. It is
also possible that both R and S molecules have the same bioactivity, yet this
assumption cannot be made without definitive experimental results.

The creation of a descriptor that takes into consideration the number of
chiral centers, their location in the molecule, and how their handedness affects
the bioactivities is needed. Through the use of a descriptor of this nature, when
a QSAR program is presented with the correct information (bioactivities for
individual enantiomers and correctly constructed molecules), it will be able to
construct QSAR models that incorporate chirality.

3.3. Force Fields and Partial Charges

When first posed with the question “Which force field or partial charges to
use?” a typical reply might be, “Partial charges derived from semiempirical or

144 Esposito, Hopfinger, and Madura



ab initio calculations,” but after some thought and consideration these might not
be a wise choice. There will be instances when force fields and partial charges
might not be a primary factor in a QSAR study, but these parameters can have
a significant impact on the values of the descriptors regardless of the QSAR
methodology used. The choice of a specific force field for assigning atomic
partial charges and radii to the molecules is effective because the force fields
are highly characterized and the partial charges, atomic radii, and bonding
information are a complete set. The compound’s atomic partial charges, atomic
radii, and bond and dihedral angles can be set using a common force field such
as Merck Molecular Force Fields (46–52) (MMFF), Assisted Model Building
with Energy Refinement (53,54) (AMBER), Saccharides and Sugars (55)

(PEF95SAC), Optimized Potentials for Liquid Simulations (56–61) (OPLS),
Chemistry at HARvard Macromolecular Mechanics (62–68) (CHARMM), and
Engh–Huber (69). Other methods of determining partial charges are the use of
Partial Equalization of Orbital Electronegativity (70) (PEOE), commonly
referred to as Gasteiger Partial Charges, or Full Equalization of Orbital Electro-
negativity (71) (FEOE), also referred to as Electrostatic Energy Minimization
partial charges (EEM), that can be combined with the above-mentioned force
fields. In the pursuit of accurate input for a QSAR study, it is tempting to use
a geometry-optimization program, such as Gaussian98 (72), MOPAC (73,74),
or GAMESS (75), to determine the partial charges and conformation of
the ligand, yet this is not needed. The atomic partial charges determined by
geometry-optimization programs are relatively correct; however, the partial
charges are dependent on the conformation of the ligand. During the binding of
the ligand to the protein, the conformation of the ligand can change drastically
depending on the forces imposed upon it from the receptor. The advantage of
using a force field such as MMFF is that the partial charges, radii, bond
lengths, and torsions are derived from a large set of computationally deter-
mined data along with a large number of crystallographically determined mol-
ecules, thus any errors are averaged out. The MMFF was parametrized using
more than 20 chemical families for the core parametrization and contains many
combinations of functional groups (46). Originally designed for molecular
dynamics MMFF has been modified (52) and re-released to incorporate a
complete set of parameters for energy minimization.

3.4. Molecular Conformation

A conformation is the different special arrangement of a ligand’s atoms that
result from rotation about a single bond; a specific conformation is a conformer.
Unlike constitutional isomers, different conformations cannot be isolated
because they quickly interconvert, yet there are several computational methods
to determine the possible conformations a molecule may possess. The energy of
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a conformer plotted against its torsional angle(s) can be based on a single or
double dihedral angle rotation. The single-bond (dihedral) rotation plots illus-
trate the fluxuation in the molecule’s potential energy with respect to bond
rotation. The lowest point on the plot corresponds to the “local” minima for a
particular configuration with respect to the rotatable bonds. Plotting energy
versus the double dihedral angles will create a potential energy surface dis-
playing the energy landscape of the system, specifically the energy barriers
between local minima conformers (Fig. 2).

The conformation of the molecules being studied has an influential role in a
3D-QSAR study. The conformation of a molecule affects the volume and
surface area, which are now being incorporated as 3D descriptors into tradi-
tional QSAR methods. The main issue is “How will the conformation of
the molecule resemble the active site/binding pocket?” If the conformation
of the molecule used in a CoMFA study is not similar to the conformation
assumed by the ligand when bound to the protein, the study and resulting
model will be of no use. When performing a QSAR study of any type, the lig-
ands need to assume the bound conformation. This leaves those wishing to use
3D-QSAR in a quandary of “Which conformation to use?” The use of a mol-
ecule’s gas-phase-optimized conformation after a random conformational
search is plausible yet is not advisable. Studies by Nicklaus et al. (76) and
Vieth et al. (77) provide insight on how to arrive at the assumed bound con-
formation of a ligand. These authors agree that the use of an isolated crystal
structure or global energy minimum conformation calculated in a vacuum of
the ligand is an erroneous practice owing to crystal packing effects and lack of
molecular interactions, respectively (76,77). Vieth et al. (77) also noted that
certain atoms (anchor atoms) in the ligand are more responsible for binding
the ligand to the active site than others. In addition Vieth et al. (77) realized a
similarity in the position of anchor atoms between geometry-optimized low-
energy solution structures and the active-site conformations. It is understood
that, when a ligand binds, the receptor may change the detailed solution struc-
ture of the ligand (76); however, it is the premise that a majority of these
changes take place in regions of ligands that contribute little to binding (77).

In searching for the best conformation it is important to determine all con-
formations efficiently because a molecule’s physicochemical and biological
properties are usually dictated by the conformation of the molecule. The
molecular conformation is of great importance for drug design because the
conformer of the “global” minima is usually not the bound conformation of a
molecule. Thus, the desire to find the lowest-energy (geometry-optimized)
structure is not profitable and usually not the preferred conformations for use
in the QSAR study. Discussed below are several methods to determine differ-
ent conformations of a molecule that are useful when determining clusters of

146 Esposito, Hopfinger, and Madura



1
4
7

Fig. 2. Dihedral energy exploration of pentane. (A) Pentane (C5H12) molecule with two dihedral bonds (rotatable bonds). (B) 2D
contour plot of the energy landscape for pentane. (C) 3D contour plot of the energy landscape of pentane. The large circle and peak
in the center of the plots (B) and (C), respectively, are the result of carbons 1 and 5 in close proximity (Φ ≈ 57, –57, ψ ≈ –57, 57).



different molecular conformations for use in 3D-QSAR studies. Molecular
dynamics is not discussed as a method of determining conformations because
it traditionally only finds structures for a given local minima; for more infor-
mation on molecular dynamics, the reader is directed to books by Frenkel and
Smit (78), Field (79), and Leach (80). The question of “Which conformation to
use?” can easily be determined by using the conformer of a ligand, or similar
compound, bound to the receptor derived through X-ray crystallographic or
multidimensional NMR methods. These methods are currently used to deter-
mine the conformation of the ligands when bound to the receptor; however, if
high-quality information about the receptor and ligand interactions is known, it
is questionable if QSAR is the best method to design novel drugs. Given this
experimentally derived information it is advisable to consider docking and
receptor-dependent QSAR methods to explore possible ligand–receptor inter-
actions. Excellent reviews of docking methodology and procedures are given
by Murcko (81) and Muegge and Rarey (82). An in-depth and early review on
the search for small and medium-sized molecule conformations is provided
by Leach (80,83).

3.4.1. Systematic Conformation Search

The purpose of a systematic conformation search is to generate a database of
practical conformations consisting of local minima, and low-energy and high-
energy structures. A systematic search generates molecular conformers by
methodically rotating molecular bonds by predetermined increments. Creating a
collection of conformations in this manner can lead to a combinatorial headache
because the number of conformations to be generated is determined by

(5)

where N is the number of bonds to be rotated and θi is the incremental value
which the bond is rotated in degrees. This provides the ability to determine all
of the possible conformations, but the desire to make the search for all probable
conformations efficient is ever present. To make this and other conformational
search methods efficient, molecules with non-bonded atomic van der Waals
interactions greater than a user-specified value are discarded.

The algorithm for the systematic conformation search starts with a minimized
molecule. The rotatable bonds are selected along with the rotation increment
and all possible conformations are created. At this point the search is terminated
or each of the proposed conformations is energy minimized according to pre-
defined parameters. After the database of conformers is finalized, each struc-
ture is compared to all the other structures through superimposition. Two
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conformers are considered equivalent if their RMSD value based on atomic posi-
tions, when compared to each other, is less than the user-defined value.

3.4.2. Perturbation-Based Conformational Search Methods

The search for different conformations of a molecule can be performed quickly
using a search algorithm based on the perturbation of either the Cartesian
coordinates (84) or rotatable bonds (6). The rapid incremental pulse search
(RIPS) method was developed by Ferguson and Raber (84) to generate confor-
mations by randomly perturbing the position of each atom in the molecule by a
small amount followed by energy minimization to generate a new conformer.
The stochastic conformation search method (6) is drawn from the concept of
RIPS yet is based on the random rotation of bonds, including the bonds of rings,
instead of the perturbation of Cartesian coordinates.

The RIPS conformational search starts by perturbing all of the atoms’ X, Y,
and Z coordinates by plus or minus the perturbation value (usually 2 Å or less)
the sign (±) is randomly assigned. Next the molecule is energy minimized to a
user-defined RMS gradient requirement. After each molecule is minimized, a
check is preformed for a duplicate conformation existing in the conformer list.
If the current structure is a new conformation, it is added to the list and the fail-
ure count (number of times a conformation that exists in the conformer list is
repeated) is set to zero. A duplicate conformer is discarded and the failure count
is increased by one. The search is considered complete once the number of
failures has reached the user-defined values.

Stochastic conformation searches start with a minimized molecule followed
by the random inversion of chiral centers and the identification of rotatable
bonds. The rotatable bonds are rotated on a uniform distribution and all the
atoms’ 3D coordinates are perturbed by plus or minus the perturbation value
(usually 2 Å or less) with the sign (±) randomly assigned as in the RIPS
method. After random rotation and perturbation, the molecule is energy mini-
mized until the RMS gradient requirement is reached. A check is performed for
a duplicate conformation existing in the conformer list; if the conformation is
an “original,” it is added to the conformer list and the failure count is reset to
zero, but if the conformer is a duplicate, the failure count increases by one and
the duplicate is discarded. The algorithm again randomly rotates the bonds and
perturbs the Cartesian coordinates of the atoms and continues the search for
new conformations. The molecular conformation search is complete once the
failure limit is reached.

These methods are best when determining conformers in local minima on the
potential energy surface. The number of rotatable bonds the molecule of interest
possesses dictates the failure limit value; accordingly, molecules with few rotat-
able bonds require a lower failure value than molecules with many rotatable
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bonds. The minimization performed in the systematic and perturbation-based
conformational search methods ensure that the conformers found lie in local
potential energy minima. These methods of conformation searching are powerful
tools for locating conformational minima of flexible molecules containing chiral
centers and can be coupled to 4D-QSAR.

3.5. Molecular Alignment

The alignment of molecules for a 3D-QSAR–based study is crucial.
Improper or incorrect alignment of the molecules can create models providing
little information relating to the main orientation of the molecule in the active
site. A study by Lemmen and Lengauer (36) noted three serious limitations for
molecular alignment with respect to 3D-QSAR methodology. The first limita-
tion for molecular alignment is the compounds of interest must bind at the
same binding site of the same receptor and possess similar binding modes. The
second limitation relates to the aligned molecules; any 3D space not occupied
by the compounds cannot be considered (used) in the construction of the QSAR
model. If substituents of the compounds are able to explore conformational
space, the QSAR model will not take into consideration these different con-
formations of a molecule’s functional groups. The final limitation relates to
3D-QSAR models being constructed with the low-energy conformations of the
compounds being studied. The conformations of the compounds are most likely
not the bound conformation of the molecules (76,77) as would be observed in
the binding site. Using the low-energy conformers will result in a 3D-QSAR
model being constructed from the least probable conformations. As mentioned
above the ligands must bind to the receptor site at the same location and prefer-
ably derive the same conformation to construct an effective 3D-QSAR model.
The alignment of molecules is the process of aligning two or more molecules
(different conformation of the same molecule or different molecules with
similar scaffolds/analogs) in 3D space to optimally superimpose specific atoms
upon each other based on distances. The difference between the molecules is
measured using a root mean square deviation (RMSD):

(6)

where [x,y,z]A and [x,y,z]B are the coordinates of atoms A and B, respectively,
and Natoms is the number of atoms being aligned. The goal of molecular alignment
is to minimize the distance between the selected atoms by reorienting the mole-
cules in 3D space. The alignment of molecules can be thought of as aligning two
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or more molecules based on atomic nuclei position and using a simple super-
imposition method of reducing the RMSD value by keeping either the molecules
rigid or allowing molecular flexibility to improve the alignment. The use of
atomic nuclei distance reduction is a common method of aligning molecules and
can be based on the physicochemical properties of the molecules.

3.5.1. FlexAlign

Using physical properties and a scoring function, molecules can be aligned
by mapping the localized physical properties to an individual atom (30). Flex-
Align (39), an alignment application in MOE (6) and derived from work by
Kearsley and Smith (30), is a stochastic search method that explores the con-
formational space of a molecular dataset and aligns the molecules based on
physical properties. FlexAlign utilizes an algorithm that allows rotation about
single bonds, inversion of chiral centers, and translation and rotation of atoms
in space to determine a better alignment. The different molecular conforma-
tions are created through rapid incremental pulse searches (84) (RIPS), and the
molecules can be aligned based on a single or collection of physical properties
[e.g., acid/base, aromaticity, exposure, H-bond acceptor, H-bond donor,
hydrophobicity, logP (octanol/water partition), molar refractivity, partial charge,
and volume] (39). The flexible alignments are ranked using a probability den-
sity function scoring function.

A flexible molecular alignment starts with the selection of the physical prop-
erties for alignment, the parameters for the conformational search protocol, and
the molecular conformer creation and minimization settings. Using the RIPS
conformational search methodology, random rotation of bonds, and inversion of
chiral centers are followed by energy minimization to create “new” conforma-
tions of the molecules, this and other methods of molecular conformation deter-
mination are discussed below. Once minimized, the molecules are held rigid
and aligned using a similarity function that is minimized with respect to the
atomic coordinates using the equation (39):

(7)

where –kT is approx 0.6 kcal/mol, F is the similarity measure derived from the
atomic coordinates, and U is the average potential energy of the system (mole-
cules). The MOE–FlexAlign alignment search terminates once the user-defined
number of consecutive failed attempts to generate a new molecular configuration
based on the initial parameters is reached. The user-defined value for the max-
imum number of failed attempts is dependent on the system of interest. The
alignment method of FlexS (37) by Lemmen et al. is a similar process, yet uses
similar molecular fragments for the alignment of the molecules.
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3.5.2. Field Fit

The method of “Field Fit” from CoMFA (4) is similar to MOE–FlexAlign
(6,30,39) because it is used to increase field similarity within a series of mol-
ecules. Field Fit determines the optimal alignment for the molecules of interest
by minimizing the RMSD with respect to the six rigid body degrees of freedom
and/or any user-specified torsion angles. The RMSD function for this method
is the sum of steric and electrostatic interaction energies averaged across all
the lattice points between the molecule of interest and a template molecule.
For example, the alignment of molecule A to B, where B is the template mol-
ecule, using Field Fit is similar to the above method of MOE–FlexAlign. The
process begins with the minimization of the RMSD between the two molecules
by modifying the position and/or torsion angles of molecule A. To keep por-
tions of molecule A from extending past the boundary of the lattice, a steric
repulsion term is implemented. Once molecule A is aligned with molecule B, it
is minimized using the original force field parameters. Molecule A is considered
aligned with the template when the individual atoms move no more than 0.2 Å
after a minimization step and when successive energy function evaluations vary
less than 1%. This method is only useful if the minimized structure is expected
to closely resemble the active site conformation and starting geometry since the
steric and electrostatic fields will be moved with the molecule.

3.5.3. Three-Point Alignment

The most common molecular alignment method is based on aligning three
atoms in the molecule. First a common scaffold of the molecules in the study
is determined followed by dividing the scaffold into three sections based on
the longest plane with at least three atoms in each section; sections can overlap
if care is taken when selecting atoms. Next three non-hydrogen atoms are
selected from each section, ensuring the selected atoms encompass the range of
the section. In creating the alignment schemes, the exploration of the entire
topology of the molecules is crucial to locate the correct alignment. In a small
molecule there is a possibility of sections overlapping, yet in larger molecules
the number of possible alignment schemes becomes daunting.

The small molecule is divided into three sections (Fig. 3A) consisting of the
benzene ring (the head), the ethyl-bromide (the middle), and the dimethyamine
(the tail). A similar molecule (Fig. 3B) is divided into three sections with the
head and tail sections overlapping the middle section. The overlap is due to
the structural composition of the molecule; it has a defined head and tail (six-
member aromatic rings) and the middle consisting of one carbon. To remedy
this problem the scaffold is divided into overlapping sections consisting of the
rings for the head and tail and the middle consisting of the lone carbon and a
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portion of the head and tail rings (Fig. 3B). The atoms considered for the align-
ment are then numbered and the alignment schemes are constructed. Typically,
alignment schemes are based solely on the head, middle, and tail of the scaffold
with additional alignments constructed to explore the importance of alignment
schemes based on a combination of atoms from the head, middle and tail.

3.5.4. The Alignment and Binding Modes of the Ligands

Molecular alignments are most often selected to align portions of the ligands
of similar chemical structures (scaffolds) to emphasize regions of similarity in
the set of molecules of interest. But what, if using different alignment schemes,
(a) better QSAR models were created?, or, (b) the atoms important for binding
(anchoring atoms) were identified?, or it was found that some molecules bind
in different orientation compared to others? As has been discussed previously,
the alignment of the molecules for a 3D-QSAR study can play a major role in
the quality and information obtained from a QSAR study.
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Fig. 3. Examples of three-point alignment schemes. (A) The core of the molecules
used in the case study with alignment scheme denoted as used for the 4D-QSAR portion.
There are three distinct regions for alignment (head = , middle = , tail = ). In
(A) the scaffold (analog) has distinct head, middle, and tail regions making the division
of the molecule simple. The molecule in B is considerably more complex (due to its
symmetry) to divide into three sections. The molecule is similarly in size to the mol-
ecule in A, yet is divided into three overlapping sections for alignment (head = ,
middle = , tail = ).



The concept of using different alignments to determine the binding mode
or anchoring atoms is not a novel idea, yet the ability to implement it is far
from trivial. Two different methodologies are associated with these concepts.
The concept of predicting the binding mode for a group of molecules can be
considered a more difficult task. The binding mode is the conformation, orien-
tation, and location the molecule(s) occupies in the binding site, and for some
biological systems certain molecules will bind in different poses compared to
other molecules. The difference in binding modes can be the result of the drug-
like compound’s potency, substituents, or scaffold. To make this concept
straightforward, the discussion will focus on a theoretical set of compounds
with experimentally determined 3D structures to check the predictive ability
of the QSAR models and the configuration (alignment) of the compounds in
the binding site. For instance, if a set of 10 compounds, based on an quinoline
ring scaffold, are examined and their bioactivities for a receptor measured, it
can be argued owing to their somewhat symmetrical scaffold, and the position
of substituents, that this set of compounds could bind in different orientations
(dependent on the location of the nitrogen in the quinoline ring system) based
on location of similar substituents. These multiple modes of binding could only
be definitively determined using experimental techniques (X-ray diffraction and
NMR) to solve the 3D structure of the orientation of the ligand in the binding
site. The question being asked is “What makes this set of compounds impor-
tant?” Is it the scaffold or the substituents? Or is it a combination of the two?
The correct answer is the combination of the two, because the scaffold is “hold-
ing” (positioning) the substituents in a specific configuration (pattern) for the
binding site. The process of determining which orientation the scaffold pos-
sesses with respect to the binding site is dictated by the receptor’s desire for
specific interactions. For example, molecules with a quinoline scaffold can be
similar in shape and substitution to each other. The question of “Which bind-
ing mode each will possess with respect to the receptor?” is an intriguing
question, yet is it relevant if the two compounds reflect similar binding affini-
ties? If the binding affinities are similar, then the scaffold is little more than a
holder for the substituents and there are different binding modes. Yet, if the
binding affinities are different, it can be argued that the scaffold is imparting a
substantial effect on the orientation of the ligand in the binding site.

Another aspect of the molecules to examine is their physicochemical prop-
erties. A possible major contributor to ligands binding in different orientations
is their physicochemical properties mapped to their surface. Consider mole-
cules that are symmetrical with respect to their physicochemical properties
mapped to their molecular surface. The molecule might be asymmetrical based
on structure, yet symmetrical when examining physical properties. In cases
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such as these, there is the possibility that, when one molecule binds, the bind-
ing site it is in one orientation with a “good” bioactivity, and when the other
binds, it is at a considerable less bioactivity due in part to it binding in the
opposite orientation as a result of the more favorable physicochemical proper-
ties of the ligand aligning with specific regions of the binding site.

Identifying anchoring atoms (77) is a less complex process than character-
izing multiple binding modes because only the alignment of the molecules, and
not, specifically, their orientation to other (with respect to different binding
modes) ligands is involved. In determining the atoms that are important for
binding the ligand (small organic molecule) to the binding site, several align-
ment schemes need to be devised that explore different binding mode possibil-
ities, yet allow for statistically sound QSAR models. Using the example of
three-atom alignment, a series of molecules are aligned in a manner that
emphasizes the location of specific substituents in 3D space. An excellent
example is the construction of 10 alignments for a set of compounds bound to
the same receptor with varying bioactivities. The molecules are flexible with
their scaffolds varying slightly in structure, while retaining a similar shape.
Determining which atoms of the scaffold are important for binding can provide
information regarding regions of the ligands’ scaffold that interact with the
binding site (regions not to modify) and those with substituents that interact
with the binding site (regions acceptable to modify). By constructing align-
ment schemes that align regions or specific atoms, the preferred anchor atoms
can be deduced based on the quality of the QSAR model constructed.

An important consideration in a QSAR study is to determine if the mole-
cules align in the same orientation when bound. If they do, that is great, and
less work is required. But if the molecules align in different (binding) orienta-
tions, finding the correct set of alignments can prove difficult. The ability to
construct several (to many) different alignment schemes that encompass the
different possible alignments is not simple, yet the ability to discover many
poor alignments is simple. In addition, the ability to construct the needed
number of QSAR models that would encompass every permutation of the pos-
sible different binding modes can quickly become overwhelming. To test and
validate this methodology, a series of compounds bound to a common receptor
with bioactivities and the solved 3D structures illustrating the orientation of
the ligands in the binding site is needed.

The method used to align molecules is still an area of contention. Applica-
tions like MOE–FlexAlign (30,39) and FlexS (37) are used to help discover
different alignment configurations or to ensure that user bias has not entered the
alignment scheme. Methods like MOE–FlexAlign and CoMFA’s Field Fit (4)

are useful if one knows the bioactive conformation or if the molecules of inter-
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est are very rigid, yet the only proven method of aligning molecules for QSAR
studies is through the design and implementation of different alignment
schemes or experimental results.

3.6. Training and Test Set Creation

At first glance the Training Set (also referred to as Trial Sets) and Test Set
appear as two collections of randomly chosen molecules, yet they are key com-
ponents of a QSAR study. The Training Set is used to “build” and “train” the
model and the Test Set is used to “test” the effectiveness of the model. In prac-
tice the Training Set is considerably larger, approx 75% of the total number of
molecules in the study, than the Test Set. There are cases when the number of
molecules available for a QSAR study is low (≤10), hindering the ability to
create Training and Test Sets. In these cases all the molecules are used in the
Training Set and several different model-validation methods are used to test the
predictive ability of the model. A QSAR model is created by the minimization
of the overall squared error of the data presented. From this basis it is best to
have a Training Set representative of the overall population, with the major con-
cern being bias toward one outcome. For instance, a model is created using a
Training Set consisting of 85% “bad” compounds with the model evaluated on
a series of novel molecules; if the molecules are truly “good,” the model will be
unable to predict whether a molecule is a “good” or “poor” binder. The best
method of obtaining sound QSAR models is to have an even representation of
the molecules of interest in the Training Set used to create the models.

The method of creating Training and Test Sets that are representative of the
population is to choose molecules that represent all the molecules of interest
based on molecular structure and bioactivity. The Molecular-Structure-Based
Training Set is designed to represent all the scaffolds (basic molecular struc-
ture) of the molecules in the study throughout the bioactivity range. For exam-
ple, assuming the molecules of interest are populated with molecules ranging
from “good” to “bad,” one can proceed to construct the “perfect” Training Set.
The number of molecules in the Training Set is determined (approx 75% of
the total molecules in the study) and the molecules are separated into groups
based on their scaffolds. The molecules are placed in a table and ordered based
on bioactivities. The molecules can be color-coded base on scaffold type to
ease in the selection of different scaffold type (if more than one is present).
The table is then divided into three sections based on binding affinity values:
low, middle, and high. Dividing the largest bioactivity by three and using the
1/3 and 2/3 values as division points can aid in determine these regions or one
can simply divide the compounds into three numerically equal sections. With
the table prepared, the extraction of the molecules for the Training Set can
begin through an iterative process starting at the top of the table. Molecules
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from the low, middle, and high regions with the same scaffold type are selected
and placed into the Training Set. This process is done again for a different scaf-
fold type and repeated until the Training Set is full. It is advantageous to “ran-
domly” select specific scaffold types from the regions so the Training Set is a
complete sample of the population and prevents selecting molecules from just
the low or high end of a section. In a perfect case the remaining molecules
should also be representative of the population and will comprise the Test Set.

4. Calculating the Descriptors

In a QSAR study the descriptors are the chemical characteristics of a mole-
cule in numerical form. There are different types of descriptors based on the
method of QSAR being employed. In traditional QSAR the descriptors are
based on 2D aspects of the compounds (single numerical values based on
physicochemical properties of the compounds). The calculation of traditional
descriptors is fast and straightforward and can also translate a 3D feature of a
molecule into a single numeric value. Some descriptors are based on atomic
partial charges; thus, there is the need to use the force fields and partial charges
available in the QSAR programs. Determining the partial charges for the
molecules using a quantum mechanics program such as GAMESS (75),
Gaussian98 (72), or MOPAC (73,74) is also feasible; in addition, the use of
these programs can also yield ab initio–based descriptors. The descriptors cal-
culated in 3D-QSAR methods differ from traditional QSAR descriptors because
3D-QSAR descriptors are typically shape-based or calculated using electrostatic
potentials representing the molecules as felt by the receptor (85).

Traditional 2D-QSAR descriptors are generally considered to be the charac-
teristics of a molecule, as a chemist would perceive the molecules. The mole-
cules are described by their physical properties, subdivided surface area (86),
atom counts and bonds, Kier and Hall connectivity and kappa shape indices
(87,88), adjacency and distance matrix descriptors (89–92), pharmacophore
features (6), and partial charge. Further complicating matters are 3D traditional
QSAR descriptors that are internally dependent (conformation-based) and
externally dependent (alignment-based), thus emphasizing the need for correct
conformation and alignment. Even single value 3D descriptors based on poten-
tial energy values, surface area, volume, and molecular shape are conforma-
tionally sensitive. The conformation and alignment of the molecules are crucial
when calculating descriptors because the binding orientation and conformation
of the compounds in most QSAR investigations are not known.

5. Determining the Best Model from an Extensive Descriptor Set

The determination of the best set of descriptors for a QSAR model can be a
daunting task, especially when a large number of descriptors have been calcu-
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lated. Choosing several descriptors out of many to construct an effective QSAR
model is not a trivial matter. Selection of descriptors, creation of models, and
evaluation of the model’s effectiveness by hand is a time-consuming proposi-
tion and not very efficient. Consider a Training Set consisting of 300 descrip-
tors and the desire for a model with 15 or fewer descriptors. The number of
possible models to construct and test is 8.11 × 1024. Even building and testing
a billion QSAR models daily, using brute force, would take 2.2 × 1013 yr to
complete all possible combinations landing one in the center of Levinthal’s
paradox (93). The number of possible combinations of models can be
calculated using the equations:

(8)

(9)

where Eq. 8 is the basic formula for determining the number of combinations
given a specific number of descriptors, and Eq. 9 is the formula for determin-
ing the total number of combinations up to a specific number of descriptors.
The variable m is the total number of descriptors and r is the number of
descriptors for the model.

Several methods have been developed to aid in the selection of descriptors
to create a QSAR model. The use of brute computational force to test every
possible combination of the above problem is wasteful. Methods such as the
Stepwise Searches (45), Simulated Annealing (94), and Genetic Algorithms
(15) are ways of dealing with this enormous problem. These methods are used
in conjunction with linear and nonlinear models methods (multiple linear regres-
sion, principal component analysis, principle component regression, partial least
squares, and artificial neural networks) to determine if the descriptors chosen
constitute a “good model.” The process of selecting the best descriptors for a
model is an iterative process where the model is created using the selected
descriptors and based on the Training Set followed by validation of the model.
It is commonly thought that selecting the descriptors and creating the model is
one step; in this chapter, this process is separated into its two components.

5.1. Reduction of Redundant Descriptors

Before an attempt to create a model is undertaken, it is necessary to remove
descriptors with values of no use. This is accomplished first by removing
descriptors with values missing for any of the molecules in the study. Next,
the descriptors are checked for variation in values; descriptors where a con-
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stant value is present for all structures in the dataset are discarded. Once the
non-contributing descriptors are removed, the one-parameter correlation values
(Pearson’s) and the squared correlation coefficient (t-test) values are calculated
for each descriptor. Descriptors are removed if they do not meet the following
criteria: the squared correlation coefficient or the t-value less than a user-
defined minima and high intercorrelation between descriptors. Intercorrelation
between descriptors is present if descriptor A is highly correlated (based on a
user-defined correlation value) with descriptor B, and descriptor B possesses a
higher correlation coefficient with the experimental binding affinity than
descriptor A. Using these methods one is able to remove non-contributing
descriptors from the QSAR model.

5.2. Forward and Backward Model Creation

The selection of the descriptors can happen in a forward or backward
manner. A model created using the forward method starts with one descriptor
followed by the addition of descriptors to the model until the model meets the
specifications of the user. Models created in the backward method start with all
the possible descriptors; descriptors are taken away as they are deemed unnec-
essary. It is safe to assume that most QSAR models are created using the for-
ward method due to the sheer number of descriptors and the desire for only a
few in the model. Models can be pruned using the backward method; specifi-
cally, once the model is created, the user wants to reduce the number of
descriptors yet keep the same level of validity for the model.

5.3. Stepwise Searches

A similar method of selecting descriptors by hand for the QSAR model is the
Stepwise Method Search (45). This iterative improvement method searches for
the optimum QSAR model starting from a known configuration. Each compo-
nent (descriptor) of the model is rearranged in turn until an improved configu-
ration compared to the last is found. This new configuration then becomes the
current system for improvement and the process is continued until no further
improved QSAR models are found. The iterative improvement of the system is
done by searching coordinate space (different possible models) for rearrange-
ment steps leading to better R22 values, similar to energy-minimization tech-
niques. This method of searching for QSAR models has the tendency to find
“okay models” but not the “best model” due to the nature of the landscape being
searched. To perform a robust search of the landscape when using the Stepwise
Search Method it is advantageous to start with several random original config-
urations in an attempt to find the optimal configuration, thus the possibility of
finding the “best” model is increased.
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A Stepwise Search starts with arranging the descriptors based on their one-
parameter correlation value with respect to the molecule’s bioactivity in
descending order. Next all two-parameter correlations are calculated until no
correlations with an R2 value above a user-defined value has been found. A
predetermined number of best pairs (two-parameter correlations) selected to
continue in the search for an effective QSAR model. Each of the remaining
descriptors (not highly correlated to the remaining descriptors based on a user-
defined R-value) are used to create the next group of models. It is evident that
this is a computationally intensive method that is similar to choosing descrip-
tors by hand, yet the computer does all of the work. Owing to the method of
initially selecting descriptors for the QSAR model, a Stepwise Search has the
potential to overlook groups of descriptors (descriptors that individually corre-
late poorly) that correlate well to the bioactivities.

5.4. Simulated Annealing (SA)

A move forward in the selection of descriptors is the method of Simulated
Annealing (94) (similar to Stepwise Searching) used to find the solution of a
complex problem with many incorrect solutions at a minimal computational
cost. This method comes from annealing, the physical process of heating a
solid and letting it slowly cool to form a perfect crystal lattice. This experi-
ment leads to the discovery of the minimum free energy of the solid. The crys-
tal can become defective and trapped in a local minimum instead of a perfect
crystal structure at the global minimum if the cooling happens too quickly.
Simulated Annealing has been implemented by combinatorial optimization; the
search for an optimal model starts with an initial model at a very high temper-
ature. The temperature is reduced with each successive cycle to simulate the
annealing process (95). The reduction of the temperature at the beginning of
each cycle allows the model to gradually cool producing a perfect model in
the global minima of the landscape.

To simulate the annealing process each state is accepted or rejected proba-
bilistically using a modified Monte Carlo method (96). The random configura-
tions are chosen using the probability function exp(–R2/kT), thus weighting
each configuration equally. The implementation of SA in the selection of
QSAR models is similar to its use in other computational areas. The criterion
for the R2 value is increased for each cycle and the composition of the model
is changed for each step. After each modification to the model, the change in
the coefficient of determination (R2) of the system is calculated, and if the new
R2 value is greater than the previous, then the new model is accepted. The
change in the model is accepted probabilistically if the new R2 value is less
than the previous R2. The probabilistic accepting of the model is based on the
selection of a random number, ζ, between 0 and 1; if ζ < exp(–R2/kT), the new
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configuration is accepted and if ζ > exp(–R2/kT), the configuration is rejected
and the original model is once again the starting point. The system average is
recalculated for new models, whereas if the model retains an old configura-
tion, the average is not calculated. Through Simulated Annealing the model
explores the various valleys of the energy landscape (Fig. 4).

The method of simulated annealing is more advanced than the Stepwise
Search Method and through the use of multiple starting points (different initial
models) a more thorough exploration of possible models can be performed.
The downfall of Stepwise Searching and Simulated Annealing is also their
strong point; they are very good at exploring a small landscape with several
descriptors, yet they are not suited for large number of descriptors. It is because
of these constraints that evolutionary programs (such as genetic algorithms)
have become more prevalent in the search for the optimal model.

5.5. Genetic Algorithms (GA)

Following the biological processes of gene mutation and rearrangement
Genetic Algorithms (GA) (15) are an artificial intelligence technique utilizing
stochastic search algorithms to model natural phenomena (97). GAs perform a
multidirectional search and evolve the population of possible solutions through
mutations and crossovers. In each generation there are “good” and “bad” solu-
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QSAR model. The potential well represents all possible models and as the value of R2

increases (low R2 values at the top and high R2 values at the bottom of the Y axis), the
number of models decreases.



tions; the “good” solutions evolve to the next generation as the “bad” solutions
die in a process that is similar to natural selection.

In the area of QSAR model creation, the models of a GA are constructed of
genes that are encoded with different molecular descriptors (Fig. 5). The first
step in a genetic algorithm is the creation of a population of QSAR models
corresponding to the number of individuals determined by the user. Iterative
looping creates a number of evaluation models, forming the generations. The
model generation contains different evolutionary levels used in the following
order to determine if a model survives. The fitness is the correlation (R2)
between the experimentally determined binding affinities and the ability of the
model to predict the experimental values. The selection process determines
which individuals (models) get to reproduce or perish and is based on the
model’s fitness. Models with a “good” correlation to the experimental values
(high R2 value, good fitness) are allowed to reproduce, models with average
correlation stay the same, and models with “bad” correlations expire. The
exchange of information between models is done through a crossover where
genes (molecular descriptors) from two parents produce two children allowing
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Fig. 5. Representation of a genetic algorithm for the selection of descriptors for a
QSAR model. The model is commonly referred to as a gene and is encoded with dif-
ferent descriptors. Two Parents creating two Children is a crossover of genetic infor-
mation (descriptors). The genes of an individual can mutate, introducing random
changes in the model. Crossover and mutation are can occur independent of each other.



the parents to pass on. A crossover is the selection of genes (descriptors) from
the parents to construct a child randomly composed of the parents’ descriptors
(98) as is common in biological systems. The process of a crossover also occurs
by breaking the parents into two (or more) sections and swapping the genetic
information to produce two complete children; this can occur at a single point
(Fig. 5), or at multiple points. The random changing of descriptors in a model
is done through mutation, and can happen anywhere in the model, introducing
random ensembles of descriptors. Crossover and mutation occur randomly
throughout the population adding to the possibility of a better model being
discovered; crossover and mutation do not have to occur concurrently. Elitist
selection is the preservation of the strong individuals based on fitness. A user-
defined value determines the number of preferred individuals that directly
proceed into the next generation without modification (97). A review of GAs
applied to different fields of computational chemistry can be found in separate
works by Devillers (99) and Clark (100).

The QSAR methodology of 4D-QSAR (a RI-, RD-, and VHTS nD-QSAR
method) implements a genetic algorithm into its descriptor selection process.
In the following section the methodology of 4D-QSAR is discussed along
with the genetic function approximation method (101) as employed in
4D-QSAR model building.

5.5.1. Genetic Algorithm Implemented in 4D-QSAR

Traditional and 3D-QSAR methodologies have three inherent limitations:

1. How to assign the active conformation to each ligand?
2. How to align the ligands?
3. How to subdivide each ligand molecule into pharmacophore sites with respect to

intermolecular receptor interactions (5)?

Hopfinger et al. (5) developed 4D-QSAR analysis which incorporates
conformational and alignment freedom into the development of a 3D-QSAR
model and can be viewed as the evolution of molecular shape analysis, also
developed by Hopfinger (26,102) in the early 1980s.

4D-QSAR (5) is unique in that it uses a grid to determine the regions in
3D space that are important for binding, yet it does not use a probe or interac-
tion energies to construct the QSAR model like CoMFA. The reference grid
cell is constructed to accommodate the largest compound of the study and usu-
ally has a grid spacing (resolution) of 1.0 Å. Next, a combination of the seven
different interaction pharmacophore elements (IPEs) (5) is selected to deter-
mine how the compounds are partitioned into their specific atom/region types
during analysis. The third step is to construct the conformational ensemble
profile (CEP) (5) for each compound in the study using molecular dynamics
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simulations (MDSs), thus alleviating the question of “What is the active
conformation?” The CEP does not contain all of the molecules sampled during
the MDS calculations, only the conformations selected based on a Boltzmann
distribution. The different alignment schemes are devised next, and are
constructed based on three-atom-alignment methods. The alignments are con-
structed to explore the entire topology of the compounds of the study, keeping
in mind that the regions with substitution are of most interest.

Following the construction of the CEP, the grid cell occupancy descriptors
(GCODs) are calculated based on the selected IPEs for each conformation
stored in the respective CEP (43). This is accomplished by placing each con-
formation in the reference grid cell based on the alignment scheme being
explored. As each conformation for a specific compound is aligned in and with
the reference grid (43), the thermodynamic probability of each grid cell occu-
pied by an atom is recorded noting its IPE. In step six the grid occupancy data
are reduced using the same method as CoMFA [Partial least squares regres-
sion analysis (21)], yet it differs from CoMFA by including all grid cells occu-
pied (at least once) in the initial model. CoMFA uses a distance cutoff to
determine if the potential field at a specific grid point should be included in the
creation of a model (4). The data fit between the GCODs and the bioactivities
(∆G) is determined using partial least squares (PLS) regression analysis (21)

creating a new set of descriptors. The number of grid cells to be analyzed can
be further reduced by excluding GCODs that were only occupied by atoms
twice. Following the data reduction the top 200 GCODs plus any user-included
descriptors are used to construct the 4D-QSAR model (43). In addition to
the GCODs, additional externally determined physicochemical properties can
be incorporated into the 4D-QSAR model (creating a fifth dimension) to
improve the final model. The descriptors are selected using a modified genetic
function approximation (101) (GFA) and the 4D-QSAR model is created using
multiple linear regression (43) (MLR). The eighth step of 4D-QSAR is the
option to repeat steps four through seven for additional alignment schemes.

The Genetic Function Approximation (GFA) methodology is a combination
of a genetic algorithm (15) and the multivariate adaptive regression splines
algorithm (103) (MARS). The main purpose of the MARS algorithm is to
create spline-based regression models using a minimal number of features
(descriptors), yet is a computationally intensive method and constructs models
in a stepwise fashion. The main issue of constructing QSAR models using
stepwise searches (as discussed above) is that the method is not sufficiently
adaptive to select groups of descriptors that will predict well as a group, yet
poorly as individuals. The genetic algorithm replaces the stepwise search
method of MARS enabling the initial random selection of descriptors and
construction of models from the top performing sets of descriptors. This trans-
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formation to a QSAR model creation method is carried out by replacing the
traditionally binary string of variables (15) with strings of basis functions (sets
of descriptors) (103). The GFA methodology is a more robust method of deter-
mining a QSAR model than other methods which may incorporate a type of
stepwise search methods. The benefits occur through the construction of
multiple models, testing the “full” model instead of “partial” models on the
Training Set, the ability to find combinations of basis functions that take advan-
tage of correlations between a set of descriptors and the bioactivities, resis-
tance to overfitting the model using a “lack of fit” (LOF) (103) function, and
the ability to control the number of descriptors in the final models (smoothness
of fit). The lack of fit function is:

(10)

In the LOF equation (Eq. 10) the least squared error (LSE) is defined in Eq. 29.
The values composing the denominator are the number of basis functions (c)
(sets of descriptors) in the model, the user-definable smoothing factor (d), the
total number of features contained in all the basis functions (p), and the number
of molecules in the Training Set (n). The benefit of using LOF vs LSE is evi-
dent. To decrease the LSE value a common practice is to increase the number
of basis functions (c), yet this is not a sound practice. The addition of more
descriptors than necessary to a QSAR model (in the hopes of decreasing the
LSE and increasing the R2) creates a generalized model. Taking the same sys-
tem and monitoring the predictive ability of the model with the LOF, the addi-
tion of descriptors will decrease the LSE value, yet increase the LOF value. The
increasing of the LOF value indicates a reduction in the predictive ability of
the model and withstands overfitting.

QSAR model analysis is made possible through the generation of several
plausible 4D-QSAR models. The ninth step examines all the models created
and reports the “top” model with respect to the alignment of interest. Report-
ing the best model is good, but the top 10 models could prove more useful. By
exploring multiple models it can be determined if other important GCODs exist
and may be possible to construct better models using this information, forming
a composite model or a manifold 4D-QSAR model (43). The construction of
multiple QSAR models from the same descriptor pool allows for statistical
analysis of the GCODs used to construct the QSAR model. Step 10 proceeds
by identifying the low-energy conformations of each molecule’s CEP. These
low-energy conformations are evaluated (one at the time) using the best 4D-
QSAR model. The low-energy conformation of the molecule with the highest

predicted bioactivity using the 4D-QSAR model and the affiliated alignment is
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then defined as the bioactive conformation for the molecule. A unique bioactive

conformation can thus be assigned to each molecule considered as an intrinsic

part of doing 4D-QSAR analysis. 4D-QSAR also permits the prediction of the
loss in bioactivity due to the loss in ligand conformational entropy upon bind-
ing to the receptor.

The graphical representation of a 4D-QSAR model consists of the signifi-
cant descriptors in space (a 3D pharmacophore) along with their attributes
(increase or decrease specific physicochemical properties). Figure 6 best illus-
trates the graphical interpretation of a 4D-QSAR model, specifically for a
molecule from the Case Study (Subheading 8.). 4D-QSAR also overcomes the
issue of 3D-QSAR models being created based on static molecular spatial
arrangements (rigid molecules), meaning that the space unoccupied by any of
the molecules in the study cannot be interpreted (36) and used in the creation of
the model. 3D-QSAR methodologies such as CoMFA do not take an ensemble
of molecular conformations into consideration; the models are based solely on
the molecular volumes of the probable bioactive conformations. 4D-QSAR is
able to overcome this hurdle and hypothesize the bioactive conformation of the
compounds in the active site thus creating QSAR models based on bioactively
favorable conformations. The combination of the active conformation with an
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Fig. 6. The spheres corresponding to positive interaction pharmacophore element
(IPE) represent regions that will be beneficial to the QSAR model. The sphere corre-
sponding to negative IPEs indicate the region(s) where the particular IPE will degrade
the QSAR model.



optimal alignment can be used in additional drug-design applications such as
pharmacophore construction or other 3D-QSAR methods.

Bioactivity = log (l/c) = 8.82 (–4, 3, 4, any) + 8.48 (–3, 4, 6, np)

+ –1.34 (0, –1, –1, np) + 15.13 (1, –2, –1, np)

+ 6.45

n = 22 R 2 + 0.84 Q 2 = 0.88 LSE = 0.05 LOF = 0.19

4D-QSAR does not solve the issues related to alignment, but alignments can
be rapidly sampled so that, effectively, a 4D-QSAR model can be optimized as
a function of alignment. The constructed 4D-QSAR model can also be imple-
mented as a 3D-pharmacophor screening tool. The construction of QSAR
models that can be interpreted in terms of pharmacophore requirements, but
also used to screen libraries of compounds (usually analogs) efficiently
(correctly and quickly), can be of great utility. In the creation of a 3D-QSAR
model to be implemented as a VHTS, it is necessary for the model to include
not only the “favorable” space occupied by the molecules of the Training Set,
but also the space not available to the molecules during binding due to steric
hindrance imposed by the receptor (27). This pharmacophore-based method of
VHTS can be realized using QSAR models constructed from 4D-QSAR
analysis (5,43).

There are two possible application strategies for the use of 4D-QSAR models
as a VHTS. The first is to take a collection of (manifold) 4D-QSAR models
and create a consensus 4D-QSAR model. The consensus model is evaluated
for each molecule using all of the individual 4D-QSAR models:

(11)

The consensus binding free energy (<∆G[c]>), in this particular case Eq. 11,
for each compound is the summation of the product of the predicted binding
free energy (∆G) of each compound ([c]) for each model (i) and a rela-
tive significance (Wi, weighting factor). The relative significance value can
be calculated using several different methods, yet the most reasonable is to
divide the coefficient of determination (R2) for the current model by the sum of
all the R2’s for all the models of interest (Eq. 12):

(12)

Another way to form a VHTS from several 4D-QSAR models is to use all
the distinct grid cell occupancy descriptors (GCODs) and the bioactivity (∆G)
values of the training set. This simple method of constructing a VHTS-QSAR
model is likely to suffer from overfitting the data, but is useful in a VHTS

Applying QSAR Methods 167



context because it contains the relevant GCODs found for the Training Set and
will create a VHTS model that is unambiguous.

Once the VHTS model is constructed from the 4D-QSAR models its appli-
cation is straightforward, and similar to how novel compounds are evaluated in
4D-QSAR analysis. The library of compounds is evaluated by performing
molecular dynamic simulations (MDSs), aligning the molecules based on the
alignment rules for each of the 4D-QSAR models, determining the GCOD
values defined in the VHTS model and predicting the compounds bioactivity
using the regression equations of the 4D-QSAR models. There is a miscon-
ception that if enough descriptors (traditional 2D-QSAR descriptors) are
calculated a valid QSAR/VHTS model will be constructed by selecting the
important descriptors from the descriptor pile through the use of data-reduction
techniques. The QSAR/VHTS model deduced from a myriad of descriptors is
then considered apt in the screening of an arbitrary virtual library. In actuality
a QSAR model should consist of as few descriptors as possible, but a VHTS
model can contain more descriptors than its QSAR counterpart, creating a
robust VHTS model. QSAR and VHTS models created with a bogus confor-
mation and/or alignment can lead to models of low quality even if the models
were constructed with the optimal descriptors.

The benefits of using 4D-QSAR models for VHTS arise from the use of
GCODs. Each GCOD defines a specific location in 3D space relative to the mol-
ecules in the training set (other GCODs) and the alignment of the molecules.
4D-QSAR VHTS models are able to predict binding affinities of molecules
beyond the values used to construct the VHTS model; demonstrating the models’
predictive ability. However, this predictive capacity can only be accomplished
if the molecules of the virtual library do not extend beyond the concatenated
3D space sampled by the molecules of the training set.

6. Methods to Develop QSAR Models

Once the descriptors are selected, the QSAR model is created allowing the
prediction of bioactivities. The QSAR model has the general form of Eq. 1, and
is developed using each molecule (the Training Set) in the study. The values for
the descriptors (descriptorx) are a specific physicochemical value for the com-
pound and the coefficients and constant (in this case a and b, and c, respec-
tively) are set values derived to create models capable of reproducing the
experimental biological activities. A simple way of thinking about the creation
of a QSAR model is the correlating of molecular descriptors to the bioactivities.
Next, the model is used to predict the bioactivities of the molecules used to
create the model (Training Set) as a method of internally checking the QSAR
model for usefulness. If the model is deemed useful, it is tested against novel
compounds. There are several regression methods for determining the coeffi-
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cients and constant for the generalized QSAR model. Traditionally, multiple
linear regression (MLR) is used to determine these values, with recent imple-
mentation of methods such as principal component analysis (PCA) (19,20),
partial least squares (PLS) (21), and artificial neural networks (ANN) (104) to
accommodate the large amount of data produced by 3D, nD-QSAR methods
and large numbers of traditional QSAR descriptors. The creation of the model
is not an additive process; creating a model using two descriptors with single
R2 values of 0.45 and 0.36, with respect to the bioactivities, will not yield a
model with an R2 of 0.81.

The types of problems capable of being solved with the following regression
methods are defined by the manner in which each of the regression methods
works. The basic premise is that a method is given input variables (bioactivities
and descriptors) and in turn the method produces output variables (coefficients
and a constant). These methods work best when information about the system
of interest is known and inferences can be made about the problem being
solved. This can only be done if there is confidence that a relationship exists
between the known input data and the unknown output data before these
methods are utilized; if there is no relationship, then the model will be useless.

6.1. Linear Regression

The original method of correlating binding affinities with the molecular
descriptors is multiple linear regression (MLR) and through this correlation the
QSAR model is created. The process of fitting a model to a set of points using
a straight line is LR. This was one of the first statistical methods used to create
the coefficients and constant for models in traditional QSAR studies. The model
is then used to predict the bioactivities of the molecules used to create the
model. The predicted values are compared to the experimental values through
least squares fitting, and the model that performs the best at reproducing the
experimental values is used to predict the bioactivities of novel compounds. This
method is straightforward, and it uses two assumptions: (a) the errors in the
predicted values are substantially greater than the errors in the known values
and (b) the standard deviations in all of the predicted values are similar. These
assumptions state that the predicted values will never be as exact as the experi-
mental values and the error for the predicted values will be the same.

An easy way to visualize a linear equation is with one variable as in simple
linear regression. An example of the one-variable linear regression equation is
between the dependent variable (a bioactivity value) and an independent vari-
able (the descriptor coefficient) and is expressed:

(13)
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(14)

(15)

(16)

(17)

where b0 and b1 are fixed numbers (y intercept and slope respectively), x1 is the
independent variable, and ŷ is the dependent variable. Given a set of data points
it is possible to draw several straight lines through these points; therefore, a
method to choose the best straight line is needed. The least squares criterion is
the line that best fits the data points and is determined using the sum of the
errors squared (SSE), the sum of the square difference between the actual
values and the predicted values. The line with the lowest SSE is chosen as the
straight line for the data and is termed “the model.” The least squares criterion
only gives the properties of the regression line for a set of data and does not tell
how to determine the coefficients and constants for this regression line.

6.2. Coefficient of Determination and Linear Correlation Coefficient

Once a model is created and has predicted the bioactivities of the Training
Set, the effectiveness of the model needs to be evaluated. The coefficient of
determination (r 2) is a descriptive measure of the model’s ability to make pre-
dictions. The r 2 value is the percentage reduction gained in the total squared
error by using the model to predict the y values instead of the average y values.
The r 2 can also be interpreted to explain the percentage of total variation in the
experimental y values, the coefficient of determination. As mentioned above,
the SSE is used to choose which model will be reported, yet this value also
measures the chance variation within the sample and the “error” denotes the
experimental error, SSE. The quantitative measure of the total error produced is
the total sum of squares (SST) and is the sum of the difference between the
actual value and the mean of the actual values squared. The total amount of
squared deviation explained by the regression line is the regression sum of
squares (SSR), which is the sum of the squares of the difference between the
predicted values and the mean of the actual values:

(18)
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(19)

(20)

(21)

(22)

Calculating r 2 using these methods (Eqs. 21 and 22) will yield incorrect values,
especially if the slope of the data deviates from a value of 1.0; instead, it is best
to square the linear correlation coefficient (Eq. 23), discussed below, to calcu-
late the coefficient of determination.

It is important to know the effectiveness of the model for predicting values;
however, it is also important to know the strength of the linear relationship
between the two variables (known and predicted) being studied. This is
achieved using the linear correlation coefficient (Pearson’s product moment
correlation coefficient), r, as a descriptive measure for the strength of the linear
relationship (straight line) between the two variables:

(23)

Multiple linear regression is an extension of simple linear regression; the
difference being more than one independent variable (descriptor) is used in the
prediction of the dependent variable:

(24)

(25)

The same principles and techniques used for simple linear regression are used
for MLR, yet the ability to calculate the regression values by hand is lost.
Another change between SLR and MLR is the coefficient of determination,
denoted as R2 instead of r 2 and the linear correlation coefficient, denoted as R
instead of r.

6.3. Creating Models from Uncorrelated Descriptors: Chemometrics

When searching for possible descriptors for a traditional QSAR study, it is
common practice to calculate all of the available descriptors, in some instances
more than 300 descriptors including descriptors calculated from outside methods.
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Constructing the model using all the calculated descriptors is feasible, but this
leads to overgeneralized models. The problem of “many descriptors” is further
compounded when using 3D and nD-QSAR methodology where thousands of
descriptors are calculated. The end results of calculating all possible descriptors
for traditional QSAR and the data returned from 3D-QSAR methods are tables
containing many columns (descriptors) and few rows (molecules, bioactivities).

In 3D and nD-QSAR methodologies it is common to have more descriptors
than molecules in a study owing to the nature of the descriptors (interaction ener-
gies between a probe and a molecule on a 3D grid, ensembles of molecular
conformations, IR spectrum peaks, and induced fit models). This normally would
be considered a problem, except in projection methods of creating a model where
the large number of relevant variables helps create a better model (105). This
concept of using more variables to construct a better model is similar to finding
an average; the more samples collected results in a more relevant average and
thus a more precise prediction can be made from the models. The methods dis-
cussed below are able to handle situations of this nature and were specifically
devised to construct models from variables appearing to have no correlation.

Chemometrics is the field of model creation based on indirect measurements
to determine the properties (bioactivities in the case of QSAR) of compounds
that are difficult to determine through direct measurements (traditional LR or
MLR methods) (106,107). Articles discussing chemometric methods and tech-
niques can be found in reviews by Wold and Sjöström (105), and a series of
reviews by Lavine (106,107). The series of reviews by Lavine discuss the
developments in the chemometric field and highlights the advancement of
chemometrics in different disciplines. Books that give excellent in-depth infor-
mation on different multivariate methods along with PCA are by Manly (17)

and by Grimm and Yarnold (18). In addition, a book by Chatterjee et al. (45)

discusses regression techniques and methodology with well-defined examples.
An in-depth review discussing the use and processes of artificial neural net-
works is by Schneider and Wrede (108) along with a book by Zupan and
Gasteiger (25), which contains examples and ANN applications in chemistry
and drug design. Another machine-learning method of constructing QSAR
models is support vector machines (SVMs) (16,109). SVMs is an extension of
artificial neural networks (ANN) allowing nonlinear models to be created,
which are less likely to experience overfitting as compared to ANN models,
yet are suitable for screening compounds in a HTS methodology.

6.3.1. Principal Component Analysis (PCA)

Principal component analysis (19,20) is used to create correlated descriptors
from existing descriptors as the dimensionality of a descriptor set is reduced to
create QSAR models. Principal component analysis is a method capable of

172 Esposito, Hopfinger, and Madura



reducing the number of variables needed to create a QSAR model by taking the
selected descriptors and transforming them to orthogonal principal components.
The model is created using only enough principal components (PC) to repro-
duce the vital variance of the original descriptors. The enticing reason for using
PCA in creating QSAR models is the ability to create compact and accurate
models and minimizing the loss of information from the original data (descrip-
tors). The greater the number of PCs the greater the ability for the model to
recreate the original data (bioactivities) based on the same descriptors. PCA is
an internal analysis method dealing with the variances and covariances of the
selected molecular descriptors (elements of the vector) and has no relationship
to a different set of descriptors (110). The goal of multivariate regression is to
replace the entire set of descriptors with a set of new variables that are compact
and correlated.

After the important descriptors have been selected, they are reduced into prin-
cipal components creating the QSAR model becoming the “new” descriptors of
the model. The first component will contain the most information (variance)
about all the descriptors used to create the model. PCA works the best when
there are several dozen correlated descriptors and several principal components
can effectively embody the QSAR model. PCA will not work if the original
descriptors are uncorrelated and it is not guaranteed to return a compact set of
components from a large set of original descriptors.

Using PCA it is possible to describe the location and shape of the N-space
data cloud (the model) for a given set of compounds, where N is the number of
independent variables (PCs) used to create the PCA model. The location and
shape of the data cloud are constructed by translating the descriptors to the
origin through mean-centering, followed by rotating it about the origin. The
translation and rotation of the descriptors are performed to create the latent
variables (principal components). A latent variable is the principal axis, more
specifically the axis with the greatest variance. The rotation of the first princi-
pal component of the model orients the axis along the longest dimension
through the data set. The first PC’s axis is held fixed and the following PC
axes are determined orthogonal to each other and are termed latent variables.
There are times when all the data are retained, yet this is not typically the case.
Traditionally only the first couple of PCs are used because they contain a
majority of the important information from the descriptors used to create the
model. Creating a model using PCA from four descriptors constructs a model
with four principal components; most of the variance of the original descriptors
will be explained in the first two or three PCs. The justification for using the
first few PCs to construct a model is that the first few PCs are the most signif-
icant and the remaining PCs are considered nonessential to the model. Error is
removed from the model through the retention of the optimal number of PCs.
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Using all of the PCs in a model will explain the entire variance, yet this is
unnecessary because the first several will likely explain a significant amount of
the variance (approx 80%) and using all of the PCs can add error to the pre-
dictive quality of the model. The first PC contains more information and vari-
ance about the original descriptors than the second PC, and the second PC
contains more information and variance than the third PC and so forth. The
optimal number of PCs can be determined in a stepwise addition method, by
adding PCs to the model until the predictive ability of the model plateaus or
decreases. The maximum number of PCs for the model is the number of PCs
before its decline of predictive power. This same method can be applied in a
backward stepwise search by starting with all the PCs and removing PCs until
the model is constructed. Another method of PC selection is through the use of
cross-validation. The optimal number of descriptors for model creation and
cross-validation will be discussed below. The main use of PCA in QSAR is
the construction of models and data reduction, yet it can also be used to detect
outlier molecules in the Training Set. The removal of an outlier from the
Training Set, for that specific model, can yield an improved model.

The strength of PCA is the ability to take more than the optimal number of
descriptors (that appear to be uncorrelated) and construct latent variables that
are internally correlated yet uncorrelated to each other. The best feature of PCA
is the ease of determining which of the original descriptors are most important.

6.3.2. Partial Least Squares (PLS)

Exceeding PCA in ability to handle large number of descriptors is partial
least squares (21), but is extended to datasets containing many more descriptors
than bioactivities, essentially more columns than rows. The relationship of PLS
to PCA is that the PCs are constructed from the original descriptors, which
have been modified twice before creating the PLS model. PLS attempts to dis-
cover several latent models (linear combinations of molecular descriptors) that
best correlate with the bioactivities. Like any method of analysis, overfitting is
a problem and is kept in check by using cross-validation. The most notable
feature of PLS is its ability to correctly create a model when presented with
strongly collinear descriptors (input data) and missing input data values
(descriptors and bioactivities).

The methodology of PLS is derived from principal component regression
(PCR), which is PCA with multiple regression performed on the latent variables
created by PCA. PCR works by exploiting the nonexistent correlation between
latent variables and the data of the first few PC axes. PLS differs from PCA by
performing regression on the new latent variables PLS has created from the
PCs of PCR. The latent variables of PLS are selected to satisfy three criteria
simultaneously. The new variables need to be highly correlated to the bioac-
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tivities (dependent variables); this is key for good model creation. The latent
variables must model a significant amount of the variance contained in the
descriptors (independent variables); this is based on the concept of the compo-
nents with the smallest percentage of error will contain the greatest variance
(21). The error referred to in this section is not the usual error expected when
taking a physical measurement or performing a calculation, but refers to any
feature not typical of the molecules as a full set. The new variables must also
be uncorrelated with respect to each other to minimize the redundancy of infor-
mation between the variables; the minimization of information redundancy
reduces the number of variables needed to construct a model. The model cre-
ated in PLS uses latent variables formed by rotating the data set in N-space,
with the number of variables in the regression equal to the number of PLS
components retained. Preprocessing of the initial descriptors and bioactivities,
discussed earlier, is required to remove false correlations between descriptors
(independent variables) not typical of the entire set of molecules and the bioac-
tivities (dependent variables).

The reduction of latent variables is an effective method to reduce the number
of possible models, yet in PLS, variable reduction is not needed. The reduction
of the number of variables in traditional regression techniques will lead to
models with improved predictive ability and, in the case of PLS, a model that
is easier to understand. The attempts to reduce the number of variables for PLS
have only resulted in simpler models that fit the Training Set better yet do not
have the predictive abilities of the complete PLS model (111). The reduction of
latent variables with respect to the descriptors is possible with no apparent
decrease in the model’s ability to predict bioactivities, yet the remaining
descriptor-based variables are considered to be more important before reduction
and thus introduces bias (111).

Once a PLS model is constructed, the predictive ability of the model is of
main interest. For each component of the model constructed, the percentage of
the variance explained for the bioactivities and descriptors (dependent and inde-
pendent variables, respectively) is reported. The percentage of variance explained
by the components is represented as the %y and %x score. The %y score relates
to the percentage of variance between the bioactivity-derived latent variables and
the descriptor-based latent variables. A high %y value shows that the model is
reliable for a prediction yet does not ensure good predictions. Guaranteeing a
good prediction relies on the percentage of the model based on the descriptor-
based latent variables data instead of error. As with any model-building tech-
nique, the more variables added, the lower the error. The maximum number of
variables (descriptors, latent variables) for a QSAR model is reached as more
latent variables are added and the model’s ability to better predict bioactivity
values is not significantly increased. The increase in the R2 value is minimal
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(approx 2%) and possibly decreases as more descriptors are added to the model.
The process of adding variables until the predictive ability of the model plateaus
or decreases along with taking into consideration the percentage variance
explained are common methods of performing PLS regression. The strength of
PLS lies in its ability to determine a new set of uncorrelated latent variables in
N-space rotation. PLS attempts to explain as much of the variance in the
independent-variable matrix (the molecules with their corresponding descriptors)
and in the dependent-variable matrix (the molecules’ bioactivities) based on
uncorrelated latent variables. In this attempt to explain the variance, the PLS axes
are rotated away from the principal component axes thus maximizing only the
variance explained in the independent-variable matrix. Another strong point of
PLS is its ability to take a large set of descriptors and reduce them to a minimal
set of latent variables and create a model with exceptional predictive capability.
An added benefit of PLS with respect to MLR is its ability to analyze several
response variables simultaneously and use non-precise data that can cause prob-
lems for MLR and QSAR methodologies. Taking into consideration the benefits
of PLS, the main drawback is the format of the variables returned. The variables
are abstract and awkward to decipher because they are based on values derived
from principal components, thus making the modification of physicochemical
properties difficult.

6.3.2.1. PLS IMPLEMENTED IN COMPARATIVE MOLECULAR FIELD ANALYSIS (COMFA)

The QSAR package Comparative Molecular Field Analysis (CoMFA) (4) is
a method allowing the exploration of a molecule’s physical properties similar
to how the active site would “feel” the molecule (85). CoMFA possesses four
essential parts:

1. Construction of a grid around the aligned molecules.
2. Placement of a probe at each of the grid points and calculating interaction energies.
3. Utilization of Partial Least Squares (PLS) (22) regression to reduce the data set

and create the QSAR model.
4. Displaying the results as isosurfaces.

These four components may appear trivial by themselves, but combining
them results in a dynamic method to create a QSAR model. Unfortunately,
these main components of CoMFA are more complicated than a quick glance
might suggest.

CoMFA is based on interactions between a molecule and a probe; traditionally,
the probe has the properties consistent with a van der Waals sp3 carbon and a
charge of +1.0. The interactions calculated between the probe and the molecules
of interest are steric (van der Waals 6–12) and electrostatic (Coulombic with a 1/r
dielectric) energies (4). The CoMFA process starts by constructing a 3D grid
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large enough to surround the largest molecule in the series by several angstroms
with grid spacing typically of 1.0 Å. The probe is then place at each grid point
and an interaction energy calculation is performed. The data gathered are placed
in a table for data analysis and the QSAR model is created employing PLS.

To extract a suitable QSAR model from the disproportionate data table, with
underdetermined character resulting from many more columns than rows, the
PLS method developed by Wold and colleagues (22) is used. This is made pos-
sible because the units of all the independent variables (grid point interaction
values) are the same (kcal/mol). In CoMFA the PLS is utilized in a manner
that rotates the PLS solution back into the original data space to generate a
traditional QSAR equation. The CoMFA QSAR equation contains coefficients
for each column in the data table along with two coefficients for each grid
point, and thus can be drawn in 3D space. The interaction energies are
represented as color-coded surfaces to aid in how and where to improve the
molecule to achieve better binding.

In CoMFA, as in most 3D-QSAR methodology, the alignment of the mole-
cules is a main issue because the relative interaction energies strongly depend
on the relative molecular position. The choice of molecular conformation and
alignment is usually left to the discretion of the user, yet CoMFA possesses
the ability to determine a suitable alignment through, “Field Fit,” discussed
below. The main difference between CoMFA and traditional QSAR is the
implementation of a graphical output in addition to the QSAR model. CoMFA
constructs a traditional QSAR model, but its strength is the ability to
graphically display the output of the probe–molecule interaction. These
CoMFA coefficient contour maps are surfaces surrounding the grid points
where the QSAR model strongly associates changes in the molecule–probe
interaction values with a change in bioactivities. The surfaces surround grid
points where the scalar products of the QSAR model’s coefficient and the stan-
dard deviation of all values in the corresponding column of the data table are
higher or lower than a user-specified value. The surfaces are color-coded
depending on the direction and magnitude of the differential interactions. The
blue or cyan contours exhibiting regions where more steric bulk is “good” and
should increase the ability of the molecule to bind, whereas contours that are
red or yellow represent regions where less steric bulk is “good.”

The methodology of 3D-QSAR appears and is a robust method of construct-
ing QSAR models, but there are several issues, discussed below in detail, that
complicate this methodology. The first and most prominent question is “Which
conformation of the molecules to use?” This problem is considered (36) a lead-
ing cause to incorrect QSAR models, specifically those created with 3D-QSAR
methods such as CoMFA. The next issue is “How to align the molecules?” The
alignment of the molecules might seem rather straightforward from a visual
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standpoint, but consider the concept of molecules that are “good binders” and
can bind in a different orientation or mode than the poorly binding molecules.
Thus, a clear and unbiased method of aligning the molecules for the study is
needed. The final trouble spot of 3D-QSAR methodology is related to align-
ment, where the overall alignment of the Training and Test Sets might bias the
creation and validation of the model. This is due to the Training Set containing
good and poor binding compounds, yet they are misaligned. The models created
have the possibility of being biased toward an inactive compound if too much
emphasis is placed on the poor-binding compounds in the overall alignment.
The only method of overcoming the alignment issue is to create multiple align-
ment schemes focusing on different regions of the molecules.

6.3.3. Artificial Neural Networks (ANN)

Continuing the theme of computational methods mimicking biological
processes is artificial neural networks (104), a method of forming linear and
nonlinear models. This method is used to model complex functions and was
developed in research concerning artificial intelligence. As mentioned in the
case of QSAR Training and Test Sets, it is imperative that the learning sets are
representative of the entire population. Once presented with the Training Set,
the ANN uses a training algorithm(s) to learn the structure of the data and
constructs the model.

ANN’s are proficient at extracting nonlinear functions from a given dataset.
Artificial neural networks are able to learn from examples and acquire their
own “knowledge” (induction), to generalize, provide flexible nonlinear models
of input/output relationships, and, similar to PLS, to cope with noisy data and
accept incomplete datasets. There are two main types of ANN’s, “supervised”
and “unsupervised.” Supervised neural networks (SNN), also referred to as
adaptive bidirectional associative memory (ABAM), require that every mole-
cule in the QSAR Training Set has an experimentally determined binding affin-
ity. ABAMs possess the ability to associate patterns, thus learning patterns and
applying them to novel datasets to find relationships between what were orig-
inally considered unrelated patterns. Unsupervised neural networks (UNN) are
able to automatically identify clusters of important chemical characteristics
from a set of descriptors. The characteristic(s) being searched for need to be
carefully calculated because the selection of appropriate descriptors is crucial
for clustering. This method can be considered a hybrid method because of its
ability to extract important molecular descriptors (with no knowledge of core
essential characteristics) and to create a generalized model. The use of UNNs
is primarily for preliminary assessment of a descriptor set because UNNs are
able to create an overview of the variation between the descriptors and bioac-
tivities. In QSAR methods utilizing artificial neural networks a SNN is used
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because the binding affinities are known whereas an UNN would be used to
screen a library of compounds where only a handful of compounds have exper-
imental binding affinities, thus removing the need for a Training and Test Set.

Unlike PCA, PCR, and PLS, artificial neural networks can be easily
described due to their biological origin. The base components of an ANN are
the formal neurons and connections between the neurons (Fig. 7). All ANNs are
constructed in layers and the simplest ANN contains only two layers of neu-
rons, the input and output layers. There are several traditional ANN configura-
tions possible from simple to complex depending on the number of layers and
method of connecting the neurons. A layer is defined as the connection between
two neurons on different layers. The most common type of ANN used in
molecular modeling, the fully connected feed-forward networks, is designed
with each neuron in one layer connected to all the neurons in the following
layer with no intralayer connections existing (108). Numerical input values are
passed through the neurons and are transformed into output values; the
connections between neurons symbolize numerical weights. During network
development (training phase) the system-dependent variables of the neurons
and the weights connecting the neurons are determined.
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Fig. 7. Artificial neural network model. Bioactivities and descriptor values are the
input and a final model is the output. Numerical values enter through the input layer,
pass through the neurons, and are transformed into output values; the connections
(arrows) are the numerical weights. As the model is trained on the Training Set, the
system-dependent variables of the neurons and the weights are determined.



A drawback of using SNNs in the creation of QSAR models is their inability
to determine the important descriptors. It is for this reason that SNNs usually
employ a search method, such as a step-wise search, simulated annealing, or
genetic algorithm (112–114) to select the descriptors for a model. SNNs are
used to develop models that correctly associate the inputs (compounds and
selected descriptors to the bioactivities) in a manner to determine if other
compounds possess good or bad bioactivities or help create a receptor-specific
compound. As mentioned before the molecules from the Training Set are used
to create a model able to reproduce the binding affinities of the Training Set
compounds expecting the model will be able to correctly predict if novel
compounds are good or bad binders.

A neural network works by first “training” on the known data values
(Training Set) and is then tested on an unknown set of data (Test Set). The
ANN is trained by taking in the known data, putting it through the network,
comparing the output to the original data, and modifying the weights of the
connections between the neurons based on the errors between the original
values and the output. A more precise take on how ABAM neural networks
create a model starts with the reformatting of the data into a vector that is
passed onto the hidden-layer neurons. The input neurons of the SNN and UNN
are identical and pass the data to the next layer in the network without per-
forming any calculations on the data and are thus are referred to as “fan-out
units.” As the data are iteratively passed between the neurons of the hidden
layers, the weighted values on the connections are adjusted until the output
values equal the original input. Once the model is created, it can be validated
on the Test Set. The original data from the Training Set is passed into the net-
work with the weighted values arbitrarily set. The output values are compared
to the initial values using the root mean square of the errors. The output is then
used as input, the weighted values are adjusted, and the output is compared to
the original data again. This loop continues until the output has converged to
the original Training Set values within a set tolerance. The neural network
learns the pattern of the data in the training period through iterative adjustment
of the weighted values between the interconnecting nodes. The network is then
able to make quantitative predictions for novel patterns, such as determining the
bioactivities of a novel set of compounds. The construction of the ANN can vary,
depending on the accuracy of the fit desired, by adjusting the number of layers
and neurons. In general, the number of weighted values should be less than the
number of molecules in the Training Set to reduce the likelihood of overfitting
(108). By monitoring the creation of the model through periodic testing against
a Test Set provides the ability to prevent overfitting by stopping the training of the
network before full convergence has occurred on the Training Set along with
gaining useful information about the creation of the model. Poor performance of
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the model on the Test Set can point to inadequacies in the descriptors chosen, a
bad neural network design, or a poorly constructed Training Set.

Artificial neural networks are especially adept at modeling functions for
which the linear model approximations are poor, creating a model from a
Training Set in a similar method to how QSAR models are created. The ANN
models are developed from learning datasets (Training Sets) compiled by the
user. The use of an ANN simplifies the solving of complex statistical problems
by requiring the user to possess a basic understanding of statistics (to select and
prepare the data), Artificial neural networks (to select the type of ANN), and
how to interpret the results.

6.3.4. Support Vector Machines (SVMs)

Another chemometric method of constructing a QSAR is support vector
machines and can be considered an improvement on artificial neural networks.
SVMs are created by dividing the descriptor space into two parts, separating the
known active and nonactive compounds into the positive and negative half-
space, respectively (115). SVMs are used to construct QSAR models because
they offer stability and simple geometric interpretation, the correlations between
the descriptors are assumed to be zero, and a kernel (109) is used to construct
nonlinear models. A kernel is a subset of the elements from one set (a group)
that a function maps onto an identity element of another set. Support vector
machine QSAR models can be constructed using active learning; a method
were the data set grows each round and the Test Set is selected by the SVM
algorithm (115). A SVM-driven QSAR model cannot predict the bioactivity of
a compound, it can only predict where a compound will be active or nonactive.

In the simplest form an SVM plots two different physicochemical properties
for a series of compounds and separates the active and inactive compounds
using a hyperplane. There are infinite number of hyperplanes that can be con-
structed between the two sets of compounds (116), yet the most desirable
hyperplane is the one with the largest margin between the active and inactive
compounds. The margins are considered a “region of uncertainty” and com-
pounds from the Training Set do not occupy this region, yet molecules for the
Test Set are able to reside in this region (115). The small number of compounds
that populate the edge of the active and inactive margins are termed support
vectors (SVs). The SVs flanking the hyperplane are the most difficult to cate-
gorize due to their sharing of similar descriptor space. The most robust hyper-
planes are those with large separation between the active and inactive
compounds. The SVM QSAR model (and all SVMs in general) are constructed
using a large-scale quadratic programming problem (117) (Fig. 8). The bio-
activities for the compounds of the Training and Test Sets are predicted using
the distance the compounds fall from the hyperplane. The distance an active
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compound resides from the hyperplane is not correlated to its potency, and this
has been shown by Warmuth et al. (115).

The active learning method of constructing a decision tree is an intriguing
method of iteratively determining the QSAR model, selecting compounds that
will strengthen the model. Traditionally, a QSAR model is constructed from a
predetermined set of compounds and then tested on a set of unobserved com-
pounds. The model constructed would be constructed without any interim feed-
back other than the cross-validation obtained after the model is constructed.
This is one advantage of several QSAR models being constructed, as in
4D-QSAR (5,101). Other than constructing several QSAR models, the only
way to improve the model is to iteratively search for the best set of descriptors
or select the Training Set. In the active learning method of constructing a
QSAR model, the models utilize the same set of descriptors and iteratively
select the compounds to construct the Training Set. This method rapidly
improves the QSAR model (115), yet this optimization requires advanced
knowledge of the physicochemically relevant descriptors. The benefit of uti-
lizing active learning to construct the QSAR models is the ability to construct
robust models; yet, if a static set of compounds are used as the Training Set,
then the performance of the model will be diminished.

The most beneficial aspect of SVMs are their ability to construct high-
dimensional models (including nonlinear models) without overfitting when
presented with a large number of descriptors and are not adversely affected by
experimental (in determining the bioactivities or calculating the descriptors) error.
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Fig. 8. Representation of a support vector machine. There are three different com-
pounds in this simplified SVM representation. The plus (+) symbols represent active,
the minus (–) symbols represent nonactive, and the question mark (?) symbol represents
undetermined compounds. The solid line in the hyperplane and the dotted lines repre-
sent the maximum margin as defined by the support vectors.



QSAR models created with SVMs are best utilized in Binary QSAR applica-
tions to determine if compounds are bioactive for the system of interest as is the
case with high throughput screening. The Binary QSAR method of Binary-
QuaSAR (7,41) of the Chemical Computing Group, Inc., is the best example of
a Binary QSAR application, and is provided with the software suite MOE (28).

6.3.5. Binary-QuaSAR

An approach to scanning libraries of possible lead compounds is Binary-
QSAR (7,41); a method that is based on and can be incorporated into HTS.
Through the use of HTS it is possible to perform millions of physical experi-
ments in a relatively short time span, yet there are two issues keeping it from
reaching its full potential; time and money (7).

With the inception of Binary-QSAR (7) the creation of a methodology utiliz-
ing the error-prone bioactivities of HTS as input for a QSAR study was created.
Binary-QSAR is useful in determining the priority of compounds for future HTS
experiments; designing focused combinatorial libraries, screening a virtual data-
base of compounds, and predicting the activity of products in a reaction path-
way. Binary-QSAR examines the structure and bioactivity of compounds and
establishes a probability distribution function to determine if novel compounds
are either “active” or “inactive.” Traditionally QSAR methods fit the model to
the experimental data, but Binary-QSAR creates a QSAR model using large-scale
probabilistic and statistical deductions (7). The predictive Binary-QSAR models
are not created by interpolation, but are based on generalizations substantiated by
HTS experimental data. By examining past experiments and weighing the alter-
natives, the Binary-QSAR program provides information for the possible next
step or set of experiments in a study.

The main basis for QSAR methodology is the small structural changes of
compounds correlated to the changes in binding affinity, yet compounds in
screening libraries traditionally do not share similar scaffolds (7). It is the basic
principle of QSAR that prevents analyzing the HTS data by traditional QSAR
methods. Binary-QSAR incorporates molecular descriptors and bioactivities
expressed in a “binary fashion” (active or inactive) in conjunction with a train-
ing set to calculate the probability distribution for active and inactive com-
pounds. Traditionally, QSAR methods base the worth of the QSAR model on
the coefficient of determination (R2) and squared error between the experi-
mental and predicted bioactivities. Instead of using MLR, PCA, PCR, PLS, or
ANN, Binary-QSAR uses a nonlinear method to create the model without
adjusting the parameters of the model to lower the squared error. The Binary-
QSAR model is then used to predict whether novel compounds in a test set
are active or inactive, or can be used to screen libraries of compounds for the
next set of HTS experiments.
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Using Binary-QSAR allows for the quick creation of QSAR models in
contrast to models created with artificial neural network because a training
phase is not required. This allows Binary-QSAR to efficiently process the large
datasets common in HTS experiments and construct a model. Binary-QSAR
is a valuable tool in the screening of combinatorial and company molecular
databases as seen by the work of Gao et al. (118), Stahura et al. (119), and
Gao (120). Binary-QSAR can assign a probability to whether a compound will
be active for a particular test set; however, it cannot inform the chemist how to
modify the lead compounds to improve their activity. The methodology of
Binary-QSAR is best used to complement other methods of drug discovery and
is not a true QSAR methodology. The use of Binary-QSAR to highlight possible
lead compounds is legitimate and can precede conventional QSAR methods to
optimize lead compounds.

6.4. Overfitting a Model

Creating a QSAR model (or any model) is a delicate balance; not enough
descriptors and the model will not contain the important features of the mole-
cules of interest, yet a model with too many descriptors will yield a generalized
model. Creation of an over generalized model is called overfitting, and exists
when the model has become too generalized for the Training Set and its ability
to predict the bioactivities of new molecules decreases or is absent. Overfitting
is a common problem and occurs in two different manners. The basic type of
overfitting occurs when too many descriptors are chosen. When selecting the
descriptors to use for the model, choosing all the descriptors available should
theoretically create a model able to predict the bioactivities of the Training Set
with 100% accuracy, yet this model is not able to effectively predict the bioac-
tivity values for the Test Set. For optimum model creation only several descrip-
tors need to be selected. The rule-of-thumb for the optimal number of descriptors
in a QSAR model is that the number of descriptors should equal one-sixth to
one-third the number of molecules in the Training Set. The second method of
overfitting is related to ANN, where the model has overtrained on the Training
Set as discussed above. Here the model is too specific and can only accurately
predict the bioactivities of molecules either in the Training Set or molecules
derived from the molecules in the Training Set.

6.5. Validation of QSAR Models

Regardless of the methods used to create the descriptors and construct the
equation for the models, there is a need to validate the model by comparing the
predicted bioactivities with the Experimental Bioactivities. Using the data that
created the model (an internal method) or using a separate data set (an external
method) can help validate the QSAR model. To determine if the model can be

184 Esposito, Hopfinger, and Madura



considered a “good model,” there are several internal validation methods avail-
able to validate the QSAR model. The methods of least squares fit (R2), cross-
validation (q2) (80,121,122), chi (χ), root-mean-squared error (RMSE), and
scrambling (111,114) are internal methods of validating a model. The best
method of validating a model is an external method, such as evaluating the
QSAR model on a Test Set of compounds. These are statistical methodologies
used to ensure the models created are sound and unbiased. A poor model can
do more harm than good, thus confirming the model as a “good model” is of
utmost importance. Although considering a model is good based on its R2 value
with respect to the Training Set is one method, it is best to validate the model
using a process that rigorously tests the model or does not fully depend on the
data used to construct the model.

6.5.1. Least Squares Fit

The most common internal method of validating the model is least squares
fitting as mentioned above. This method of validation is similar to linear regres-
sion and is the R2 for the comparison between the predicted and experimental
binding affinities. An improved method of determining R2 is the robust straight-
line fit, where data points with a large departure from the central data points
(essentially data points a specified standard deviation away from the model)
are given less weight when calculating the R2. An alternative to this method is
the removal of outliers (compounds from the Training Set) from the dataset in
an attempt to optimize the QSAR model and is only valid if strict statistical
rules are followed.

6.5.2. Cross-Validation

A common method of internally validating a QSAR model is cross-validation
(CV, Q2, q2, or jack-knifing) used to measure a model’s predictive ability and
draw attention to the possibility a model has been overfitted. It is typical for the
values of R2 to be larger than the q2 values, yet overfitting of the model is usually
suspected if the R2 value from the original model is significantly larger (25%)
than the q2 value (80). Cross-validation values are considered more characteris-
tic of the predictive ability of the model. Thus, CV is considered a measure of
goodness of prediction and not fit in the case of R2. The process of CV begins
with the removal of one or a group of compounds (nv), which becomes a
Temporary Test Set, from the Training Set (n). A CV model is created from the
remaining data points (nc) using the descriptors from the original model, and
tested on the removed molecules (nv) for its ability to correctly predict the bioac-
tivities. In the leave-one-out (LOO) method of CV, the process of removing a
molecule (nv = 1), and creating and validating the model against the individual
molecules is performed for the entire Training Set. Once complete, the mean is
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taken of all the q2 values and reported. The data utilized in obtaining q2 is an
augmented Training Set of the compounds (data points) used to determine R2.
The method of removing one molecule from the Training Set is considered to be
an inconsistent method (121,122); selection of a larger set of data to create a CV
model and validating the model against a single compound is inconsistent. A
more correct method is leave-many-out (LMO), where a group of compounds
(nv = many) is selected for validation of the CV model. This method of cross-
validation is especially useful if the Training Set used to create the model is small
(≤20 compounds) or if there is no Test Set. The equation for cross-validation is

(26)

(27)

where the ŷi is the data value(s) not used to construct the CV model. PRESS is
the predictive residual sum of the squares and is calculated in the same manner
as SSE (Eq. 17).

6.5.3. Fit of the Model

Additional examination of the model’s fit is performed through the compar-
ison of the experimental and predicted bioactivities and is needed to statistically
ensure that the models are sound. The methods of chi (χ) and root-mean squared
error (RMSE) are performed to determine if the model possesses the predictive
quality reflected in the R2. The use of RMSE shows the error between the mean
of the experimental values and predicted activities. The chi value exhibits the
difference between the experimental and predicted bioactivities:

(28)

(29)

(30)
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where yi and ŷi are the experimental and predicted bioactivity, respectively, for
an individual compound in the Training Set, ŷ is the mean of the experimental
bioactivities, and n is the number of molecules in the set of data being exam-
ined. Large chi or RMSE values (≥0.5 and 1.0, respectively) reflect the model’s
poor ability to accurately predict the bioactivities even when a large R2 value
(≥0.75) is returned. These methods of error checking can also be used to aid in
creating models and are especially useful in creating and validating models for
nonlinear data sets, such as those created with ANN.

6.5.4. “Scrambling” Models

Even through the use of the previous validation methods one is concerned
with the possibility that the original QSAR model is a chance occurrence. The
creation of a Scrambled Model (111,114) is a unique method of checking the
descriptors used in the model because the bioactivities are randomized ensur-
ing the new model is created from a bogus data set. The basis for this method
is to test the validity of the original QSAR model and to ensure that the
selected descriptors are appropriate. The process of changing the bioactivities,
through redistribution of bioactivities or random assignment of integers, is
employed to yield proof that given different bioactivity values a model created
using the same set of descriptors will produce a bad model. These new models
(Scram-models) are created using the same descriptors as the original model,
yet the bioactivities are changed. After each Scram-model is created, validation
is performed using the methods mentioned earlier. To ensure that the Scram-
models are truly random, the process of changing the bioactivities can be
repeated and as each new Scram-model is created its R2 and q2 values recorded.
The recorded analysis values are compared against the original R2 and q2
values for the original model. Each time the R2 and q2 values of the Scram-
model are substantially lower further enforces that the true QSAR model is
sound. The basis of using this method is to validate the original QSAR model
because the Scam-models are created using the original descriptors and bogus
bioactivities. The model would be in question if there was a strong correlation
(R2 > 0.50) (42) between the randomized bioactivities and the predicted bioac-
tivities, specifically that the model is not responsive to the bioactivities.

Internal methods of validation are good; the true test of how a QSAR model
will perform is demonstrated when presented with compounds not used to
create the model (Test Set). At this point in a QSAR study possessing a Test Set
is crucial. It can be argued that the use of CV to obtain a mean q2 value is sim-
ilar to possessing a Test Set, yet the models created within a CV analysis are
augmented versions of the full Training Set. The creation of a QSAR model
using a truncated Training Set can lead to problems if the Training Set is small
or a poor sample of the population and therefore does not contain all of the
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compounds of interest. The Test Set, as mentioned earlier, should be well
representative of the overall set of molecules and bioactivities to test the
strength of the model.

7. Using the QSAR Model

After performing the steps to create a reliable QSAR model the question of
“What to do with the model?” now exists. The biggest hurdle to overcome is
visualizing the model. The model is not the predicted bioactivity values of the
compounds but the line through the data points created by the model, similar to
the linear regression line plotted when performing a least squares fit. The over-
all goal of QSAR is to design new drugs with better bioactivities and possess-
ing fewer side effects than their predecessors. The QSAR model can be used
to screen large libraries of possible drugs, yet this method is only fruitful if
the library contains compounds structurally related to the molecules used to
construct the model. A more practical method is to examine the QSAR model
and modify the compounds based on the physicochemical properties, and is
possible if the physical properties are easy to understand. In performing a
Traditional QSAR study most of the descriptors are 2D and are straightfor-
ward to visualize, yet problems arise when trying to implement modifications
based on 3D descriptors. The new classes of descriptors, specifically 3D
molecular features and ab initio calculated properties, are useful descriptors
but in the same respect difficult to visualize and modify. For example, the trend
of increasing LUMO energy correlates to better binding molecules. At first this
may appear simple, increase the LUMO energy value and get a better binding
compound, yet how is the LUMO energy increased? The situation of increas-
ing LUMO energy is not as trivial as modifying a molecule to possess a more
negative charge in a specific region or make the molecule bulkier. This is an
example of what is meant by “creating a usable QSAR model,” a model that
can be easily dissected (contains components the chemist knows how to
modify). In the same respect the method used to create a model can make the
deciphering of the model more difficult. Using Traditional QSAR to calculate
the descriptors and creating the model with PLS best demonstrate an example
of the method of model creation causing problems. The model was constructed
from 2D descriptors yet was created with PLS; PLS creates models with new
latent variables derived from latent variables resulting from principal compo-
nents. Using simple-to-analyze descriptors and constructing a model with a
complex regression method (such as PLS) creates a convoluted model that is not
easy to evaluate for physical meaning. Thus, determining what impact specific
descriptors possess has become difficult due to the method of model creation.

The method of taking apart a QSAR model is worthwhile, but the “holy
grail” of QSAR is the ability to create a model, insert the desired bioactivity,
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and create a molecule based on the coefficients of the descriptors. The method-
ology of Inverse QSAR (123,124) is the process of developing a compound
based on a chosen bioactivity. The goal is to design novel compounds pos-
sessing the ability to bind to a specific protein at a specified bioactivity. The
problem is developing a QSAR model, which lends itself to this kind of
manipulation. Traditional QSAR models are open to this kind of interpretation
because the descriptors are typically well-defined physicochemical properties,
i.e., number of atoms, ionized atoms, functional groups, and so forth. The
remaining issue is where to place or remove these substituents. Inverse QSAR
and the examination of QSAR models becomes difficult when the descriptors
are 3D in nature or intangible thus making it difficult to add or subtract from
these properties. Because of the added benefits and difficulties in deciphering
the descriptors of 3D-based methodologies such as CoMFA, SOMFA, and
4D-QSAR, the program highlights the regions of the molecule where to
modify the current compounds to create regions of differing physicochemical
properties. The ability of programs to illustrate the location and manner of the
modifications does not solve the problem of how to modify 3D descriptors
relative to physicochemical properties such as volume, surface area, charge
distribution, and dipole moment.

The information also provided by the quality and type of descriptors based
on alignment can also add significant insight about the system of interest.
Through the use of multiple alignment schemes (as implemented in 4D-QSAR)
it is conceivable that the probable binding mode of a set of ligands can be dis-
cerned. Using the most reasonable alignment scheme (based on statistically
sound QSAR model) can lead to information regarding which atoms are the
most important for binding and the probable binding mode of the ligands in the
binding site.

8. Comparison of Selected QSAR Methodologies

A case study composed of meta- and para-di-substituted N,N-dimethyl-α-
bromophenethylamines molecules and bioactivities from papers by Graham
and Karrar (125) and Hansch et al. (126,127) along with several QSAR pack-
ages were used to compare traditional (2D), 3D, and 4D methodologies in addi-
tion to different methods of selecting descriptors and QSAR model creation.
Traditional QSAR methods of creating models, such as MLR, PCA, PCR, and
PLS based on 2D descriptors were performed using QuaSAR from CCG (6),
and software from Jay Ponder (128) at Washington University, St. Louis, MO,
USA. 3D-QSAR methodology was explored using SOMFA2 (11) from
W. Graham Richards (11) group. Using 4D-QSAR (5) the role of the confor-
mation in creating a QSAR model and extract the bioactive conformation was
explored. This case study is intended to be a comparison between the different
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QSAR methodologies, not to determine which is best. Instead, it is being used
to explore the different methods, techniques, and results obtained from each
of the methods. The standard steroid data set of Cramer et al. (4) was not used
because the molecules of the dataset are rigid making alignment simpler and
would not be of interest in a QSAR method that uses molecular conformations
to create of the model. This set of molecules was chosen because there is a
known Traditional QSAR model and the possibility of adding to the model
through 3D- and 4D-QSAR methodologies is attractive. In addition MOE’s
QuaSAR (6) was used to discover new descriptors and construct QSAR models
implementing PCA. 3D-QSAR methods were explored using SOMFA2 (11)

that utilizes PLS to construct the QSAR models. 4D-QSAR (5) was used to
create the QSAR model based on an ensemble of molecular conformations
through the use of descriptors selected using GFA and models created utilizing
PLS. Validation employing the LOO and LMO methodologies was used along
with the Scramble method to validate the models.

8.1. Preparing the Molecules

It was mentioned earlier that the molecular partial charges and conformation
along with the methods used to construct the Training and Test Sets were
important. In this case study the authors have constructed several molecular
sets (based on partial charges) and different Training and Test Sets composition
to investigate these effects on the construction and validity of QSAR models.
The molecules in this test case are meta- and para-di-substituted N,N-dimethyl-
α-bromophenethylamines (Table 1). All molecules were built in MOE (6) and
assigned Gasteiger (70) or MMFF (46–52) partial charges and minimized using
the MMFF. Two sets of molecules were constructed, one set of molecules with
Gasteiger partial charges and another set with MMFF partial charges for use in
the 3D-QSAR portion of the case study. The differing partial charges will be
examined using SOMFA2 to explore the effects that partial charges have on
determining QSAR models, specifically, the construction of QSAR models
based on electrostatic potentials. The molecules were exported using the SVL
(28,129) code written in house to export to the SOMFA molecular file format
and 4D-QSAR molecular file format.

The molecules examined in this case study are in Table 1 along with the
original, sequential, reverse sequential, and random bioactivities. The purpose of
the sequential and reverse sequential bioactivities is to demonstrate the power of
incorrectly constructed scramble models. The sequential and reverse sequential
bioactivities also demonstrate that a good R2 value can be found, yet the model
is poor based on large chi and RMSE values. The molecules were purposely
ordered from poor to good binders based on the log(1/c) values (2).
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There is one chiral center in this set of molecules that has been set to be the
R configuration. A search of the literature has been unfruitful in an attempt to
determine the correct chirality of this carbon, yet none of the QSAR studies
(125–127,130) or experimental papers mentions the chiral orientation. This
method of arbitrarily setting the chirality is not correct. The only reason the
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Table 1

Molecules and Bioactivities used in Case Study

Original Reverse
meta para bioactivities Sequential sequential Random
(X) (Y) log(1/c) (2) bioactivities bioactivities bioactivities

Hu01 H H 7.46 22 11 13
Hu02 F H 7.52 21 12 12
Hu03 H F 8.16 20 13 14
Hu04 Cl H 8.16 19 14 10
Hu05 Cl F 8.19 18 15 18
Hu06 Br H 8.30 17 16 15
Hu07 I H 8.40 16 17 12
Hu08 Me H 8.46 15 18 22
Hu09 Br F 8.57 14 19 18
Hu10 H Cl 8.68 13 10 17
Hu11 Me F 8.82 12 11 16
Hu12 H Br 8.89 11 12 19
Hu13 Cl Cl 8.89 10 13 11
Hu14 Br Cl 8.92 19 14 17
Hu15 Me Cl 8.96 18 15 15
Hu16 Cl Br 9.00 17 16 14
Hu17 Me Br 9.22 16 17 16
Hu18 H I 9.25 15 18 21
Hu19 H Me 9.30 14 19 13
Hu20 Me Me 9.30 13 20 11
Hu21 Br Br 9.35 12 21 20
Hu22 Br Me 9.52 11 22 19



authors can assume this is the correct chirality is because all the molecules
have been set to the same chirality and this is a case study examining different
QSAR methodologies. If this was a true QSAR study, this assumption could
not be undertaken.

The initial set of molecules used the lowest-energy structure (conformation)
determined from a systematic conformational search of the most bioactive com-
pound. This low-energy conformation was used as a scaffold to build all of the
molecules of this case study. This is a poor method of determining the confor-
mation of a set of molecules for a 3D-QSAR study (in the case of SOMFA2),
yet once the 4D-QSAR study is complete and the presumed bioactive confor-
mation is known, the SOMFA2 study can be repeated to determine if the
conformation was a true issue. In studies where all the molecules share the
same common scaffold, the conformation used can be considered less of an
issue, such as the case with the compounds used in this study. It is feasible
that the conformation of these compounds might not be of importance for cre-
ating a valid QSAR model because the only structural changes occur on the
benzene ring. The conformational ensemble profile (CEP) for each molecule
was constructed using the molecular dynamics simulation package in 4D-QSAR.
The molecular dynamics simulation for each molecule was calculated in the
gas phase at 310 K for 100,000 steps with a time step of 0.001 ps (1 fs) with
a conformation extracted every 100 time steps. The alignment of the molecules
in this case study is not an issue for the 3D-QSAR (SOMFA2) study because
the molecules contain the same scaffolds. This is not the case for the 4D-QSAR
portion of the study, the alignment schemes are important because different
molecules can possess different bioactive conformations (when compared to
each other). Ten different alignment schemes (Alignment 7 of Table 5) have
been devised using the method of three-point alignment to explore the topology
of the molecules.

The manner in which the Training and Test Sets are constructed can have
one of the biggest impacts on the ability of the QSAR method to create a valid
model as can be seen from the original CoMFA paper (4,85). In this case study
the authors have devised six different Training and Test Set combinations
(Table 2). The first Training Set (named All) contains all the molecules, thus
there is no Test Set to validate the model and the authors rely entirely on cross-
validation, chi, and RMSE values and the Scramble method to determine if a
model is sound. The Training and Test Sets (Bioheavy and Biolite) were
constructed by placing the six most and six least bioactive compounds in the
Test Set, respectively. These two Training and Test Sets were devised to illustrate
the importance of selecting a diverse set of molecules (based on bioactivities
and structure) to construct and test the model. The next groups of Training Sets
(named Test01 and Test02) are based on the Molecular-Structure-Based Training
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Set method of designing Training and Test Sets. The sixth Training Set (named
Random) was constructed by randomly selecting molecules for the Training
Set with the remainder becoming the Test Set. Statistical analysis of the
predicted bioactivities was performed in Microsoft Excel 97 unless so noted.

8.2. Traditional QSAR Methodologies Results:
MOE QuaSAR (6) and QSAR (128)

This part of the case study was broken into two sections, the original descrip-
tor set (2,125,127) (Hansch descriptors) and a new set of descriptors calculated
in MOE (6) (MOE descriptors). The MOE Descriptors were calculated for mol-
ecules assigned Gasteiger (70) partial charges in the MMFF (46–52). The new
descriptor set is constructed of three properties. The water accessible surface
area (ASA) calculated using a radius of 1.4 Å for a water molecule and the
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Table 2

Composition of the Training and Test Sets for the Case Studya

Test
Molecules All Bioheavy Biolite Test01 Test02 random

Hu01 # ♦ # ♦ # #
Hu02 # ♦ # # ♦ #
Hu03 # ♦ # # # #
Hu04 # ♦ # # # #
Hu05 # ♦ # # ♦ #
Hu06 # ♦ # # # #
Hu07 # # # ♦ # ♦
Hu08 # # # # # ♦
Hu09 # # # ♦ # #
Hu10 # # # # ♦ ♦
Hu11 # # # # # #
Hu12 # # # # # #
Hu13 # # # ♦ # ♦
Hu14 # # # # # #
Hu15 # # # # ♦ #
Hu16 # # # # # #
Hu17 # # ♦ # # #
Hu18 # # ♦ ♦ ♦ #
Hu19 # # ♦ # # #
Hu20 # # ♦ # # #
Hu21 # # ♦ ♦ # ♦
Hu22 # # ♦ # ♦ ♦

a# = Training Set and ♦ = Test Set.



volume (vol) determined from the van der Waals surface area determined using
a grid with 0.75 Å spacing (6). In calculating of ASA and vol, the surface area
is a polyhedral representation of each atom (6). The log of the octanol/water
partition coefficient [LogP (o/w)] includes implicit hydrogens and is based on
a linear-atom-type model (131), parametized using 1847 molecules and an
R2 = 0.931 and RMSE = 0.393 (6). The values for the descriptors used in this
portion of the case study can be found in Table 3.

The models were created from the predetermined sets of descriptors and
constructed with MLR, PCA, PCR, and PLS. A correlation matrix (Table 4)

contains the pairwise R values for the bioactivities compared to the Hansch and
MOE descriptors. There is a strong correlation between the original bioactivities
and the sequential and reverse sequential bioactivities, –97 and 97, respectively.
This is due to the method that the sequential and reverse sequential bioactivities
were assigned. The molecules were ordered based on the log(1/c) from smallest
to greatest and the sequential and reverse sequential values were assigned based
on this feature as seen in Table 1. The comparison of the original bioactivities
to the random bioactivities returns a correlation coefficient of 1, demonstrating
that a correlation is nonexistent. A correlation between the Hansch lipophilicity
parameter (π) and MOE descriptors [ASA, vol, logP (o/w)] is evident, with
coefficients of 96, 95, and 97, respectively. The relationship of all the descrip-
tors to the Random Bioactivities shows little correlation when compared to the
descriptors correlation to the original bioactivities.

Regardless of the method used to construct the model (MLR, PCA, PCR, or
PLS) the QSAR models constructed were relatively the same with respect to
the descriptor set. There were discrepancies between the cross-validation values
(∆Q2 ≈ 0.04) being attributed to the method used to create the model. Through
the examination of Tables 3 and 4 an understanding of the physicochemical
properties that are important to increase or decrease binding can be achieved.

Analysis of the Hansch descriptors illustrates that increasing the lipophilic-
ity property for this series of compounds will increase the bioactivity in a more
dramatic fashion than increasing the Tafts steric parameter. Increasing the water
accessible surface area (MOE descriptor) will increase the bioactivity of the
compounds. But there is more than just adding lipophilicity and water accessi-
ble surface area to the molecules to increase binding affinity. A comparison of
the substituents to the bioactivities illustrates that the bulkier X and Y groups
increase bioactivity in conjunction with atomic partial charge distribution of
the substituents.

8.3. 3D-QSAR Results: SOMFA (11)

Using SOMFA2 (11), QSAR models were constructed based on shape and
electrostatic potential [Gasteiger (70) and MMFF (46–52) partial charges] for
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the six model types. The molecules were placed on a 25 × 25 × 25 cubic grid
with 0.5 Å grid spacing as suggested by Robinson et al. (11).

These settings proved to be adequate for the models constructed based on the
molecular shape and original bioactivities (# R2 ≈ 0.77, Q2 ≈ 0.58, ♦ R2 ≈ 0.80).
The models show that by increasing the bulk of the molecules at the meta sub-
stituent and reducing the bulk at the para would create molecules with better
bioactivities. The original bioactivities and partial charge-based models of MMFF
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Table 3

The Hansch and MOE Descriptors Used in the Traditional QSAR Portion of
the Case Studya

Hansch Descriptors MOE Descriptors

vdW
π σ+ Es

meta ASA Volume logP (o/w)

Hu01 0.00 0.00 1.24 405.6450 202.9219 2.836
Hu02 0.13 0.35 0.78 412.0307 203.7656 3.026
Hu03 0.15 –0.07 1.24 412.4412 205.0313 2.989
Hu04 0.76 0.40 0.27 430.2373 218.1094 3.465
Hu05 0.91 0.33 0.27 435.0059 220.6406 3.616
Hu06 0.94 0.41 0.08 445.6125 232.4531 3.671
Hu07 1.15 0.36 –0.16 451.0489 237.0938 4.063
Hu08 0.51 –0.07 0.00 435.6399 223.1719 3.171
Hu09 1.09 0.34 0.08 448.9601 233.7188 3.822
Hu10 0.70 0.11 1.24 430.2698 217.2656 3.428
Hu11 0.66 –0.14 0.00 439.7979 226.1250 3.322
Hu12 1.02 0.15 1.24 446.7925 229.9219 3.634
Hu13 1.46 0.51 0.27 451.6472 234.5625 4.055
Hu14 1.64 0.52 0.08 464.1606 245.9531 4.261
Hu15 1.21 0.04 0.00 454.6609 235.8281 3.761
Hu16 1.78 0.55 0.27 465.8516 246.7969 4.261
Hu17 1.53 0.08 0.00 467.6037 249.3281 3.967
Hu18 1.26 0.14 1.24 453.8200 233.2969 4.026
Hu19 0.52 –0.31 1.24 435.4634 217.2656 3.134
Hu20 1.03 –0.38 0.00 457.4708 241.7344 3.467
Hu21 1.96 0.56 0.08 478.5604 259.0313 4.467
Hu22 1.46 0.10 0.08 467.4184 249.3281 3.967

aThe π, σ+, and Es
meta values were experimentally determined, and the ASA, vdW and logP

(o/w) were determined in MOE. [π = lipophilicity parameter; σ+ = Hammett constant for ben-
zylic cations; Es

meta = Tafts steric parameter; ASA = water accessible surface area; vol = van der
Waals volume; logP (o/w) = log of the octanol/water partition coefficient.]



(# R2 ≈ 0.17, Q2 ≈ 0.03, ♦ R2 ≈ 0.14) and Gasteiger (# R2 ≈ 0.23, Q2 ≈ 0.08,
♦ R2 ≈ 0.28) resulted in poor models. These values do not include Training Set
R2, Q2, or Test Set R2 values since the models were built using the Bioheavy and
Biolite Training and Test Sets; these models skew the bioactivity data in unreal-
istic manners. The visual examination of ESP models (constructed with Gasteiger
or MMFF atomic partial charges) denoted two differing models based on the
meta and para regions of substitution. The model created using Gasteiger partial
charges suggested better binding molecules would possess more positive charge
in the region of the meta (X) substituent and more negative charge in the region
of the para (Y) substituent. This was contradicted by the MMFF partial charge
model that suggests molecules with more negative charge in the region of the
meta (X) substituent and more positive charge in the region of the para (Y)
substituent will bind better. This is a conundrum; the R 2 values are poor yet the
models display information that is expected. The question posed at this point is
“Which set of partial charges is correct?” Both sets of partial charges are well
respected, yet, when examining the partial charge for the fluorine, chlorine,
bromine, and the methyl group substituents, it was noted that the partial charge
for the halides was more negative for the molecules assigned the MMFF partial
charges than those assigned Gasteiger partial charges. This discrepancy was
further investigated using quantum mechanical calculations for all the molecules
in the case study, with the exception of the two molecules containing iodine
because iodine is not included in the basis set chosen. A single point calculation
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Table 4

Pairwise Correlation Coefficients for the Bioactivities and Descriptors 
Used in the Traditional QSAR Case Studya

log (1/c) 100
Sequential bioactivity –97 100
Reverse sequential 97 –100 100

bioactivity
Random bioactivity 1 –2 2 100
π 72 –71 71 –1 100
σ+ –15 15 –15 3 51 100
Es

meta 23 21 –21 13 –52 –27 100
ASA 83 –82 82 4 96 30 –58 100
vol 78 –77 77 5 95 32 –63 99 100
logP (o/w) 61 –59 56 –1 97 63 –49 90 89 100

aThe π, σ+, and Es
meta values were experimentally determined, and the ASA, vdW and logP

(o/w) were determined in MOE. [π = lipophilicity parameter; σ+ = Hammett constant for ben-
zylic cations; Es

meta = Tafts steric parameter; ASA = water accessible surface area; vol = van der
Waals volume; logP (o/w) = log of the octanol/water partition coefficient.]



was performed in Gaussian98 (72) for each molecule using density functional
theory, specifically Becke’s three parameter hybrid method (132) (B3LYP) with
Lee, Yang, and Parr’s correlation function (133) and the LANL2DZ basis set
(134–137). The single point calculations proved that the methyl group attached to
the benzene ring exhibits a negative charge and the halide atoms are more posi-
tive than the methyl group. Taking these findings into consideration the ESP
model created with the Gasteiger partial charges is considered correct. The
models created using the Bioheavy, Biolite, and Random Bioactivities Training
and Test Sets produced the expected results. The Bioheavy and Biolite models
produced good R2 and poor chi and RMSE values. The Scramble model further
validated that the models are valid.

This portion of the case study demonstrated that partial charges could be
incorrect for certain chemical systems. Quantum mechanical calculations were
only used to determine which model was correct not to perform the actual cal-
culations. Several of the models were re-evaluated (data not shown) using PM5
partial charges determined in MOPAC2002 (74). The results were similar to
the R2 values determined using Gasteiger partial charges.

8.4. nD-QSAR Results: 4D-QSAR

The results of the 4D-QSAR study are the most interesting due to the proposed
steric and interaction-based descriptors. One of the main differences between this
method and the others examined is the use of multiple alignment schemes to
determine the best alignment based on Q2 values and the utility of the models
produced. The alignments explored in this case study are displayed in Table 5.
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Table 5

Alignment Schemes of N,N-dimethyl-α-bromophenethylamines for 4D-QSAR

Alignment 1 Alignment 6
Alignment 2 Alignment 7
Alignment 3 Alignment 8
Alignment 4 Alignment 9
Alignment 5 Alignment 10



The alignments are three-atom alignments as discussed above. In this portion
of the case study only the actual bioactivities were examined to test the ability
of 4D-QSAR to produce usable 3D-QSAR models, and not to examine the
effects of different sets of bioactivity data. 4D-QSAR is more complex than
the other QSAR packages examined in this case study based on the amount of
data that is produced and the possibility of user error. The tradeoff between
the complexity of the software and the information gained about the system of
interest is immense. The strong point of 4D-QSAR is the methodology’s abil-
ity to predict the bioactive conformation and return several (manifold) models
for the user’s examination. In using 4D-QSAR one develops a respect for the
power of the model-generating methods; in several cases, QSAR models with
excellent Q2 values (0.879 in this example) were constructed from what
can be considered a poor alignment (Alignment 7) as illustrated in Fig. 9 and
Eq. 31. The results from the 4D-QSAR analysis were imported into MOE (28)

using SVL (28,129) code written in house.

(31)

The alignments of the molecules of interest bring to light another phenom-
enon: spinning. Spinning is the effect that different conformations have on the
alignment of a group of similar molecules. The three atoms that are aligned
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Fig. 9. Spinning. Four N,N-dimethyl-α-bromophenethylamines ligands were aligned
by their ethylamines (tail) as denoted in Alignment 7 of Table 5. Alignments that do not
take into consideration the substituted regions of interest can lead to poor alignments
providing dis-informative 3D-QSAR models. It is for this reason that many alignment
schemes are tested to elucidate the one that will render the most useful model.



will occupy the same plane and the rest of the molecules are able to sample the
remaining 3D space. In QSAR the main basis of the methodology is the com-
parison of like compounds that differ by several key locations and compare
these differences with the bioactivities. When aligning the molecules of a study,
it is important to examine all possible alignments and keep the important func-
tional groups in the same location. When the molecules are aligned by what can
be considered unimportant regions, spinning of the important regions can occur.
Important information about the system is lost and misleading models are cre-
ated. In the same respect poor alignments can lead to an unimportant physico-
chemical feature being considered important. This is the main reason why
selecting an alignment based on Q2 and R2 is dangerous if the alignments exam-
ined truly walk the entire topology of the molecules of interest. Looking at the
10 proposed alignments, it is obvious that Alignments 1 and 2 are the most
important because they keep the functional groups of interest in relatively the
same location. The best 4D-QSAR models based on the requirement of a max-
imum of three descriptors for Alignment 1 with no Test Set (All) are Models 2
(Eq. 32) and Model 4 (Eq. 33):

(32)

(33)

The only difference between these two models is the first descriptor. Given the
location and disparity between the descriptors, both can be considered false;
bringing attention to a region that is not important to the model. In Model 2 the
descriptor adds to the model, yet in Model 4 the descriptor subtracts from the
model. Most striking is that the descriptors are separated by 2.24 Å as illus-
trated in Fig. 10 and more than 6 Å from either of the other descriptors at the
substitution locations of interest. The two descriptors at positions (0, 2, 4, any)
and (0, 4, 1, any) at the meta and para substituent locations of the benzene
ring are the most important of those displayed. The descriptors represent steric
properties because they will accept any type of heavy atom at those two loca-
tions; the addition of a heavy atom at either of these two locations will improve
the bioactivity of a compound from the series.

The use of manifold models as an aid to gauge the important descriptors of
a 4D-QSAR model is an intriguing proposition. Methods such as CoMFA and
SOMFA provide the user with a single, graphical QSAR model from which to
harvest usable information. Traditional QSAR results are better, providing a
model that can be dissected, but if an automated method was employed to
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select descriptors, it may be difficult to add and subtract descriptors to modify
the QSAR model. With 4D-QSAR one is not able to add descriptors at will, but
instead the program provides a user-determined number of top models. In this
case study it was requested that the top 10 models be reported for evaluation.
Figure 11 shows three 4D-QSAR models for Alignment 2 with varying number
of descriptors. In Models 1 (Fig. 11A), 6 (Fig. 11B), and 8 (Fig. 11C), the
number of descriptors were four, two, and three, respectively. There was one
descriptor between Models 1 and 8 with a common location (0, –1, –1, np)
and Models 6 and 8 with both common location and IPE atom type (–1, –1, –1,
any). Alignment 2 is able to keep the substituents of interest in the same
general region, and provide useful 4D-QSAR models. The information pro-
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Fig. 10. Case study nD-QSAR methods: 4D-QSAR. Two models (Models 2 and 4) are
compared for Alignment 1. The only difference between the models is the two erroneous
descriptors near the ethylamine of the compound. These two descriptors (3, –1, –1, any)
and (3, –3, –2, any), for Models 2 and 4, respectively, provide misleading results.

Fig. 11. (see facing page) Manifold 4D-QSAR models. Three separate models are
illustrated for the same set of compounds for Alignment 2. The models are ordered
based on Q2 values with (A) being the best (0.767) and (C) the worst (0.619).
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vided by the three 4D-QSAR models of Alignment 2 is interesting because of
the ability to watch the model grow in number of descriptors and at the same
time decrease in its ability to predict bioactivities. The 3D model presented by
4D-QSAR for Alignment 1 is the most informative, yet is not able to provide
what type of atoms to place at the (0, 2, 4, any) and (0, 4, 1, any) positions.
This further refinement of Alignment 1 would have to come from the user’s
chemical intuition given the composition of the data set or further probing with
the 4D-QSAR software. In either respect, the ability of this method to correctly
predict the log(1/c) values (bioactivities) is impressive.

8.5. Summary

From the above methods of constructing QSAR models several important
parameters can be realized. The composition of the Training and Test Sets play
an important role in the ability of the model to predict the bioactivities of the
known and novel compounds. The methods used to set up the molecules,
specifically the partial charges, can have a large impact on the information
extracted from the model. The type of QSAR model to construct (traditional,
3D, nD) will dictate the type of information gathered from the model.

The construction of the Training and Test Sets can have a significant impact on
the ability of the model. In the traditional QSAR portion, Bioheavy models were
able to adequately predict the original bioactivities for the Training and Test Set
for the Hansch (# R2 = 0.86, Q2 = 0.78, ♦ R2 = 0.58) and MOE (# R2 = 0.79,
Q2 = 0.69, ♦ R2 = 0.66) descriptors. This was not the case when the Biolite
models were confronted with the same task. The Biolite models were unable to
predict the original bioactivities for the Test Sets even though the models
were able to predict the bioactivities for the Training Set: Hansch descriptors
(# R2 = 0.91, Q2 = 0.86, ♦ R2 = 0.00) and MOE Descriptors (# R2 = 0.84,
Q2 = 0.77, ♦ R2 = 0.09).

The atomic partial charges used in the 3D-QSAR portion of the case study
brings to the forefront the question of “What caused the bad models?” There
are several possibilities for the poor results. The grid could have been too small,
thus inducing error. Additional models were constructed using grid spacing of
1.0 Å and Gasteiger and MMFF partial charges. Similar results were produced
for models with low R2 values and visually acceptable models. It is possible
that the atomic partial charges need to be more exact for SOMFA to work
correctly, yet similar models were constructed when PM5 partial charges
were implemented. When examining the SOMFA authors’ initial paper (11),
there was no mention of the R2 values obtained from ESP models. This fact
alone could point to concept that SOMFA is only able to inform how to
improve the molecules (from visual inspection of the model) and is not able
to predict the bioactivities of the molecules in the Training or Test Sets.
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The results of the 4D-QSAR case study are interesting and provide large
amounts of data about the system of interest, and, unlike static 3D-QSAR meth-
ods (CoMFA and SOMFA), 4D-QSAR is able to provide the exact locations of
statistically important interaction pharmacophore elements. The ability of this
method to overcome the question of “What conformation to use?” and predict
the bioactive conformation is impressive and a major reason to use the soft-
ware. Yet it is the ability to construct manifold models and examine several
models for the same alignment that is the true benefit of this method. Add to
the list the ability to determine the best alignment scheme (based on statistical
and experimental results) and this method will provide more information than
one could imagine. This abundance of information is key when troubleshooting
results that are not in agreement with current beliefs.

The information gathered from each of the QSAR methodologies informs the
researcher on how to modify the molecules to improve binding, yet in different
ways. The models created using traditional QSAR noted that increasing the
amount of water accessible surface area would improve binding along with
increased lipophilicity. These are physical properties that can be increased, but
the location on the molecules is not known, yet can be inferred to be the region
of the substituents. The models received from 3D- and nD-QSAR methodologies
show where to make the changes and to what extent. The ability to visualize the
model interacting with the molecule is important and gives the chemist the abil-
ity to visualize the possible changes to the molecule. All the methods explored
in this review are valid methods of determining a QSAR model; it all depends
on the type of information desired.

9. Conclusion

This chapter has discussed the main methods of performing a QSAR study
beginning with the set up of the molecules, the different methods of selecting
descriptors, the ways of constructing a QSAR model, and validating and inter-
preting the model. The goal of this chapter was to inform about the different
methods employed in common QSAR packages.

The implementation of 3D- and nD-QSAR methodologies has added a wealth
of information with regards to the understanding of how small organic molecules
interact with biological molecules and macromolecules. The reason these meth-
ods are not always able to adequately reproduce bioactivity values is not a break
down in the underlying QSAR philosophy, but that the SAR to be studied is at
times more complex, or less-defined, than can be reliably handled by current
QSAR methodologies. The addition of molecular simulations (molecular dynam-
ics) to 3D-QSAR modeling, for example, will enable the calculation of more
pertinent physicochemical properties (descriptors) for the 3D-QSAR-descriptor
pool, thus making 3D- and nD-QSAR more powerful and reliable.
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As has been discussed, there are several key steps to keep in mind when
performing a QSAR study. They may seem minor details or trivial, yet all are
important for obtaining a usable final model. From the molecules chosen for
the Training and Test Sets to the number of descriptors used to create the
model, all aspects of how the model was created are valuable in assessing the
worthiness of the model or determining where errors may have occurred in
construction of the model. The following are questions to ask when performing
a QSAR study:

1. Are the bioactivity values binding affinities, Kd values, RBAs, or IC50 values?
2. Do any of the molecules have chiral centers?
3. If there are chiral centers, are the bioactivities chiral specific?
4. What type of force field and atomic partial charges are being implemented?
5. Which conformation of each molecule in the study is being used?
6. How were the conformations of the molecules determined?
7. Are the Training and Test Sets representative of the molecular population?
8. Is the QSAR methodology appropriate for the desired use of the QSAR model?
9. Will the descriptors chosen for the model be easily manipulated?

10. How was the model constructed?
11. How thoroughly was the QSAR model validated?
12. Will the model be used on similar novel molecules in comparison to the original

scaffolds?

Asking these questions about any QSAR study should reduce the chances of
constructing a poor model and gain insight to how the model was created. This
does not guarantee that the model will work to the user’s desire; it only ensures
the plausibility that the model was created soundly. It cannot be stressed
enough that a model capable of reproducing the bioactivities for the Training
and Test Set can still fail when presented with novel compounds.

The key to any successful QSAR study is attention to detail. Special care
needs to be taken not to bias the results in any manner and be aware that a small
indiscretion with the preparation of the molecules or bioactivities at the begin-
ning of the study can lead to a large issue at the end. Remember that QSAR is
based on statistics, and like any science based on an art, it can be fickle.
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Summary

The major hurdle to overcome in the development of 3D-QSAR models using steric, elec-
trostatic, or lipophilic “fields” is related to both conformation selection and subsequent suitable
overlay (alignment) of compounds. Therefore, it is of some interest to provide a conformation-
ally sensitive lipophilicity descriptor that is alignment-independent. In this chapter we describe
the derivation and parametrization of a new descriptor called 3D-LogP and demonstrate both its
conformational sensitivity and its effectiveness in QSAR analysis. The 3D-LogP descriptor pro-
vides such a representation in the form of a rapidly computable description of the local lipophilic-
ity at points on a user-defined molecular surface.

Key Words: 3D-QSAR; hydrophobicity; lipophilicity; 3D-LogP; conformation-dependent
lipophilicity; alignment-independent 3D descriptor; molecular lipophilicity potential (MLP);
ADME-related descriptor.

1. Introduction

From a historical point of view, the research axes of the pharmaceutical
industry have shifted away from acute and more toward chronic pathology solu-
tions. The drug discovery technologies have evolved in parallel because the
cost of the research linked to the failure rate has increased with the complex-
ity of the pathology of interest. As a consequence, in order to enhance research
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efficacy, the current discovery processes integrate at an early stage more and
more data deriving from the in vivo pharmacokinetic behavior of drug candi-
dates, as measured by absorption, distribution, metabolism, and excretion
(ADME) experiments. There is, therefore, a great deal of interest in the effec-
tive modeling of these parameters.

ADME-related properties of compounds have been shown partly to depend
upon the passive distribution properties of drug candidates and partly onto the
partitioning characteristics of the drugs, inherent in their lipophilicity. The opti-
mization of these characteristics is thus of critical importance in the preclinical
and clinical phases of a drug development program. Indeed, the chosen com-
pound is quite often not the most potent candidate but rather the one that has
the optimum balance of suitable potency, safety, pharmacokinetics (PK),
drug–drug interaction, and manufacturing cost. In order to decrease the length
of the lead optimization process, it would be helpful to be able to find solutions
to both the potency and the ADME profiling issues. In practical terms, the pos-
sibility of modeling several activities of the compounds screened on the basis
of an unique description will ease the fine tuning of all these observables. From
this point of view, lipophilicity is a molecular property of great importance,
because it is related both to the pharmacokinetic properties of a drug candidate
and, in more structurally local terms, to the molecular recognition process with
respect to a specific protein target.

Lipophilicity is a molecular property experimentally determined as the loga-
rithm of the partition coefficient (log P) of a solute between two non-miscible
solvent phases, typically n-octanol and water. An experimental log P is valid for
only a single chemical species, while a mixture of chemical species is defined by
a distribution, log D. Because log P is a ratio of two concentrations at saturation,
it is essentially the net result of all intermolecular forces between a solute and the
two phases into which it partitions (1) and is generally pH-dependent. According
to Testa et al. (1) lipophilicity can be represented (Fig. 1) as the difference
between the hydrophobicity, which accounts for hydrophobic interactions, and
dispersion forces and polarity, which account for hydrogen bonds, orientation,
and induction forces:

Lipophilicity = hydrophobicity – polarity

More recently, the concept of the molecular lipophilicity potential (MLP), ini-
tially introduced by Audry and coworkers (2), has attracted increasing attention.
The method involves mapping the local lipophilicity at points in 3D space around
a chemical compound through the use of a parametrized fragmental system
coupled to an empirical distance function. Despite the absence of any physical
basis for the distance-dependent functions introduced, and the difficulties inher-
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ent in the use of the atomic log Poct contributions, this process is analogous to
force-field calculations of electrostatic potential at points around a structure.

The studies of Audry (2), Fauchère et al. (3), and Furet et al. (4) have demon-
strated the ability of the MLP to describe qualitatively the 3D distribution of
lipophilicity over all the different parts of a molecular surface. New methods
for displaying (5) and analyzing (6) lipophilic/hydrophilic properties on molec-
ular surfaces have also been published. For example, the binding of arylpiper-
azines to the 5-HT1A receptor was successfully modeled for a set of molecules
using comparative molecular field analysis (CoMFA) 3D-QSAR to which a
lipophilic potential had been added (7,8). The HINT program (9) also utilizes
MLP calculations in a similar manner. Moreover, Volsurf descriptors (10), exten-
sively used to model PK properties, have been found relevant in modeling the
interactions involved in ligand receptor binding (11). In addition, MLP calcula-
tions have been shown to be sensitive to conformational effects (7,12) when
sampling conformational space (13). The major hurdle to overcome in the devel-
opment of 3D-QSAR models using steric, electrostatic, or lipophilic “fields” is
related to both conformation-selection and subsequent suitable overlay (align-
ment) of compounds. It is, therefore, of some interest to provide a conforma-
tionally sensitive lipophilicity descriptor that is alignment-independent. The
3D-LogP descriptor provides such a representation in the form of a rapidly com-
putable description of the local lipophilicity at points on a user-defined molec-
ular surface. In this chapter we describe the derivation and parametrization of
this new descriptor and demonstrate both its conformational sensitivity and its
effectiveness in QSAR analysis.
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The chapter is divided into three sections: the first part is concerned with
the derivation of 3D-LogP descriptor and the selection of suitable parameters
for the computation of the MLP values. This study was performed on a set of
rigid molecules in order, at least initially, to avoid the issue of conformation-
dependence. In the second part, both the information content and conforma-
tional sensitivity of the 3D-LogP description was established using a set of
flexible acetylated amino acids and dipeptides. This initial work was carried
out using log P as the property to be estimated/predicted. However, it should
be made clear that, while the 3D-LogP descriptor can be used for the predic-
tion of log P, this was not the primary intention behind its the development.
Rather, as previously indicated, the rationale for this work was the develop-
ment of a conformationally sensitive but alignment-free lipophilicity descrip-
tor for use in QSAR model development. The use of log P as the property to
be estimated/predicted enables one to establish the extent of information loss,
if any, in the process used to transform the results of MLP calculations into a
descriptor suitable for use in QSAR analyses.

The final part of the chapter is devoted to a demonstration of the effective-
ness of the 3D-LogP approach as a descriptor in QSAR analysis through the
modeling and prediction of pIC50 values for a set of 49 structurally diverse
HIV-1 protease inhibitors taken from the literature (14).

2. Material and Methods

2.1. Software and Hardware

For analysis of conformational flexibility the TSAR® (Oxford Molecular
Ltd., Oxford, UK, now part of Accelerys, San Diego, CA, USA) package was
used. Molecular modeling was performed using Sybyl software (Tripos
Associates, St. Louis, MO, USA) version 6.5. The calculation of the
3D-LogP descriptor is implemented as a standalone program and also as a
new module, LipoDyn, in the Synt�em in-house (not commercially available)
program MultiDyn (15). PLS and other statistical analysis was performed
using SIMCA–P 7.01 software and experimental design was carried out using
MODDE 4.0 (both packages are provided by Umetri AB, Umeâ, Sweden). All
software was run on an SGI Origin 200 except the SIMCA/MODDE pack-
ages, which were run on a PC under Windows 95.

2.2. Descriptor Calculation

The derivation of the 3D-LogP descriptor requires a suitable 3D space for the
calculation of the molecular lipophilicity potential and validated MLP parameters.
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2.2.1. Molecular Surface

The Molecular Surface (MS) first introduced by Richards (19) was chosen as
the 3D space where the MLP will be calculated. MS specifically refers to a mol-
ecular envelope accessible by a solvent molecule. Unlike the solvent accessible
surface (20), which is defined by the center of a spherical probe as it is rolled
over a molecule, the MS (19), or Connolly surface (21) is traced by the inward-
facing surface of the spherical probe (Fig. 2). The MS consists of three types of
“faces,” namely “contact,” “saddle,” and “concave reentrant,” where the spheri-
cal probe touches molecule atoms at one, two, or three points, simultaneously.
Calculation of molecular properties on the MS and integration of a function
over the MS require a numerical representation of the MS as a manifold
S(Mk, nk, dsk), where Mk, nk, dsk are, respectively, the coordinates, the normal
vector, and the area of a small element of the MS. Among the published com-
putational methods for a triangulated MS (22,23), the method proposed by
Connolly (21,24) was used because it provides a numerical presentation of the
MS as a collection of dot coordinates and outward normal vectors. In order to
build the 3D-logP descriptor independent from the calculation parameters of
the MS, the precision of the MS area computation was first estimated as a func-
tion of the “point density” and the “probe radius” parameters. When varying
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the point density from 2 to 20 points/Å2 in steps of 1.0 Å2, and the probe radius
from 1.3 to 1.8 Å with a 0.1 Å step, the precision of the computed area was
of the order of 5%, for each of the probes used. All further calculations were
carried out with a density of 9 points/Å2 and a probe radius of 1.4 Å, a com-
bination which was found to be a good compromise between accuracy and
computational efficiency.

2.2.2. Molecular Lipophilicity Potential (MLP) Calculations

The MLP is expressed by the following general equation:

(1)

where k = label of the given point on the molecular surface, i = fragment label,
N = total number of fragments in the molecule, fi = lipophilic constant for
fragment i, fct = distance function, and dik = distance between fragment i and
space point k.

The function fct(d) has no physical basis. According to Heiden (6), it should
fulfill only two conditions: it should be smooth and continuous and have finite
values for d < dcut-off. The value of dcut-off should be larger than the van der
Waals radius of any atom in the molecule under consideration. In the program
LipoDyn, the Ghose and Crippen parameters (18) as well as the Broto and
Moreau parameter set (16) are implemented, with the the exponential function
used by Fauchère (exp(–d)) (3), the hyperbolic function defined by Audry
1/(1 + d ) (2) and the parameterized Fermi distance function used by Testa and
coworkers (1).

1 + exp(–ab)
———————
1 + exp(a(d – b)).

For each molecule, MLP values were calculated at every k point on the mole-
cular surface.

2.2.3. Derivation from MLP Calculations

The main idea of the 3D-LogP descriptor approach is to sample the molec-
ular surface and then to sum the area of those points with similar MLP values.
The 3D-LogP descriptor proposed here is a vector V with NBINS elements
each element of which Vi is the sum of the area of all surface elements whose
MLP lies between two arbitrary discrete values. The number of bins to be used
was chosen after experimentation with various values and 200 was found to
be appropriate here, because it allowed the population of the bins with a signifi-
cant number of area elements for both hydrophilic (MLP < 0) and hydrophobic
(MLP > 0) surfaces. However, other values for NBINS may be more suitable in
particular cases. In order to simplify things, in the following description it is

220 Gomar et al.



assumed that 200 bins are to be used. First, the MLP values calculated on the
chosen molecular surface are computed as integers to save memory space:

(2)

where k = index for points on the molecular surface.
Second, the coordinates of the vector V are computed according to the

following convention:

(3)

The first NBINS/2 coordinates of the vector V correspond to the hydrophilic
surface (MLP < 0), while the remaining coordinates correspond to the hydropho-
bic surface (MLP > 0). Thus, for each compound, the 3D-LogP offers a fixed
number of 200 descriptors allowing its use in 3D-QSAR studies.

2.2.4. Visualization of MLP

In order to visualize the results of MLP calculations for a given set of
parameters and molecules, a LipoDyn output file for the molecular surface
can be color-coded by the MLP values and displayed in VRML 2.0 format
(25). The surface triangulation is carried out, after descriptor generation,
using the program detri (26) which provides a robust 3D Delaunay triangu-
lation coupled to a randomized incremental flip algorithm (Fig. 3).

2.2.5. Dataset 1 for MLP Validation

The first dataset consisted of 91 rigid compounds (mono- and di-substituted
benzenes, polycyclic aromatic hydrocarbons, cyclic amides, and pyrazole and
imidazole derivatives) selected from the WDI on the basis of a count of the
number of rotatable bonds computed using TSAR®; none of the 91 structures
had rotatable bonds. The structures are listed in Table 1 together with their
experimental log Poct values, which cover a range from –2.17 to +6.5; the
values were retrieved from the SRC web site (27).

2.2.6. Dataset 2 for 3D-LogP Validation

The second dataset consists of 50 N-acetyl peptide amides (Table 2); these
peptides have un-ionizable side chains and have previously been studied by
Buchwald and Bodor (28). The three-dimensional structures of the di-peptides
were built using the force field and partial charges of Kollman (29) as imple-
mented in Sybyl 6.5.3. The initial random starting conformations were energy
minimized in vacuo. For all calculations described herein, the dielectric of the
medium was set to unity and the electrostatic cut-off distance was set to 16 Å.
For each molecule, the Sybyl Genetic Algorithm–based conformational search,
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which operates in dihedral angle space, was used to determine the peptide
geometries. The initial population was set to 300, the number of generations to
10,000, and the duplicate window to 60.0 degrees. The conformation with the
lowest energy obtained from the conformational analysis was then used for
descriptor calculation.

2.2.7. Dataset 3 for QSAR Studies

A third dataset was built in order to demonstrate that the descriptor is relevant
for estimating binding affinity in a QSAR analysis. This last dataset contains
49 HIV-1 protease inhibitors, the 3D coordinates of which were those used by
Pastor et al. (30). It has the four transition-state isosteres—hydroxyethylene,
hydroxyethylamine, statine, and a symmetrical diol. The X-ray structures of
molecules numbered 1 and 3–34 have been reported (31), whereas molecules
numbered 35–50 were modeled on the crystallographic structure of the complex
of HIV-1 protease with L-689,502 solved at 2.25 Å resolution (32). The binding
affinity is expressed as pIC50 values.

2.2.8. PLS Regression Analysis and Orthogonal Signal Correction

2.2.8.1. PLS REGRESSION

The relationship between the observable variables Y and the computed
3D-LogP descriptor matrix X for each of the three dataset compounds was
determined using the Partial Least Squares Projection to Latent Structures (PLS)
method (33,34) as implemented in SIMCA–P 7.01. PLS modeling consists of
simultaneous projections of both the X and Y spaces on low-dimensional hyper-
planes (35). Since PLS is a projection method, it can handle co-linear data having
many more descriptor variables than observations (N), as long as the resulting
components are few compared to N. The criterion used to determine the number
of significant PLS components is leave-group-out (LGO) cross-validation and
we used seven group CV as recommended in the literature (36). Group mem-
bership in LGO is random and, in order to avoid chance effects, the procedure
is repeated 200 times and the optimal number of PLS components selected
from these results (36).

2.2.8.2. ORTHOGONAL SIGNAL CORRECTION (OSC)

Descriptor matrix coordinates can be preprocessed using the recently devel-
oped filtering technique (37) known as OSC, which is also implemented in
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Fig. 3. (top photo) MLP-based representation of the lipophilicity. On the VRML
surface yellow represents the hydrophobic surface, blue the hydrophilic surface.

Fig. 4. (top photo) 3D-LogP calculation procedure.
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Table 1

Chemical Structures, CAS Number, and Experimental log Poct Values
for the Set of 91 Rigid Molecules
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Table 1 (continued)
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Table 1 (continued)
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Table 1 (continued)

(continued)



SIMCA 7.01. OSC is based on PLS and involves the reduction of the weight-
ing of variables not correlated to the Y response; as a consequence, OSC
removes some of the “noise” in the X description. The 3D-LogP coordinates
modified by the OSC mathematical transformation are highly correlated with
the initial coordinates, which reduces the impact of this transformation on
model interpretation. Moreover, coupling OSC filtering with PLS modeling has
the advantages that it diminishes the model coefficients of irrelevant descriptors
thus simplifying model interpretation and it may also lead to models with a
better predictive ability (38,39).

3. Results

3.1. Use of Back Calculation of log Poct Values for Parameter Evaluation

The solvent accessible surface has been widely used for calculating the
MLP (7), because it should represent how the molecule is perceived by its
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Table 2

Experimental and Estimated log Poct/water Values for a Set
of 49 Acetylated Amino Acids and Dipeptides

Log P octanol/water

Sequence Observed Calculated

Ac-Ala-NH2 –1.47 –1.24
Ac-AlaAla-NH2 –2 –1.36
Ac-AlaLeu-NH2 –0.54 –0.53
Ac-AlaVal-NH2 –1.13 –0.86
Ac-Asn-NH2 –2.41 –2.15
Ac-AsnIle-NH2 –1.43 –1.24
Ac-AsnVal-NH2 –1.85 –1.79
Ac-Cys-NH2 –0.29 –0.35
Ac-Gln-NH2 –2.05 –2.19
Ac-GlnLeu-NH2 –1.32 –1.39
Ac-GlnPhe-NH2 –1.14 –1.25
Ac-GlnVal-NH2 –1.85 –1.76
Ac-Gly-NH2 –1.76 –1.44
Ac-GlyLeu-NH2 –0.78 –0.80
Ac-GlyPhe-NH2 –0.56 –0.55
Ac-GlyVal-NH2 –1.33 –0.79
Ac-Ile-NH2 –0.03 –0.35
Ac-IleAsn-NH2 –1.41 –1.04
Ac-Leu-NH2 –0.04 –0.49
Ac-LeuAsn-NH2 –1.3 –1.43
Ac-LeuIle-NH2 0.68 0.40
Ac-LeuVal-NH2 0.26 –0.17
Ac-Met-NH2 –0.47 –0.87
Ac-MetPhe-NH2 0.42 –0.80
Ac-Phe-NH2 0.04 –0.08
Ac-PheGln-NH2 –1.03 –0.94
Ac-PheGly-NH2 –0.5 –0.58
Ac-PhePhe-NH2 1.19 0.82
Ac-PheVal-NH2 0.43 0.18
Ac-Pro-NH2 –1.34 –1.26
Ac-Ser-NH2 –1.87 –2.00
Ac-SerPhe-NH2 –0.79 –1.04
Ac-SerVal-NH2 –1.53 –1.58
Ac-Thr-NH2 –1.57 –1.64
Ac-ThrIle-NH2 –0.86 –0.36

(continued)



environment. However, this approach is restricted by definition to the very
local environment of the molecule studied, such as, for example, the first
hydration layer of a compound. The selection of the MS as an appropriate
surface for computing MLP values was tested by back-calculating log Poct

values and comparing them to the original experimental values. At the same
time the distance functions and parameters were evaluated and compared.

In order to back-calculate log Poct for each molecule, the guidelines proposed
by Testa et al. (1) have been followed. Two parameters, ∑ MLP+ and ∑ MLP–, the
total of positive and negative MLP values, respectively, were calculated using
various combinations of atomic parameters and distance functions, for the set of
91 rigid structures. The best log Poct re-predictions (Fig. 5) are obtained using the
Fermi distance function and the Broto and Moreau parameters:

(4)

This combination of parameters was found to be the most relevant, although it
is accepted that these results are likely to be dataset-dependent.

One of the limitations of current log Poct prediction techniques is in the accu-
racy of the atomic fragmental system used. The weaknesses of the atomic frag-
mentation systems of Ghose and Crippen or of Broto and Moreau have been
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Table 2 (continued)

Log P octanol/water

Sequence Observed Calculated

Ac-ThrVal-NH2 –1.25 –0.99
Ac-Trp-NH2 0.42 0.46
Ac-Tyr-NH2 –0.79 –0.77
Ac-TyrLeu-NH2 0.32 0.19
Ac-TyrPhe-NH2 0.54 0.41
Ac-TyrTyr-NH2 –0.16 0.04
Ac-TyrVal-NH2 –0.2 –0.24
Ac-Val-NH2 –0.61 –0.77
Ac-ValAla-NH2 –1.14 –0.81
Ac-ValGln-NH2 –1.82 –1.62
Ac-ValVal-NH2 –0.32 –0.41
Ac-IleVal-NH2 0.16 0.07
Ac-TrpVal-NH2 0.73 0.87
Ac-MetVal-NH2 –0.28 –0.46 



discussed previously (45). For example, in the Ghose and Crippen system (17),
the carbon atoms in an ether functionality group are considered as polar atoms
and the oxygen as nonpolar. Moreover, the fragmental constant of polar hydro-
gens seems to be overestimated. Indeed, the polarity associated with polar
hydrogens is principally due to their ability to form hydrogen bonds. However,
this feature only weakly influences the log Poct coefficient, as illustrated in the
solvatochromic equations characterizing log Poct, where the coefficient of
H-bond donating acidity α of the solutes (46) has a low significance. The fact
that this system works so well in QSAR studies might be due to the importance
of the hydrogen bond donors in biological media. In any case, the commercial
programs CLOGP or KOWWIN are recognized solutions, because the accuracy
of their estimations is within the experimental error range of 0.4 (see Table 3).
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Fig. 5. Estimation of log Poct using MLP calculation with the atomic fragmental
system of Ghose and Crippen and the Fauchère distance function on the 91 selected
WDI rigid molecules.



3.2. QSPR-Based Estimation of log Poct

for the Amino Acid/Dipeptide Dataset

Dataset 2 was used for two different analyses. In the first we determined
whether the 3D-LogP description could be used in combination with regression-
based techniques to effectively model a chosen end-point, in this case log Poct. In
the second analysis, the log Poct repredicted by using the 3D-logP vector are
shown to be conformation dependent for the di-peptide GlnPhe. The conforma-
tional sensitivity of the descriptor is thus demonstrated.

3.2.1. Regression Analysis

Each of the columns of the descriptor matrix was initially autoscaled to zero
mean and unit variance to give each vector element equal importance prior to
analysis. PLS regression analysis was applied in order to predict log Poct values.
The best log Poct re-predictions were obtained by using the Fermi distance func-
tion, the Ghose and Crippen set of parameters, and a two-significant-component
PLS model selected on the basis of leave-seven-out cross-validation procedure
repeated 200 times with fitted r 2 = 0.87 and a mean q2 of 0.81 (see Fig. 6). We
also investigated the possibility that the predictive capacity of the model was a
chance effect through data-scrambling analysis. The Y values are randomly per-
muted a number of times and a cross-validated QSAR model computed for
each permutation. Nine hundred permuted models were computed, which gave
the resulting r 2 intercepts of 0.25 and the q2 intercepts of –0.18. The results
from the permutation tests suggest that the predictive capacity of the PLS
model is not a chance effect.

The prediction of the partition properties of peptide molecules is difficult,
owing to their conformational flexibility, and the possible presence of multiple
intramolecular hydrogen bonds and ionizable groups. Richards and coworkers
(40–42) were the first to consider explicitly the effects of the population of acces-
sible conformational minima in both phases. These types of calculation are,
however, computationally intensive. The introduction of the solvent-accessible
surface area in the prediction of log Poct for steric isomers (43,44) also constitutes
a promising approach.
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Table 3

Statistics Reported by Using Syracuse Research
Corporation’s Experimental Log Poct Database

n r 2 SD

KOWWIN 10331 0.94 0.47
CLOGP 7250 0.96 0.3



3.2.2. Conformational Sensitivity

A key question with regard to QSAR applications is the sensitivity of the
3D-LogP description with respect to molecular conformation. A systematic
sampling of the conformational space of the di-peptides clearly showed that
the range of the log Poct estimations is greater than the standard deviation of
the estimation in the dipeptide data set. For example, a systematic conforma-
tional search was performed on the dihedral angles of the di-peptide GlnPhe.
By using the grid search function in the AMBER 4.1 force field, a set of 1296
energy-minimized conformations was generated with phi and psi values varied
in steps of 60°. The mean of the log Poct values for the different conformations
of GlnPhe is –1.42, with a standard deviation of 0.14. Because the estimated
log Poct value for the energy-minimized GlnPhe di-peptide is equal to
–1.19 ± 0.085, the conformational dependence of 3D-LogP method is clearly
shown. One advantage of the 3D-LogP descriptor lies in its duality, whereby
it can be applied to the estimation of log Poct but can also be used as a QSAR
descriptor, as will be demonstrated below.
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Fig. 6. Prediction of log Poct values of a set of 49 acetylated amino acids and
di-peptides.



3.3. HIV-1 Protease Inhibitors—Evaluation by 3D-LogP-QSAR

The second important point of this chapter is to evaluate the use of local
lipophilicity information in 3D-QSAR studies. For that purpose, we used a set
of 49 HIV-1 protease inhibitors that has been widely used in the 3D-QSAR
literature.

3.3.1. Analysis Without Prediction Set

To set up a baseline, we first mimicked the study that has been conducted
by Holloway by building a model on the whole dataset of 49 structures. With
regard to the 3D-logP descriptor, we found that the best combination of para-
meters for this particular dataset was the use of the Ghose and Crippen
atomic parameters combined with the Fauchère distance function. We then
preprocessed this raw description by filtering out all the 3D-logP variables
having less than 0.1 of variance. We ended up with a 3D-logP description
matrix of 76 variables that we used for all our regression model building.

The PLS model built on this 49•76 matrix showed interesting statistics
(see Table 4). However, by looking more closely at the variation in importance
of our 76 description vectors, we realized that most of them did not contribute
to the explanation of the overall pIC50 variance. To overcome this issue, we
decided to apply the OSC filtering technique to the 49•76 matrix. We expected
this transformation to identify the most relevant subset of the 3D-logP descrip-
tion by removing the “noise.” The modified 3D-logP description matrix
resulted in a single OSC component retaining slightly more than 67% of the
original variance. As expected, the OSC transformation led to a dramatic
decrease of the number of 3D-logP vectors used to build the PLS model.
Indeed, more than 50% of them were removed by the OSC transformation and
the resulting PLS model exhibited a clearly improved q2 (q2 = 0.95) over the
value obtained without the OSC filtering. The OSC filtering also helped us to
remove irrelevant information as reflected by the SDEP value we obtained
(SDEPCV = 0.30) and the fact that none of the molecules were predicted with
an absolute prediction error value greater than 0.70 log units. Interestingly, by
comparing our statistics with those previously published, we found the PLS
model based on the 3D-logP description to be at least as predictive, without
having to remove any structure (see Table 4).

To further evaluate the ability of our 3D-logP description to model the
HIV dataset, we used different ways to design training sets and test sets. By
doing so, we expected to have a better idea of the real predictive ability of the
3D-logP–based PLS model. For the first design, we reproduced the split
training/test sets published by Holloway and for the second one we applied a

(text continues on page 252)
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classical “random” selection. Finally, the following two designs were imple-
mented to better investigate the robustness of our proposed model by drasti-
cally reducing the number of molecules, i.e. information, used in the training
set to predict the remaining HIV-1 protease inhibitors.

3.3.2. Design 1

Following the work of Merck researchers (31), the HIV dataset was split
into two parts. The 33 inhibitors numbered 1 and 3–34 were assembled to form
the Training Set 3.1 (TS 3.1), the remaining 12 selected by Holloway et al.
(27) formed the Prediction Set 3.1 (PS 3.1). The PLS model computed on the
training set gave a model with the following statistics (Table 5 and Fig. 8):
r2 = 0.95; q2 = 0.91; SDEPCV = 0.33; SDEPex = 0.49. Again, our 3D-logP–based
PLS model performed on the test set as well as previously published models
(SDEPex = 0.49) and better if we consider that we did not have to remove any
compound to obtain such results.

3.3.3. Design 2

In the second approach we used the information contained in the whole dataset
of 49 molecules to build a training set using a classical “random” method. Every
third compound was withdrawn from the list of compounds sorted by increasing
activity, thus creating a prediction set of 16 molecules (Prediction Set PS 3.2) and
a training set of 33 molecules (Training Set TS 3.2). The PLS-OSC model com-
puted with this reduced training set retained its efficiency of prediction (Table 5;
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Table 5

Summary of the 3D-QSAR Analysis Results for the 49 HIV-1 Protease 
Inhibitors Using the 3D-LogP Descriptor and Statistical Comparison 
with the Comparative Binding Energy Analysis (50) (COMBINE)

Number of
Number of TS Number of latent

Model molecules variables variables r 2 q2 SDEPCV SDEPex

COMBINE No PS 48a 54 2 0.91 0.81 0.66 —
COMBINE TS1 32a 47 2 0.90 0.73 0.69 0.59

3D-LogP No PS 49 76 2 0.97 0.95 0.30 —
3D-LogP TS 3.1 33 76 2 0.95 0.91 0.33 0.49
3D-LogP TS 3.2 33 76 3 0.97 0.93 0.29 0.34
3D-LogP TS 3.3 15 76 2 0.94 0.87 0.46 0.71
3D-LogP TS 3.4 8 76 2 0.95 0.86 0.45 1.14

aMM30 excluded.



r2 = 0.97; q2 = 0.93; SDEPCV = 0.29; SDEPex = 0.34). Figure 9 shows that the
model predicts all the compounds quite well, and that the prediction residuals
are evenly distributed. The average residual on the test set TS 3.2 is of 0.20 log
units and the most poorly predicted molecule is the compound MM49 that is
over-predicted by less than 0.9 log units.

3.3.4. Designs 3 and 4

In the last two procedures, we tried to estimate the real predictive power
and the robustness of our model. We used experimental design techniques to
create the split training and testing sets. In our case, we based this split on the
D-optimality criterion. This criterion allows the selection of a few molecules
within a constrained situation, optimally spanning the multivariate regression
space of interest (47) and permits the handling of discrete objects like molecular
structures (48). D-optimal designs also ensure maximization of the information
matrix and, consequently, the independence, significance, and robustness of the
calculated model’s coefficients (49,50). All the selected designs were built in
the principal property (PP) space of the PLS model (using the MODDE 4.0
software). First, 15 molecules were selected using D-optimal design to form the
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Fig. 7. HIV-1 protease inhibitors relationship between observed and predicted log
pIC50 values.



training set TS 3.3; the remaining 34 formed the prediction set PS 3.3. A second
more drastic selection was made leading to the training set TS 3.4 consisting of
only eight compounds. The remaining 41 formed the prediction set PS 3.4. In
both cases the internal and external predictive performance of the derived
models (q2 and SDEP) highlights the robustness and the predictive ability of
our 3D-LogP–based PLS approach (Table 5). Indeed, the 3D-logP model, based
on 15 molecules, exhibits statistics that are comparable to Holloway’s model,
which was based on 33 molecules. Our second model, based on eight mole-
cules, confirms that it is possible to use an extremely small training set
and still have an average error of prediction that is less than one log unit
(SDEPex = 1.14). We summarized the observed and calculated inhibitory
activities in Table 4 and the PLS-OSC statistics in Table 5.

Some other studies have taken a more conventional approach in which the
structure of the protease is a key part of the process leading to a statistical
model. In this respect a feature of HIV-1 protease that must be considered is the
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Fig. 8. HIV-1 protease inhibitors relationship between observed and predicted log
pIC50 values for design 1.



symmetrical nature of the enzyme. In the X-ray structures of the complexes
between the enzyme and inhibitors, some ligands are observed (32) to bind in
the active site both in an N→C and a C→N orientation with respect to the
flaps, which, in their closed H-bonded form, introduce the asymmetry and
hence the direction marker. A COMBINE analysis, carried out by Pastor et al.
(30), took into account both orientations of the docked ligand. Although the
model obtained was reasonably successful at matching the inhibitory activities
with the interaction energies, the process was complex and computationally
intensive, largely because of the requirement for estimating the atomic partial
charges of the ligand either by continuum electrostatics calculations or by
charge interpolation. The statistical quality of this COMBINE model is com-
parable with the 3D-LogP model we have proposed (see Table 5). An alterna-
tive CoMFA model employing experimentally determined alignment rules for
HIV protease inhibitors representing five different transition state isosteres, was
proposed by Waller and coworkers (51,52). The difficulty with these CoMFA-
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Fig. 9. HIV-1 protease inhibitors relationship between observed and predicted log
pIC50 values for design 2.



based studies (53) is that multiple alignment is needed to construct predictive
models and that steric and electrostatic interactions alone do not take explicit
account of the effects of solvation and lipophilicity, two factors which are
known to strongly influence the free energy of binding. The 3D-LogP descrip-
tor, which treats local lipophilic character explicitly, may add valuable infor-
mation to the steric and electrostatic field approach implemented in procedures
such as CoMFA. Furthermore, the predictive ability of our approach is compa-
rable to the CoMFA models without the requirement for structural alignment.

4. Conclusions

3D-LogP is a macroscopic, thermodynamic metric. It is related to the partition
properties of molecular ensembles, having its origins at the microscopic level in
explicit hydrophobic and polar intermolecular interactions. When applied to sets
of flexible molecules, the quality of the partition coefficient estimations is com-
parable to other published methods. When this descriptor is used in the context
of QSAR, the requirement for structural alignment disappears, which is a major
advantage compared to CoMFA, for example. In the case of structurally diverse
compounds, the structural alignment of molecular sets of interest, and the orien-
tation of the entire set of superimposed molecules relative to a 3D grid (53) con-
stitute a limitation of this class of methods. In contrast, using the 3D-LogP

descriptor, the ranking of different HIV-1 protease inhibitors can be obtained
solely by using information extracted from the ligand conformations.

Finally, the 3D-LogP descriptor may be used for the 3D screening of virtual
molecular conformation libraries wherein the selection of candidate molecules
might not only be driven by pharmacophoric but also by physicochemical con-
straints. Similarly, we anticipate that the 3D-LogP descriptor will also become
useful for the design of chemical libraries in which the description of the con-
formational space is taken into account in the description of the constituent
molecules. We are currently enhancing the descriptor by implementing the last
atom type classification system proposed by Wildman and Crippen (54).
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Derivation and Applications of Molecular Descriptors
Based on Approximate Surface Area

Paul Labute

Abstract

Three sets of molecular descriptors that can be computed from a molecular connection table
are defined. The descriptors are based on the subdivision and classification of the molecular
surface area according to atomic properties (such as contribution to logP, molar refractivity, and
partial charge). The resulting 32 descriptors are shown (a) to be weakly correlated with each
other; (b) to encode many traditional molecular descriptors; and (c) to be useful for QSAR,
QSPAR, and compound classification.

Key Words: Biological activity; molecular descriptor; QSAR; QSPR; molecular surface area;
chemistry space.

1. Introduction

The pioneering work of Hansch and Fujita (1) and Leo (2) was an attempt to
describe biological phenomena in a “language” consisting of a small set of
experimentally determined physical molecular properties, in particular, logP

(octanol/water), pKa, and molar refractivity. The fundamental concept was that
(at least for analog series) differences in biological activity (or other properties)
can be described by linear combinations of these few molecular properties (or
“descriptors”). This concept is the basis of the fields of Quantitative Structure
Activity Relationships (QSAR) and Quantitative Structure Property Relationships
(QSPR). Abraham and Platts (3) also use a few experimentally determined
molecular properties to describe a wide variety of chemical phenomena. The
descriptors used include volume, hydrogen bond acidity, hydrogen bond basic-
ity, and molar refractivity. The Hanch, Leo, and Abraham descriptors can be
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considered as “high quality,” because they are experimentally determined.
Naturally, experimentally determined descriptors are cumbersome for use for
large collections of molecules owing to the time and effort required to deter-
mine them. For this reason, equally high-quality calculated descriptors have
been an active area of research.

Calculated descriptors have generally fallen into two broad categories: those
that seek to model an experimentally determined or physical descriptor (such as
ClogP or CpKa) and those that are purely mathematical [such as the Kier and
Hall connectivity indices (4)]. Not surprisingly, the latter category has been
heavily populated over the years, so much so that QSAR/QSPR practitioners
have had to rely on model validation procedures (such as leave-k-out cross-
validation) to avoid models built upon chance correlation. Of course, such
procedures are far less critical when very few descriptors are used (such as
with the Hansch, Leo, and Abraham descriptors); it can even be argued that
they are unnecessary.

It seems reasonable to assume that a few “high-quality” descriptors are more
useful than hundreds of “low-quality” descriptors. High-quality descriptors are
not restricted to experimentally determined descriptors. Higher levels of theory
have been used to construct few but widely applicable descriptors (5) suggest-
ing that “chemistry space” is relatively low dimensional. Putting it another way,
the dimensionality of chemistry space is likely related to the quality of the

descriptors making up each dimension.

In the present work, we will use a relatively low level of theory to derive 32
weakly correlated molecular descriptors, each based on the subdivision and
classification of the molecular surface area according to three fundamental
properties: contribution to ClogP, molar refractivity, and atomic partial charge.
The resulting collection will be shown to have applicability in QSAR, QSPR,
and compound classification. Moreover, the derived 32 descriptors linearly
encode most of the information of a collection of “traditional” mathematical
descriptors used in QSAR and QSPR.

2. Methods

2.1. The Approximate van der Waals Surface Area

The surface area of an atom in a molecule is the amount of surface area of that
atom not contained in any other atom of the molecule (see Fig. 1). If we assume
that the shape of each atom is a sphere with radius equal to the van der Waals
radius, we obtain the van der Waals surface area (VSA) for each atom. The sum
of the VSA of each atom gives the molecular VSA.
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The boundary surface of a region in space is an important physical quantity.
The integral of a field in the region is related by the fundamental theorem of
calculus to an integral over its boundary surface. A surface integral can be
approximated by summing quantities associated with a subdivision of
the surface into patches. In the present work, the surface patches are taken to
be the (approximate) exposed surface area of atom in a molecule.

Consider two spheres A and B with radii r and s, respectively, and centers
separated by a distance d. The amount of surface area of sphere A not con-
tained in sphere B, denoted by VA, is given by

(1)

The case of more than two spheres is more complicated, because a portion of
sphere A may be contained in several other spheres. However, we will neglect
this complication (in the hope that the error introduced will not be large).
Thus, we approximate the VSA for sphere A with n neighboring spheres Bi

with radii si and at distances di as

(2)

where the generalized delta function, δ(P), adopts a value of 1 if the condition
P is satisfied and 0 otherwise. This formula is similar to the pairwise approxi-
mations used in approximate overlap volume calculations and approximate
surface area calculations for generalized Born implicit solvent models (6). In a
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Fig. 1. Assuming spherical atoms, the surface area of atom A is the amount of
surface area not contained in other atoms. The depictions are a 2D analogy in which an
atom’s exposed surface area is represented by its exposed perimeter. Each lower
diagram depicts the exposed perimeter of atom A in each upper diagram.



molecule of n atoms each with van der Waals radius Ri, let Bi denote the set of
all atoms bonded to atom i. Neglect the effect of atoms not related by a bond
and define the VSA for atom i, denoted by Vi, to be

(3)

where bij is the ideal bond length between atoms i and j. The approximate VSA
for each atom can be calculated from connection table information alone
assuming a dictionary of van der Waals radii and ideal bond lengths. In the
present work the radii are derived from MMFF94 (7) with certain modifications
for polar hydrogen atoms. The ideal bond length bij between atoms i and j was
calculated according to the formula bij = sij – oij, where sij is a reference bond
length taken from MMFF94 parameters that depends on the two elements
involved and oij is a correction that depends on the bond order: 0 for single,
0.15 for aromatic, 0.2 for double, and 0.3 for triple. Finally, the approximate
VSA for an entire molecule is just the sum of the Vi for each atom i in the
molecule. The VSA of a molecule varies less than 2% between conformations.
The approximate VSA is accurate to within 10% of a three-dimensional calcu-
lation and is independent of conformation (see Fig. 2).

Thus, we have defined Vi, the contribution of atom i to the approximate VSA
of a molecule. This contribution is reasonably accurate and has the advantage
that it can be calculated using just connection table information and much more
rapidly than the 3D VSA contribution. The approximate molecular VSA is very
much a 2-1⁄2D descriptor: it is (highly correlated to) a conformation independent
3D property that requires only 2D connection information.

2.2. Subdivision of the VSA with Binary Atomic Properties

A polar surface area approximation can be calculated by summing the Vi

contribution of each polar atom in a molecule. A hydrophobic surface area
approximation can be calculated by Vi contribution of each hydrophobic atom
in a molecule. More generally, for a given binary property Bi (such as “is polar”
or “is aromatic” or “is acceptor”) for each atom i in a molecule, an approximate
surface-area based descriptor can be calculated with

(4)

Surface-area-based descriptors tend to be more useful than simple atom
counts because they take connectivity into account (and also, because of the
surface integral motivation). For example, surface-area-based descriptors can
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distinguish hexane from cyclohexane because the surface areas are different.
Indeed, for alkanes, the surface areas of each carbon atom with different
heavy-atom coordination numbers will be different. With the described
2D approximation, surface-area-based descriptors of alkanes will reduce to
branching-factor descriptors.

This surface area classification notion naturally can be extended to other
properties. For example, a collection of pharmacophore-type VSA descriptors
can be calculated by summing the Vi contribution of each in a molecule of a
specific type. For example, if the atom classes are “donor,” “acceptor,” “polar,”
“hydrophobe,” “anion,” and “cation,” then six VSA descriptors can be calcu-
lated such that for any given molecule the sum of the six descriptors is the
VSA of the entire molecule and each descriptor is the VSA of all atoms one of
the six classes. Such descriptors can be used for rough pharmacophore-based
similarity measures.

2.3. Subdivision of the VSA with General Atomic Properties

We turn now to non-binary properties of each atom in a molecule. Suppose
that for each atom i in a molecule we are given a numeric property Pi. Our
fundamental idea is to create a descriptor consisting of the sum of VSA con-
tributions of each atom with Pi in a specific range [u,v). (The expression [u,v)
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Fig. 2. A scatter plot of the approximate VSA for approx 2000 small molecules
versus their VSA calculated with a high-density dot counting method using 3D coor-
dinates of a conformation of each molecule. The correlation has an r 2 of 0.97 with a
relative error was less than 10%. Most of the errors occurred for the larger molecules
and in molecules with many atoms in fused ring systems.



denotes the half closed interval {x�u ≤ x ≤ v}.) More precisely, we define the
quantity P_VSA(u,v) to be

(5)

where Vi is the atomic contribution of atom i to the VSA of the molecule. We
now define a set of n descriptors associated with the property P as follows:

(6)

where a0 < ak < an are interval boundaries such that [a0,an) bound all values of
Pi in any molecule. Figure 3 is an example of the calculation of a hypothetical
set of descriptors from a chemical structure. Each VSA-type descriptor can be
characterized as the amount of surface area with P in a certain range. If, for a
given set of n descriptors, the interval ranges span all values, then the sum of
the n descriptors will be the VSA of the molecule. Therefore, these VSA-type
descriptors correspond to a subdivision of the molecular surface area.

Wildman and Crippen’s recent methods (8) for calculating logP (octanol/
water) and molar refractivity (MR) provide a good basis for VSA analogs of
logP and MR, because these methods were parametrized with atomic contri-
butions in mind. Both methods assign a numeric contribution to each atom in
a molecule. Interval boundaries can be obtained by gathering statistics on a
large database of 44,000+ small organic compounds [say from the Maybridge
(9) catalog]. Interval boundaries are chosen so that the resulting intervals are
equally populated over the database (resulting in non-uniform width bound-
aries). Such a procedure leads to 10 descriptors for logP and
8 descriptors for MR. For the Maybridge catalog, the respective interval bound-
aries for logP are (-∞, -0.4, -0.2, 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, ∞) and the
interval boundaries for MR are (0, 0.11, 0.26, 0.35, 0.39, 0.44, 0.485, 0.56, ∞).
Alternatively, uniform interval boundaries can be used; for example, the
Gasteiger (PEOE) method (10) of calculating partial charges require approx
14 uniform-interval descriptors: (-∞, -0.3, -0.25, -0.20, -0.15, -0.10, -0.05, 0,
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, ∞).

We have thus defined three sets of molecular descriptors:

• SlogP_VSAk (10) intended to capture hydrophobic and hydrophilic effects;
• SMR_VSAk (8) intended to capture polarizability;
• PEOE_VSAk (14) intended to capture direct electrostatic interactions.

Each of these descriptor sets is derived from, or related to, the Hansch and Leo
descriptors with the expectation that they would be widely applicable. Taken
together the VSA descriptors define, nominally, a 10 + 8 + 14 = 32 dimen-
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sional chemistry space (less two dimensions because all three sets for a partic-
ular molecule sum to the molecular VSA).

2.4. Weak Correlation of Descriptors

The orthogonality of a set of molecular descriptors is a very desirable prop-
erty. Classification methodologies such as CART (11) (or other decision-tree
methods) are not invariant to rotations of the chemistry space. Such methods
may encounter difficulties with correlated descriptors (e.g., production of larger
decision trees). Often, correlated descriptors necessitate the use of principal
components transforms that require a set of reference data for their estimation
(at worst, the transforms depend only on the data at hand and, at best, they are
trained once from some larger collection of compounds). In probabilistic
methodologies, such as Binary QSAR (12), approximation of statistical inde-
pendence is simplified when uncorrelated descriptors are used. In addition,
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Fig. 3. The calculation of a hypothetical set of five VSA descriptors D1, . . .,D5 based
upon a property P. The chemical structure consists of eight atoms each with the given
property value Pi and VSA contribution Vi.



descriptor transformations can lead to difficulties in model interpretation. At
first, it would appear that these descriptors would be highly correlated since
they are derived from only three property types. However, this is not the case.
Figure 4 presents the results of a correlation analysis conducted on a database
of approx 2,000 small molecules.

Among the SMR_VSA descriptors (rows/cols 25–32), the largest r value was
0.6 (r2 = 0.36), which appeared once; the remaining pairs exhibited r values
less than 0.27 (r 2 = 0.07), so SMR_VSA descriptors are, for the most part,
weakly correlated with each other. Among the SlogP_VSA descriptors
(rows/cols 15–24), the largest r value was 0.42 (r2 = 0.18), which appeared once;
the remaining pairs exhibited r values less than 0.27 (r2 = 0.07), so the logP

descriptors are, for the most part, weakly correlated with each other. Among the
PEOE_VSA descriptors (rows/cols 1–14), the largest r value was 0.65 (r2 = 0.42),
so the PEOE_VSA descriptors are, for the most part, weakly correlated with each
other. In the full correlation matrix, the intercorrelation between the descriptors
generally is weak; however, seven r values are larger than 0.7 (r2 = 0.49). At
first glance, the sets seem to exhibit higher correlation than in the intraset cases.
However, it must be remembered that for a given molecule each PEOE_VSA,
SlogP_VSA, and SMR_VSA descriptor collection sums to the VSA of the mol-
ecule; hence, there two less dimensions than the nominal 14 + 10 + 8 = 32. The
correlation results strongly suggest that the VSA descriptors are weakly correlated
with each other. As a consequence, we expect that methodologies such as
Binary QSAR, CART, Principal Components Analysis, Principal Components
Clustering, Neural Networks, k-means Clustering, etc., to be more effective (when
measured over many problem instances).

2.5. Encoding of Traditional Descriptors

The SlogP, SMR, and PEOE_VSA descriptors have rich information content
and can be used in place of many traditional descriptors (13–17). Figure 5 pre-
sents the results of a collection of 64 linear models each of which approximates
a traditional descriptor as a linear combination of the VSA descriptors (trained
on approx 2,000 small molecules). Out of the 64 descriptors, 32 showed an r2

of 0.90 or better and 49 had an r2 of 0.80 or better, and 61 showed an r2 of 0.5
or better. Descriptors related to flexibility are poorly modeled. In particular, the
Lipinksi parameters logP, acceptor count, donor count, and molecular weight are
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Fig. 4. (see facing page) The full correlation matrix of r values (in unsigned percent)
between the PEOE_VSA descriptors (rows/cols 1–14), SlogP_VSA descriptors
(rows/cols 15–24), and SMR_VSA descriptors (rows/cols 25–32). The values can be
converted to r 2 by dividing by 100 and squaring.
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Fig. 5. The r 2 correlation coefficients for linear models of traditional descriptors as a function of the 32 VSA
descriptors. Notes: (a) connectivity and kappa shape indices (4); (b) van der Waals surface area, volume, and density;
(c) vsa_hyd, vsa_don, etc., refer to van der Waals surface areas of hydrophobic, H-bond donor atoms, etc.;
(d) a_hyd, a_don, and a_acc refer to the number of hydrophobic, H-bond donor, and H-bond acceptor atoms; (e)
a_count, a_heavy, a_nC, a_nH, etc., refer to element counts; (f) element and graph adjacency matrix entropy; (g)
sum of CRC Handbook atomic and bond polarizabilities; (h) b_count, b_heavy, etc., are the number of bonds, aro-
matic, single double, and triple bonds; (i) total and fractional rotatable bonds; (j) logP (octanol/water) and molar refrac-
tivity; (k) molecular weight; (l) Balaban’s J index (13); (m) graph extents (14); (n) Wiener indices (17); (o) the Zagreb
index.



all modeled with an r2 better than 0.91. These results suggest that the 32 VSA
descriptors encode much of the information contained in most of the 64 popu-
lar descriptors and can replace them. The use of many descriptors in a particu-
lar QSAR/QSPR situation can often lead to chance correlation. In general, it is
preferable to use a relatively small, fixed collection of descriptors across many
problem instances to reduce the likelihood of chance correlations notwithstand-
ing the existence of methods to automatically select the appropriate descriptors
from a large pool (18). The use of a fixed collection of descriptors reduces the
reliance on validation methods to identify spurious models (e.g., leave-one-out
or k-fold cross-validation).

3. Applications

3.1. Quantitative Structure–Property Relationships

We now consider some applications of the presented VSA descriptors to
the quantitative modeling of molecular properties. Figure 6 presents the
results of the linear modeling of the free energy of solvation (19) of a small
molecule and the boiling point of a small molecule using only the described
VSA descriptors. The r2 in both cases was better than 90% and better than
88% on a leave-100-out validation test. Figure 6 also presents the results of
the linear modeling of the blood-brain barrier permeability (20) (r 2 of 0.83)
and the solubility in water (21) of small molecules (r 2 of 0.75). The presented
models are not intended to be definitive models of the properties. What is
noteworthy is that the same set of descriptors that were used throughout. This
strongly suggests that “chemistry space” defined by the VSA descriptors
would find utility in chemical diversity and ADME assessment studies in
which a compound is mapped to a 32-dimensional vector (of VSA descrip-
tors), which is then used as a surrogate for comparision with other molecules
(similarly mapped) when clustering compounds.

3.2. Quantitative Structure–Activity Relationships

It has been argued (22) the “traditional” descriptors such as logP, pKa, and
MR are more relevant to drug transport or pharmacokinetics than to receptor
affinity. However, one says that a descriptor is strongly related to a particular
property when effective QSPR models of the property have been made using
the descriptor. Failure to produce a QSAR/QSPR model using a descriptor is
not, in general, evidence of a lack of relevance. The relevance of descriptors
must be evaluated either from theoretical considerations or long-term empirical
success. Indeed, recent work (23) has suggested that the underlying atomic
contributions to partial charge, molar refractivity, and logP are relevant to
receptor affinity. The VSA descriptors represent a hydrophobicity, polarizabil-
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ity, and electrostatic profile of a particular molecule, and these properties are
indeed relevant to receptor affinity and ligand recognition. It is an added advan-
tage that the underlying properties used in the definition of the VSA descriptors
are possibly relevant to drug transport or pharmacokinetics.

One might fear that the “traditional” descriptors are “whole molecule” prop-
erties that cannot distinguish the details of important substructural differences.
It is difficult to quantify the wholism of a descriptor. A qualitative definition
might be that a “whole molecule” property is one in which small bioisosteric
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Fig. 6. Calculated (y-axis) and experimental (x-axis) molecular properties. Top Left:
free energy of solvation in kcal/mol for 291 small organic molecules. Top Right: boil-
ing points (in Kelvin) of 298 small organic molecules. Bottom Left: the log concentra-
tion ratio between the blood and brain for 75 compounds. Bottom Right: the solubility
in water of 1438 small organic compounds (units are log concentration ratios).



modifications to the structure lead to large changes in the descriptor value. It is
interesting to note that BCUT (24) values [extensions of Burden (25) numbers
derived from graph adjacency or distance matrix eigenvalues] are likely to
exhibit far more wholism than more group-additive properties (such as logP

and free energy of solvation). Nevertheless, BCUT values have shown utility in
QSAR/QSPR studies (26) and diversity work. Descriptors such as HOMO and
LUMO energies are very wholistic and even these have been used successfully
in QSAR work. The atomic VSA contributions are sensitive to connectivity
and the properties considered (logP, MR, and charge) are sensitive to the chem-
ical context of each atom. Moreover, each of the VSA descriptors is funda-
mentally additive in nature, which suggests a more reductionist than wholist
character. The high correlations seen when modeling other descriptors such
as number of nitrogens, number of oxygens, and number of aromatic atoms
support this reductionist assertion.

We now consider some applications of the VSA descriptors to receptor affin-
ity modeling. Figure 7 depicts a typical structure of a series of 72 compounds
each of which has been assayed against each of thrombin, trypsin, and factor Xa
(27). The PEOE_VSA, SlogP_VSA, and SMR_VSA descriptors were calculated
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Fig. 7. A representative structure from a series of 72 compounds each of which was
assayed against thrombin, trypsin, and factor Xa.



for each structure and a principal components linear regression was calculated for
each receptor, i.e., for each receptor the experimental pKi was modeled with a
linear combination of VSA descriptors. For each activity model, descriptors with
small (normalized) coefficients were discarded. Using the remaining descriptors
a principal components regression was calculated. For thrombin, a 10-descriptor
model using PEOE_VSA1,2,5,8,10,11,12 and SlogP_VSA1,5,9 resulted in an r 2 of 0.65
with an RMSE of 0.61 pKi (see Fig. 8 left); the leave-one-out cross-validated r 2

was 0.54 with an RMSE of 0.70 pKi. For trypsin, a 9-descriptor model using
PEOE_VSA1,8,11,12, SlogP_VSA0,3,4,8, and SMR_VSA5 resulted in an r 2 of 0.72
with an RMSE of 0.47 pKi (see Fig. 8 middle); the leave-one-out cross-validated
r 2 was 0.62 with an RMSE of 0.54 pKi. For factor Xa, a 15-descriptor model
using PEOE_VSA1,2,8,9,12,14, SlogP_VSA5,7,8,10, and SMR_VSA3,4,5,6,8 resulted in
an r 2 of 0.69 with an RMSE of 0.35 pKi (see Fig. 8 right); the leave-one-out
cross-validated r 2 was 0.52 with an RMSE of 0.45 pKi. These results suggest
that the VSA descriptors can distinguish the relatively small differences in a con-
generic series of compounds. It should be noted that these models are not
intended to be definitive; they are intended to show the applicability of the VSA
descriptors to receptor affinity modeling.

The automation of physical experiments through robotics to effectively per-
form hundreds of thousands or millions of experiments in a short time has
opened the door to a large-scale approach to drug discovery. High-throughput
screening (HTS) and combinatorial chemistry offer access to a huge set of can-
didate structures; however, time and economic considerations require a selec-
tion of only a subset of this vast space for physical testing. Unfortunately, most
people (if not all) find it very difficult to interpret all of the HTS data when
effecting a focused combinatorial library design. HTS QSAR is an alternative
to human inspection of HTS data. In this alternative, a set of HTS results are
considered to be “understood” if an effective QSAR model can be constructed
(by effective, we mean statistically significant). The activity of new compounds
(for example, in a proposed library) can be predicted with the model. The
PEOE_VSA descriptors have been used quite successfully in several HTS
QSAR attempts (28) using the Binary QSAR method. Accuracy levels of
40–70% have been routinely observed on active compounds on datasets with hit
rates well below 1% (inactives usually exhibit >90% accuracy). It is hoped that
the SlogP_VSA and SMR_VSA descriptors will improve the accuracy levels
(although the PEOE_VSA accuracy levels still resulted in significant enrich-
ment when compared to the hit rate).

Data from HTS often has a relatively high error or noise content and provides
a very low precision activity measure, often binary (“pass–fail”). This effectively
makes linear activity modeling impossible and classification-based QSAR meth-
ods must be employed. The database of 455 compounds, each active against one
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Fig. 8. Experimental (x-axis) and calculated (y-axis) pKi values for a series of 72 compounds. The calculated values are
linear models using the VSA descriptors.



of seven receptors, described in Xue et al. (29), serves as a test set for compound
classification. The database consisted of seven fairly congeneric classes:

Class 1: Serotonin receptor ligands
Class 2: Benzodiazepine receptor ligands
Class 3: Carbonic anhydrase II inhibitors
Class 4: Cyclooxygenase-2 (Cox-2) inhibitors
Class 5: H3 antagonists
Class 6: HIV protease inhibitors
Class 7: Tyrosine kinase inhibitors

Binary QSAR is a probabilistic classification methodology based on
Bayesian inference in which no regression procedure is used. A training set is
used to model the probability Pr(active  molecule), which is the probability of
observing an activity value of 1 given a particular molecule (as opposed to an
activity value of 0). A total of seven Binary QSAR models were made from the
VSA descriptors calculated from 455 compounds as follows. Model i was
trained on a dataset consisting of “active” molecules (those that were active
against the receptor of class i) and “inactive” molecules (those that were not
active against the receptor of class i). The Binary QSAR model was constructed
from these descriptors in an effort to predict membership in class i. The accu-
racy of prediction and the p value (probability of a chance occurrence) for each
model was found to be:

Class 1: 98.7% p = 0.003
Class 2: 96.7% p = 0.043
Class 3: 96.5% p = 0.290
Class 4: 98.7% p = 0.001
Class 5: 98.7% p = 0.014
Class 6: 98.7% p = 0.012
Class 7: 99.1% p = 0.002

Each of the models exhibited high accuracy and all but one (class 3:
carbonic anhydrase II inhibitors) exhibited high significance in the χ-squared
significance test. A similar classification model was built using the CART
methodology with similar but lower accuracy. The results suggest that the col-
lection of VSA descriptors define a “chemistry space” that could be put to good
use in a chemoinformatics, chemical diversity, or HTS data analysis context.

4. Summary

We have derived three sets of (easily calculated) molecular descriptors based
on atomic contributions to logP, molar refractivity, and atomic partial charge.
The individual descriptors were found to be weakly correlated with each other
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(over a suitably large collection of compounds). Moreover, the chemistry space
determined by the new descriptors was capable of expressing (as linear com-
binations) traditional QSAR/QSPR descriptors. Reasonably good QSAR/QSPR
models of boiling point, free energy of solvation in water, water solubility,
receptor class, and activity against thrombin, trypsin, and factor Xa were built
using only these descriptors. The procedure used to derive these VSA descrip-
tors can be applied to properties other than logP, MR, and partial charge.
Although only atom-type based models of these properties were used, the
methodology does not preclude the use of higher levels of theory.
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Cell-Based Partitioning

Ling Xue, Florence L. Stahura, and Jürgen Bajorath

Abstract

Partitioning techniques are widely used to classify compound sets or databases according to
specific chemical or biological criteria. Partitioning is conceptually related to, yet algorithmi-
cally distinct from, conventional clustering methods and is particularly suitable for efficient
processing of very large compound sets. Currently, some of the most popular partitioning
approaches in the chemoinformatics field involve dimension reduction of initially defined chem-
istry spaces and creation of subsections of low-dimensional space for molecular classification.
These subsections are often called cells. Original chemical reference spaces are generated
through selection of various descriptors of molecular structure and properties. Principles and
methodological aspects of dimension reduction of chemical spaces and compound partitioning
in low-dimensional space are described herein.

Key Words: Biological activity; chemical features; chemical space; cluster analysis; compound
databases; dimension reduction; molecular descriptors; molecule classification; partitioning
algorithms; partitioning in low-dimensional spaces; principal component analysis; visualization.

1. Introduction

Clustering or partitioning methods are among the preferred computational
approaches for the analysis of compound databases or libraries (1–4). Typically,
cluster analysis or partitioning of molecular datasets is carried out in order to
select representative or diverse compound subsets or identify compounds with
topologically similar structures, similar molecular properties, or biological activ-
ity. These classification techniques require the definition of chemical reference
spaces, which is usually facilitated through the selection of multiple chemical
descriptors (5,6). The basic premise of clustering and partitioning is that mol-
ecules that are close to each other in chemical space and occur in the same
cluster or partition are similar in terms of their chemical properties and/or bio-
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logical activity. Regardless of the specifics of cluster algorithms, clustering gen-
erally involves the calculation of intermolecular distances in chemical space so
that compounds that are close to each other can be grouped into clusters. This
process requires pairwise distance comparisons in order to establish similarity
relationships. Thus, when compound databases grow, the application of con-
ventional clustering techniques becomes increasingly difficult and, at some
point, computationally infeasible. On the other hand, when applying partitioning
algorithms, a computed multidimensional grid, or coordinate system, is super-
posed onto the chemical reference space. Corresponding descriptor values are
calculated for each compound and determine the absolute coordinates of these
molecules in this space. Generation of a grid involves the definition of subsec-
tions of chemical space, which in turn permits the identification of molecules
with similar positions based on their coordinate vectors and alleviates the need
for computationally expensive pairwise molecular distance comparisons (4). This
makes partitioning a particularly attractive approach for the analysis of increas-
ingly large compound databases. Principal differences between clustering and
partitioning are illustrated in Fig. 1.

2. Methods

In the following, we will describe methodological details of partitioning in
low-dimensional chemistry spaces, which is currently one of the most popular
adaptations of partitioning algorithms for compound classification and selec-
tion. In addition, statistically based partitioning methods, for example, recursive
partitioning, a decision tree method (7), are also widely used in chemoinfor-
matics and drug discovery research (see also Note 1).
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Fig. 1. Clustering versus partitioning. In cluster analysis, compounds (gray dots)
are grouped together based on the calculation of pairwise intermolecular distances in
chemical space. By contrast, partitioning methods subdivide chemical space into
sections into which compounds fall based on their calculated descriptor coordinates.



2.1. Molecular Descriptors and Chemical Space Representation

Since the definition of chemical reference spaces very much depends on the
choice of molecular descriptors, we begin the description with a brief overview
of some commonly used types of descriptors, as summarized in Table 1.

The table shows a number of representative descriptor types (there are many
more) that can be used to define chemical spaces. Each descriptor adds a
dimension (with discrete or continuous value ranges) to the chemical space
representation (e.g., selection of 18 descriptors defines an 18-dimensional
space). Axes of chemical space are orthogonal only if the applied molecular
descriptors are uncorrelated (which is, in practice, hardly ever the case).

2.2. Low-Dimensional Chemical Space
and Dimension-Reduction Techniques

Once n-dimensional chemical reference space has been defined, the
descriptors’ values are calculated for all compounds in a dataset, thereby
assigning a coordinate vector to each molecule. In principle, partitioning
analysis could proceed in n-dimensional space, but it is often attempted to
reduce its dimensionality in order to generate a low-dimensional representa-
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Table 1

Molecular Descriptor Categoriesa

Descriptor category Dimensionality

Topological descriptors
Connectivity indices 2D

Physical property descriptors
Molecular weight 1D
van der Waals volume 3D

Atom and bond counts
Number of hydrogen bond acceptors 2D

Surface area descriptors
van der Waals hydrophobic surface area 3D

Charge descriptors
Total negative partial charge 2D
Positively charged molecular surface area 3D

aCommonly used molecular descriptor types are listed. For each category,
one or two representative examples are given. Dimensionality refers to the mol-
ecular representation (molecular formula, 2D drawing, or 3D conformation)
from which the descriptors are calculated (adapted from ref. 4).



tion. What are the advantages of operating in low-dimensional spaces? First,
through dimension reduction, descriptor correlation effects can be reduced
or eliminated and orthogonal axes can be generated. This prevents drastic
distortions of chemical reference space and makes it possible to limit the
number of generated partitions and control their occupany. Furthermore,
dimension reduction methods often allow visual analysis of compound dis-
tributions in approximate three-dimensional reference spaces, which is often
crucial for a chemical interpretation of partitioning calculations.

How is dimension reduction of chemical spaces achieved? There are a
number of different concepts and mathematical procedures to reduce the dimen-
sionality of descriptor spaces with respect to a molecular dataset under investi-
gation. These techniques include, for example, linear mapping, multidimensional
scaling, factor analysis, or principal component analysis (PCA), as reviewed in
ref. 8. Essentially, these techniques either try to identify those descriptors among
the initially chosen ones that are most important to capture the chemical infor-
mation encoded in a molecular dataset or, alternatively, attempt to construct new
variables from original descriptor contributions. A representative example will be
discussed below in more detail.

2.3. Generation of Cells

After generating a low-dimensional space representation, each coordinate
axis is divided into data intervals of defined size, a process which is often
called binning and for which a number of different algorithms have been
developed (9). The number of bins set on the axes ultimately determines the
number of subsections that are produced in chemical space, which critically
influences the classification of near neighbors as either similar or not (see also

Note 2). Subsections obtained by binning are generally called cells, and the
basic assumption of partitioning analysis is that compounds populating the
same cell are similar in terms of their structural and chemical properties and/or
biological activity.

2.4. Representative Cell-Based Partitioning Schemes

The currently perhaps most popular approach to cell-based partitioning in
low-dimensional chemical spaces focuses on the so-called the BCUT metric
(10,11) and has successfully been applied in library and diversity analysis (12)

or classification of active compounds (13). In essence, BCUTs are uncorrelated
complex descriptors that combine information about molecular connectivity,
interatomic distances, and molecular properties such as hydrogen-bonding poten-
tial or charge. Calculation of these complex descriptors permits the generation of
low-dimensional partitioning spaces that capture many chemical properties and
that are typically formed by six orthogonal axes. If compounds are partitioned
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according to specific biological activity, the dimensionality of six-dimensional
BCUT spaces can often be further reduced to three-dimensional representation
by applying the concept of receptor-relevant subspaces (11), thus permitting
visualization of compound distributions. In this case, dimension reduction is
facilitated by application of an algorithm that selects those BCUT axes around
which most compounds having similar activity are located (areas considered as
receptor-relevant subspace). The algorithm eliminates those axes that are not
important for concentrating compounds having similar activity.

Another approach to cell-based partitioning makes use of principal compo-
nent analysis (14) of descriptor spaces and has been intensely studied in our
laboratory (15,16). Principal component analysis (PCA) is a mathematical
procedure that determines the variance within a dataset relative to selected vari-
ables and transforms these variables into a smaller number of uncorrelated ones
for data representation. Thus, PCA is one of the dimension reduction methods
that attempt to derive a smaller set of new complex descriptors from the orig-
inal ones. For each molecule in a dataset, descriptor values are calculated and
the eigenvalues and corresponding eigenvectors of the resulting matrix are
determined. Eigenvectors constitute the principal components. These compo-
nents are linear combinations of the original descriptors and account differ-
ently for the variance in the dataset (i.e., the first principal component makes
the greatest contribution, followed by the second, and so on). Owing to their
cumulative contributions, a relatively small number of components is often suf-
ficient to capture the variance of a dataset (see also Note 3). For example, the
first six or seven principal components might be sufficient to account for all, or
nearly all, of the data variance of a compound set in a 15-dimensional descrip-
tor space. Importantly, PCA removes correlation of original variables and, in
consequence, principal components form an uncorrelated and orthogonal ref-
erence space. This also provides a basis for data visualization. For example,
the first three principal components alone might account for about 70% of vari-
ance in a specific molecular dataset. Thus, using them as a three-dimensional
coordinate system makes it possible to generate an approximate view of a
computed compound distribution. Figure 2 illustrates the different stages of
the PCA-based partitioning process, as discussed above.

2.5. Machine Learning

Important questions are how to identify descriptors that are suitable for a spe-
cific partitioning analysis and how to determine preferred calculation conditions.
There are no generally preferred molecular descriptors for compound partition-
ing and, in many cases, it is impossible to guess most suitable descriptors and
calculation parameters. Therefore, partitioning algorithms can be combined with
machine learning techniques such as genetic algorithms (17) in order to optimize
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descriptor selection and partitioning calculations (see Note 4). For PCA-based
partitioning, as described herein, a chromosome would represent, for example,
a pool of possible molecular descriptors and, in addition, variable calculation
parameters such as the maximum number of principal components and the
number of bins per axis (16). The combination of these two parameters deter-
mines the total number of cells that are generated. During these calculations,
automatically selected descriptor combinations and calculation parameters are
submitted to partitioning analysis, and the obtained results are evaluated using a
predefined fitness or scoring function. For activity-oriented compound parti-
tioning, a fitness function would typically monitor the prediction accuracy for
classification of compounds having similar activity (taking into account both
false-positives and false-negatives) and produce a corresponding score for each
descriptor and parameter combination. Descriptor and parameter selections are
modified through genetic algorithm calculations in order to improve the score of
the fitness function during many cycles of selection and partitioning until a
convergence criterion is reached. This automated process is usually much more
effective than educated guesses and manual parameter adjustments.

2.6. Application Example

Table 2 summarizes the results of a study applying cell-based partitioning to
classify molecules belonging to diverse biological activity classes (16). Here,
the PCA technique described above was coupled to a genetic algorithm and
used to systematically partition a total of 317 active molecules belonging to
21 different biological activity classes (including various enzyme inhibitors,
receptor agonists, and antagonists).

As can be seen, prediction accuracy of 70% or better could be achieved by
PCA of various descriptor combinations followed by partitioning in lower-
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Fig. 2. (see opposite page) Compound partitioning based on principal component
analysis. As an example, a three-dimensional principal component space is generated.
Dots represent molecules. As shown in this schematic illustration, n descriptors initi-
ally define an n-dimensional chemical space. Each of m test molecules is assigned an
n-dimensional vector of descriptor coordinates. Thus, for all descriptors and test mole-
cules, an n-by-m matrix is obtained. This matrix is then subjected to principal compo-
nent analysis, which removes descriptor correlations and generates a set of p normalized
principal components (linear combinations of the original descriptors, with coefficients
reflecting their relative importance for capturing data variance). A limited set of princi-
pal components accounting for all, or almost all, of the variability constitute the newly
derived orthogonal and lower-dimensional space. Application of a binning algorithm to
the principal component axes produces cells for partitioning of the m test molecules, for
which the new descriptor (component) values are calculated.



dimensional space. The desired classification result was achieved when only
compounds having similar activity occurred in the same cell (see also Note 5).
For preferred chemical space representations listed in Table 2, the majority of
compounds (>70%) were found in pure partitions.

These results were obtained by coupling a genetic algorithm for descriptor
and calculation parameter (PC, bins) selection to PCA-based partitioning. In
these calculations, descriptors were chosen from a pool of approx 150 different
ones, and both the number of PCs and bins were allowed to vary from 1 to 15.
An initial population of 300 chromosomes was randomly generated with initial
bit occupancy of approx 15%. Rates for mutation and crossover operations
were set to 5% and 25%, respectively. After PCA-based partitioning, scores
were calculated for the following fitness function:

(1)
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Table 2

PCA-Based Partitioning of Active Moleculesa

a“D” reports the number of original descriptors; “PC” the number of prin-
cipal components; “B” the number of axis bins; “P” is the number of pure and
“M” the number of mixed partitions; “S” the number of singletons; “Np” reports
the total number of compounds in pure partitions; “PA” stands for prediction
accuracy (%), defined as Np/Ntotal. (with Ntotal being the total number of database
compounds). “Sc” is the score of the fitness function (see text). Pure partitions
contain only compounds having similar activity (desired result), whereas mixed
partitions contain compounds belonging to different activity classes (classifica-
tion failure). Singletons are compounds not recognized as similar to any others
(classification failure). Data were taken from ref. 16.



In this formulation, Np is the total number of the compounds in pure classes,
Nm the number of compounds in mixed classes, and Ntotal the total number of
active compounds. C is the total number of classes obtained by PCA analysis
and Ca the number of different activity classes in the database. Thus, accord-
ing to this scoring scheme, high scores were obtained if many compounds
occurred in a small number of pure classes. A scale factor of 100 was arbi-
trarily applied to obtain top scores greater than 1.

Following partitioning calculations, the best scoring 150 chromosomes were
saved and subjected to crossover and mutation operations. The resulting chromo-
somes represented the next generation. The process was repeated until scores
remained unchanged for at least 1000 generations (convergence criterion).

3. Notes

1. Despite the conceptual elegance of partitioning in low-dimensional descriptor
spaces, dimensional reduction is not essential for effective partitioning, as has
been shown, for example, by application of statistical partitioning methods (4).

2. Binning is also responsible for one of the potential drawbacks of cell-based
partitioning, the occurrence of boundary effects. For example, modification of
binning schemes can substantially change the relative occupancy of cells.
Compounds occurring in the same cell in a partitioning analysis might shift into
neighboring cells when calculation parameters are slightly modified and,
consequently, would no longer be recognized as similar. In addition, some test
molecules may map to boundaries between cells.

3. Because principal component analysis attempts to account for all of the variance
within a molecular dataset, it can be negatively affected by “outliers,” i.e., com-
pounds having at least some descriptor values that are very different from others.
Therefore, it is advisable to scale principal component axes or, alternatively,
pre-process compound collections using statistical filters to identify and remove
such outliers prior to the calculation of principal components.

4. In genetic algorithms, model parameters are encoded as “chromosomes” that yield
possible (but not necessarily optimal) solutions to a given problem by optimiza-
tion of a fitness function. Chromosomes are bit string representations where each
bit—if set on—contributes a parameter to the calculation. Subpopulations of chro-
mosomes yielding best intermediate solutions are subjected to operations that are
analogous to genetic mutation and gene recombination in order to produce the
next generation. This process continues until the solutions reach a convergence
criterion of the fitness function.

5. In the context of compound partitioning, it should also be considered that rela-
tionships between structural and biological similarity can differ significantly.
Much of the current molecular similarity research is based on the fundamental,
and rather intuitive, “similar property principle” (18), which states that compounds
with similar structures should generally have similar biologically activity. On the
other hand, it is well known that minute structural modifications of active com-
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pounds can greatly alter or abolish their activity; a phenomenon that we—in light
of the similar property principle—have called the “similarity paradox” (19). These
differences can represent major obstacles for molecular similarity analysis and
virtual screening. In some ways, the similar property principle and similarity para-
dox mark opposite ends of a continuous spectrum of structure–activity relation-
ships that are often difficult to explore and differentiate by computational analysis.
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Partitioning in Binary-Transformed 
Chemical Descriptor Spaces

Jeffrey W. Godden and Jürgen Bajorath

Abstract

Here we describe a statistically based partitioning method called median partitioning (MP),
which involves the transformation of value distributions of molecular property descriptors into a
binary classification scheme. The MP approach fundamentally differs from other partitioning
approaches that involve dimension reduction of chemical spaces such as cell-based partitioning,
since MP directly operates in original, albeit simplified, chemical space. Modified versions of the
MP algorithm have been implemented and successfully applied in diversity selection, compound
classification, and virtual screening. These findings have demonstrated that dimension reduction
techniques, although elegant in their design, are not necessarily required for effective partition-
ing of molecular datasets. An attractive feature of statistical partitioning approaches such as deci-
sion tree methods or MP is their computational efficiency, which is becoming an important
criterion for the analysis of compound databases containing millions of molecules.

Key Words: Biological activity; chemical descriptors; chemical spaces; classification meth-
ods; compound databases; decision trees; diversity selection; partitioning algorithms; space
transformation; statistics; statistical medians.

1. Introduction

In chemoinformatics research, partitioning algorithms are applied in diversity
analysis of large compound libraries, subset selection, or the search for mole-
cules with specific activity (1–4). Widely used partitioning methods include
cell-based partitioning in low-dimensional chemical spaces (1,3) and decision
tree methods, in particular, recursive partitioning (RP) (5–7). Partitioning in
low-dimensional chemical spaces is based on various dimension reduction
methods (4,8) and often permits simplified three-dimensional representation of
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computed compound distributions. The ability to visualize compound sets in
chemical space invaluably aids in the analysis of partitioning results (and also
other calculations), which may be one of the reasons for the popularity of cell-
based partitioning techniques.

Whereas some of the mathematical operations involved in dimension reduction
techniques are rather complex and often not easily applicable to very large com-
pound sets, statistical partitioning approaches are generally not affected by such
restrictions and are therefore computationally very efficient. Decision tree meth-
ods such as RP are typically not designed for diversity analysis or subset selec-
tion, but rather for the identification of active compounds or the separation of
active from inactive molecules (in biological screening sets, for example). Recur-
sive partitioning typically begins with a learning set consisting of known active
and inactive compounds and divides this dataset in subsequent steps along a deci-
sion tree consisting of multiple test features or descriptors. At every branch of the
tree, one or more descriptors are employed to subdivide the dataset into subsets
that either have or do not have the tested features (7,8). The primary goal is to
obtain subsets of the smallest possible size that are highly enriched with active
compounds and to associate these partitions with specific descriptor settings or
pathways. Because these descriptor-based models are linked to a specific bio-
logical activity or class of compounds, they provide search tools for the identifi-
cation of novel molecules with desired properties.

Median partitioning is another statistical method distinct from RP. The devel-
opment of this methodology was driven by the need to select representative
subsets from very large compound pools. Hierarchical clustering techniques
(4,9) and dissimilarity-based methods (10–12) have typically been applied for
such tasks but are computationally too complex to handle compound collections
consisting of millions of molecules. Therefore, MP was originally designed as
a computationally less demanding subset selection method (13) and later on
was also adapted for the classification of active compounds (14) and for virtual
screening of large databases (15). This conceptually straightforward, yet very
versatile, partitioning method is described in the following.

2. Methods

First, we introduce the underlying idea of MP and some of its basic
requirements. Then automation and algorithmic details are discussed. Finally,
we compare different partitioning approaches.

2.1. Concept of Median Partitioning

2.1.1. Statistical Medians of Descriptor Distributions

Like other partitioning or clustering techniques (4), MP relies on the use of
descriptors of molecular structure and properties (16,17) for the definition of
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chemical reference spaces (see also Note 1). For each of m compounds in a
database, values of n descriptors are initially calculated. In statistics, the median
is defined as the value that separates a population of values into two equal sub-
populations above and below the median (18). Thus, for each descriptor a
median can be calculated given the values of m molecules. It is important to
point out that molecular descriptors suitable for calculation of medians must
have continuous value ranges or, at least, a number of discrete values. For two-
state descriptors such as, for example, structural fragments (that are either pre-
sent or absent in a molecule), a meaningful calculation of medians is not
possible (see Note 2). Furthermore, descriptors suitable for MP analysis usually
benefit from having high information content (13), which can be determined
and quantified by descriptor entropy calculations in compound databases
(19,20). Table 1 shows some examples of descriptors and calculated medians.

2.1.2. Partitioning Calculations

Once a basis set of descriptor medians is obtained, MP proceeds in a stepwise
manner. In each of n subsequent steps, molecules with a value of the particular
descriptor above (or equal to) the median are assigned 1 and molecules with
value below the median are assigned 0. For n descriptors, a total of 2n unique
partitions are created, each of which is characterized by a unique n-digit parti-
tioning code (for example, 10 descriptors produce 1024 partitions). Ultimately,
each test molecule falls into a unique partition and is assigned its signature code
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Table 1

Descriptor Mediansa

Molecular descriptor Median 1 (317) Median 2 (2,317)

Number of aromatic atoms 12 10
Number of H-bond donors 2 1
Number of heavy atoms 26 21
Number of hydrophobic atoms 17 14
Number of aromatic bonds 12 11
Number of double non-aromatic bonds 1 1
Atomic connectivity index (chi 1) 19.1 15.3
VDW surface area of H-bond acceptors 27.9 19.3

aThe table reports median values for a number of descriptors that were calculated for two
overlapping compound datasets. Median 1 was calculated for 317 active compounds belonging
to different biological activity classes. Median 2 was calculated after 2000 randomly collected
molecules were added to this set of active compounds. Most median values differ for these two
compound sets (see Note 3). VDW stands for van der Waals. Data were taken from ref. 14.



(see Note 4). The MP process is illustrated in Fig. 1. A basic assumption of
partitioning approaches including MP is that molecules falling into the same
partition are similar and share similar properties (such as biological activity),
which provides the basis for diversity- or activity-oriented compound selections,
as illustrated in Fig. 1.
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Fig. 1. Median partitioning and compound selection. In this schematic illustration,
a two-dimensional chemical space is shown as an example. The axes represent the
medians of two uncorrelated (and, therefore, orthogonal) descriptors and dots represent
database compounds. In A, a compound database is divided in into equal subpopula-
tions in two steps and each resulting partition is characterized by a unique binary code
(shared by molecules occupying this partition). In B, diversity-based compound selec-
tion is illustrated. From the center of each partition, a compound is selected to obtain
a representative subset. By contrast, C illustrates activity-based compound selection.
Here, a known active molecule (gray dot) is added to the source database prior to MP
and compounds that ultimately occur in the same partition as this bait molecule are
selected as candidates for testing. Finally, D illustrates the effects of descriptor corre-
lation. In this case, the two applied descriptors are significantly correlated and the
dashed line represents a diagonal of correlation that affects the compound distribution.
As can be seen, descriptor correlation leads to over- and underpopulated partitions.



In contrast to partitioning methods that involve dimension reduction of
chemical reference spaces, MP is best understood as a direct space method.
However, n-dimensional descriptor space is simplified here by transforming
property descriptors with continuous or discrete value ranges into a binary
classification scheme. Essentially, this binary space transformation assigns
less complex n-dimensional vectors to test molecules, with each dimension
having unity length of either 0 or 1. Thus, although MP analysis proceeds in
n-dimensional descriptor space, its dimensions are scaled and its complexity
is reduced.

2.1.3. Descriptor Correlation

A major practical issue affecting MP calculations is caused by use of corre-
lated molecular descriptors. During subsequent MP steps, exact halves of values
(and molecules) are only generated if the chosen descriptors are uncorrelated
(orthogonal), as shown in Fig. 1A. By contrast, the presence of descriptor corre-
lations (and departure from orthogonal reference space) leads to overpopulated
and underpopulated, or even empty, partitions (see also Note 5), as illustrated in
Fig. 1D. For diversity analysis, compounds should be widely distributed over
computed partitions and descriptor correlation effects should therefore be lim-
ited as much as possible. However, for other applications, the use of correlated
descriptors that produce skewed compound distributions may not be problematic
or even favorable (see Note 5).

2.2. Algorithmic Details

2.2.1. Automatic Descriptor Selection

For partitioning analysis, regardless of the methods applied, it is in general
difficult to predict which descriptor combinations might perform best. Because
there are no general rules, machine learning techniques such as genetic algo-
rithms (GAs) (21) can conveniently be applied to select descriptors (see also

Note 1). For GA calculations, descriptors can be encoded in chromosomes and
automatically selected and subjected to MP. Obtained results are then evaluated
using specific scoring functions that are optimized during subsequent rounds of
GA calculations until predefined convergence criteria are reached. Thus, the
basic MP process can be tuned for specific applications by use of different
scoring schemes that optimize desired partitioning outcomes (13–15).

2.2.2. Diversity Assessment

As mentioned above, the MP approach was originally designed to aid in diver-
sity evaluation of large compound collections and selection of representative
subsets (see Note 6). In this case, an MP grid with a predefined number of par-
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titions is superposed on the compound dataset. In order to identify descriptor
combinations that create as much diversity as possible during the MP process,
the following scoring function was designed (13):

S1 = <IC>/<CC>

where <IC> is the average information content (13,19) and <CC> the average
correlation coefficient of a descriptor combination. Thus, descriptor combina-
tions are sought that have high information content and low correlation. In order
to assess the effectiveness of selected descriptor combinations, the number of
populated partitions is monitored during MP (as a measure of diversity).

2.2.3. Compound Classification

The MP method has also been adapted for classification of bioactive com-
pounds, a task that substantially differs from diversity analysis. Here the key is
to find descriptor combinations that place compounds with similar activity into
the same partition, separate them from others, and avoid the creation of parti-
tions containing molecules having different activity. Therefore, the following
scoring function was optimized (14):

100 1
S2 = —— × ——————––——

Ntotal (Ntotal – Np) + C / Cact

Here Ntotal is the total number of active database compounds and Np the number
of compounds occurring in “pure” partitions that only contain molecules
belonging to the same activity class. Both the number of compounds in
“mixed” partitions (containing molecules having different activity) and single-
tons are considered classification failures. C is the total number of partitions
containing active compounds (pure, mixed, or singletons) and Cact is the
number of different activity classes in the database. A scaling factor of 100 is
arbitrarily applied (to obtain top scores greater than 1). According to this scor-
ing scheme, high scores are obtained if many compounds with similar activity
occur in a small number of pure partitions (see Note 5).

2.2.4. Dispersive MP

A similar approach can also be applied to search databases for novel active
molecules. In this case, several known active compounds are added to a source
database as baits and descriptor combinations are identified that place these
bait molecules into the same partition. Successful co-partitioning of known
actives essentially serves as an internal control. If MP correctly recognizes the
similarity of the baits, database compounds occurring in the same partition are
thought to have a higher probability than others to exhibit activity similar to the
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bait molecules (15). Algorithmically, this type of search for active compounds
can be facilitated in different ways. Thus far, we have mainly focused on what
we call dispersive MP. For this purpose, a fitness function was designed to bal-
ance two objectives:

• Find descriptor combinations that successfully co-partition known actives.
• Create greatest possible diversity among database compounds.

During diversity spreading, only database compounds with distinct similarity to
co-partitioned bait molecules are expected to remain “close” to them. Among
various scoring schemes we investigated for dispersive MP, the following
simple function consistently produced best results (15):

S3 = A(cp) * P(pop)

Here A(cp) is the number of successfully co-partitioned known actives (subsets
of which may occur in different partitions) and P(pop) the number of popu-
lated partitions. The total number of populated median partitions serves as a
measure of the diversity spread among database compounds (just as in diversity
analysis, as discussed above).

2.2.5. Recursive MP

When searching very large databases for active compounds, a single-step
MP analysis often does not sufficiently reduce database compounds to a small
enough number for testing (e.g., fewer than 100). Therefore, we have devised
a recursive procedure for MP (called RMP) that proceeds as follows (15):

• Find descriptor combinations that successfully co-partition known actives
• Pool database compounds from active partitions and discard others
• Add all bait molecules again to the pool
• Re-calculate medians, re-initialize descriptor selection, and re-partition
• Go through subsequent recursions
• Until a sufficiently small number of test compounds is obtained.

Following this algorithm, the size of the source database is reduced during each
recursion until only a very small number of candidate compounds remains for
testing. The methodology has two key aspects. First, descriptor medians are
re-calculated each time after the source database is reduced in size to avoid sta-
tistical errors (see Note 3). Second, descriptor selection is initiated de novo at the
beginning of each recursion (without transfer of information from previous steps).
This is done in order to generate independent chemical space solutions and avoid
database-dependent bias. Using our dispersive-recursive MP approach, it was
possible for different biological activity classes (for example, tyrosine kinase
inhibitors or serotonin receptor antagonists) to reduce approx 1.3 million database
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compounds to 20–100 candidate molecules in just two to five recursions. In these
calculations, RMP produced hit rates of up to approx 20% (15).

2.3. Median vs Cell-Based Partitioning

We have also compared MP to cell-based partitioning in a compound
classification study focusing on a number of different activity classes. Both
partitioning techniques were coupled to a GA and scoring function S2 (see
above) was optimized. Results are summarized in Table 2.

In this study, both partitioning approaches produced promising results, with
more than half of active compounds occurring in pure partitions. As a direct
space method, MP compared favorably to cell-based partitioning. These find-
ings encouraged us to apply RMP methodology for virtual screening of large
compound databases (15).

3. Notes

1. A brief overview of different types of molecular descriptors is given in Chapter 9
about cell-based partitioning by Xue et al.; this chapter also includes a description
of genetic algorithm calculations.

2. Descriptor requirements present a significant difference between MP and deci-
sion tree methods such as RP. Whereas two-state descriptors are not suitable for
MP, these types of descriptors are typically required for decision tree algorithms
because at each branch the presence or absence of specific feature(s) must be
detected in order to recursively divide a molecular dataset.
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Table 2

Classification of Active Compounds by Median and Cell-Based Partitioninga

Ds D %P P nP S M nM

GA-PCA

18 16 55.2 57 175 82 19 60
GA-MP

19 19 63.1 69 200 86 22 31

aThe test database consisted of 317 active compounds belonging to 21 biological activity
classes and 2000 randomly selected background molecules. PCA stands for principal compo-
nent analysis, the basis of the cell-based partitioning method used here (23). Ds reports the
number of original (GA-selected) descriptors and D the dimensionality of the partitioning space
(PCA involves dimension reduction). %P is the percentage of active compounds in pure partitions
as a measure of the prediction accuracy. P is the total number of pure partitions, nP the total
number of active compounds in pure partitions, S the number of singletons (only one active
compound; classification failure), M the number of mixed partitions (containing either mole-
cules having different activity or active and background compounds), and nM the total number
of active compounds in mixed partitions (classification failure). Data were taken from ref. 14.



3. Descriptor median values naturally depend on the composition and size of com-
pound databases. Whenever source databases are changed, reduced, or extended in
size, descriptor medians need to be re-calculated to ensure accurate MP analysis.
Relatively small changes in median values can significantly alter partitioning results.

4. Computationally, MP is a very efficient method. Median statistics and partitioning
calculations (which are, in essence, a compound sorting process) are very fast.
Generally, the major time-limiting step is the calculation of many potential
descriptors for large numbers of compounds. Excluding descriptor calculations,
median statistics, partitioning calculations, and partition code assignments for
diversity analysis of approx 2.5 million molecules required only approx 2 h of
CPU time on a 600 MHz PC processor (13).

5. In practice, it is very difficult, if not impossible, to find sets of uncorrelated mole-
cular property descriptors. Thus, although we try to limit descriptor correlation
effects in diversity analysis, unevenly populated or empty partitions usually occur
during MP. In fact, when generating high-dimensional reference spaces for MP
analysis, propagating descriptor correlation effects can lead to large numbers of
empty partitions (even if pairwise correlations are small). For example, when select-
ing a representative subset of approx 100,000 compounds from approx 2.5 million
molecules in a 19-dimensional MP space, an overall partition occupancy rate of
21% was observed (13). However, depending on the application, this does not nec-
essarily mean that MP results are negatively affected by descriptor correlation. In
compound classification, for example, descriptor correlation effects can even
improve the accuracy of the predictions (14) (probably because sets of similar com-
pounds are easier to “isolate” when distributions over partitions are skewed).

6. We needed to develop a classification technique that could efficiently select
representative subsets from compound pools containing millions of molecules.
Analysis of compound datasets of this size makes it necessary to avoid pairwise
molecular comparisons (as involved in clustering) and complex mathematical
transformations (as often involved dimension reduction of chemical spaces). The
MP approach fulfills these requirements. Other algorithms have been designed to
evaluate the diversity of very large compound collections that employ probability
sampling of smaller subsets to estimate global diversity (22).
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Comparison of Methods Based on Diversity 
and Similarity for Molecule Selection 
and the Analysis of Drug Discovery Data

Raymond L.H. Lam and William J. Welch

Abstract

The concepts of diversity and similarity of molecules are widely used in quantitative methods
for designing (selecting) a representative set of molecules and for analyzing the relationship
between chemical structure and biological activity. We review methods and algorithms for design
of a diverse set of molecules in the chemical space using clustering, cell-based partitioning, or
other distance-based approaches. Analogous cell-based and clustering methods are described for
analyzing drug-discovery data to predict activity in virtual screening. Some performance compar-
isons are made. The choice of descriptor variables to characterize chemical structure is also included
in the comparative study. We find that the diversity of a selected set is quite sensitive to both the
statistical selection method and the choice of molecular descriptors and that, for the dataset used in
this study, random selection works surprisingly well in providing a set of data for analysis.

Key Words: Biological activity; cell-based partitioning; chemical descriptors; classifica-
tion; clustering; distance-based design; diversity selection; high-throughput screening; quan-
titative structure-activity relationship.

1. Introduction

Finding bioactive compounds is inherently a sequential process. Even a large
screening program where 500,000 to 1,000,000 compounds are screened is a
modest sampling of the many millions of compounds that are available com-
mercially. Moreover, there are billions of possible compounds that could be
made using standard reactions and reagents. An exhaustive search of the vast-
ness of chemical space is not feasible, and drug discovery, like other opti-
mizations, is necessarily a sequence of steps in hopefully the right direction.
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Almost always, drug discovery starts with an initial screen, with the screening
results leading to screening further, possibly newly synthesized, compounds.

A number of researchers are pushing the sequential screening paradigm
in the direction of smaller initial screening datasets and in the use of data
mining methods for determining a structure–activity relationship. The initial
screening sets of 10,000–15,000 compounds are very small by discovery stan-
dards. There have been extensive benchmarking studies using historical datasets
(1–5). All these investigators reached similar conclusions: for example, several
cycles of sequential screening often identify about 80% of the hits by testing
only about 20% of the entire compound collection (2).

There are a number of possible objectives for sequential screening. Some
screeners want to find all the active compounds in their collection. Some
chemists would like to find all the active chemical classes in the collection.
We think sequential screeners should adopt the more modest goal of finding
several active chemical classes. The follow-up process of drug discovery is
frightfully expensive, so even large companies cannot afford to follow up more
than two or three chemical classes for a target. Sequential screening should
attempt to match downstream capacity.

The purpose of this chapter is to benchmark various aspects of sequential
screening. In Subheading 2. we look at several methods for defining and select-
ing a diverse initial screening set from a chemical database. Subheading 3.

describes two similarity-based methods for analyzing structure-activity data and
identifying active compounds. These methods of design and analysis are bench-
marked in Subheading 4. Finally, Subheading 5. draws some conclusions.

2. Methods for Designing a Diverse Set of Compounds

2.1. Chemical Descriptors

The measure of chemical diversity of a set of compounds clearly depends on
the descriptor variables chosen to characterize their chemical structures. Simi-
larly, the utility of a structure–activity analysis will depend on how well the
descriptor variables capture the important chemical features.

There is a vast array of possible descriptor sets. Todeschini and Consonni’s
catalog (6) is encyclopedic in scope; Leach and Gillet provide a useful sum-
mary (7). There is relatively little literature benchmarking one set of descriptors
against another, however. Brown and Martin found that 2D descriptors were
more effective than computationally intensive 3D descriptors when used in
conjunction with a clustering method to select active molecules (8). Feng et al.
compared several types of descriptors computed with Dragon software
(www.disat.unimib.it/chm/Dragon.htm) using four datasets and three different
statistical methods and found all the descriptors about equally effective (9).
Clearly, much more benchmarking needs to be done.
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In Subheading 4. we compare two very different descriptor sets: six
BCUTs, based on the work of Burden (10) and Pearlman and Smith (11), and
46 constitutional descriptors from Dragon. BCUTs summarize whole-molecule
properties based on graph-theoretic arguments. Constitutional descriptors are
simple and describe general properties of the compound without resort to
molecular geometry. They include such variables as number of bonds, numbers
of specific atom types, number of rings, and molecular weight. In general, we
denote the number of descriptors by k.

2.2. Clustering

One method of choosing a diverse set of compounds from a molecular
database is to first cluster them (see, for example ref. 12) and then select one
molecule from each cluster. Clustering ideally groups the molecules into well-
separated, compact groups with respect to the descriptor variables. If this is the
case, then each cluster or group can be represented by one of its members. This
method of choosing a diverse set of objects goes back at least to Zemroch (13) in
the statistics literature and has been widely used for chemical databases (14,15).

Figure 1 illustrates clustering with a simple example having just two descrip-
tors, x1 and x2, and 30 compounds. The 30 compounds denoted by circles are
clustered into five groups; the lines connect each compound to the center of its

Comparison of Diversity and Similarity Methods 303

Fig. 1. Thirty molecules (open and solid circles) are grouped into five clusters in a
two-dimensional chemical space. In A, the original, unscaled variables are used,
whereas the variables are scaled to have unit sample standard deviations in B. The
lines connect each molecule to its cluster center. Solid circles denote the compounds
chosen at random; open circles are unselected compounds.



cluster. The K-means algorithm (12) is being used here and in Subheading 4.

for a much larger database, as it is reasonably fast when dealing with hundreds
of thousands of compounds. Its computational complexity is roughly linear with
the number of compounds, much better than most clustering methods. One mol-
ecule is randomly selected from each group—the points denoted by solid circles.
The K-means algorithm iterates by assigning each point to the nearest cluster
center. The definition of “nearest” clearly depends on the scaling of the variables
(as well as the choice of variables and the distance metric). In Fig. 1A the raw
variables are used with the Euclidean distance metric, whereas in Fig. 1B the
distance metric for clustering is computed after scaling so that both variables
have unit sample standard deviation. A change of scale can lead to different
clusters, as here, and hence different selected molecules.

2.3. Cell-Based Algorithms

2.3.1. Cell-Based Selection

In a standard cell-based method, the range of each of k numerical descriptors
is subdivided into m bins, yielding mk cells. To select a representative set of
molecules from a database, one molecule is selected at random from each cell
(16). The method can also be used to assess the diversity of an existing mole-
cular database by asking how many cells are represented (17).

The method is straightforward, but runs into a major problem. For similar
biological activity, two molecules must have fairly similar values of all critical
descriptors (18), so the number of bins per dimension, m, should be large. With
a high-dimensional descriptor space (large k), there will be so many cells that
most are empty in the database.

2.3.2. Uniform Cell Coverage

As it is essentially impossible to cover a high-dimensional space finely with
a modest number of compounds, Lam and co-workers proposed a cell-based
method that uniformly covers all low-dimensional subspaces formed by subsets
of descriptors (19,20). Typically, they would consider all one-dimensional (1D),
2D, and 3D subspaces. In addition to practical feasibility, this is consistent with
Pearlman and Smith’s notion of a relevant subspace (21): a particular activity
mechanism will likely involve only a few relevant descriptor variables.

With cells formed from only one, two, or three descriptors at a time, it is
possible to divide each descriptor’s range into fairly fine bins. Suppose, for
example, we want 4096 cells. In one dimension, a descriptor can have 4096
bins. For two-dimensional cells, the two variables each have 64 bins, giving
64 × 64 = 4096 cells. Similarly, in three dimensions, 16 bins per variable lead
to 16 × 16 × 16 = 4096 cells. Lam and co-workers also formed larger bins at
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the edges of each variable’s range, where there are often extreme values, to
keep the interior cells small (19,20). Thus, all subspaces, whether 1D, 2D, or
3D, have the same number of cells. Some cells might be empty in some sub-
spaces, but, because the number of cells is controlled (thousands instead of
millions), the proportion empty tends to be much smaller than with traditional
cell-based methods.

Choosing one molecule at random from each cell in a particular subspace
will not necessarily give good coverage in other subspaces, and an optimization
algorithm is necessary. Lam and co-workers introduced a uniform-cell-coverage
(UCC) criterion (19,20) to measure the discrepancy between a particular choice
of molecules and the ideal of one molecule per cell, accumulated over all sub-
spaces. The UCC criterion forms the objective function for a fast exchange
algorithm, yielding a UCC design.

Figure 2 illustrates the generation of cells and the UCC criterion with a
very simple example involving the choice of four molecules from 20 in a two-
dimensional descriptor space formed by variables x1 and x2. The space is
divided into four bins for each 1D descriptor (solid or dashed lines) and into
four cells in a 2 × 2 arrangement in two dimensions (solid lines). Solid circles
represent the four selected molecules, while open circles are unselected.
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Fig. 2. Cells and selected molecules in a 2D descriptor space formed by variables
x1 and x2. There are four bins for each 1D descriptor (solid or dashed lines) and four
cells in a 2 × 2 arrangement in two dimensions (solid lines). Solid and open circles
represent four molecules selected from 20 and the remaining unselected molecules,
respectively. Panels A and B show poor and good selections, respectively, according
to the UCC criterion.



Figure 2A shows a poor selection according to UCC: in 1D, the second
x1 bin and the first and last x2 bins are empty. Similarly, in 2D, the lower left
cell is empty. Correspondingly, there are overrepresented cells with more than
one molecule selected. Mathematically, the UCC criterion averages penalty
contributions of the form (n – c)2 across all cells in all subspaces, where for a
particular cell n is the number of molecules selected and c is the ideal for the
cell (1 if the cell has at least one molecule in the database falling in that cell,
0 otherwise). The design in Fig. 2A generates penalties for the empty and over-
populated 1D or 2D cells mentioned above. In contrast, the selection in Fig. 2B

has a perfect UCC score of 0 as all cells in all subspaces are occupied once.
The adaptations introduced in the fast exchange algorithm to optimize the

UCC criterion allow selection from databases of hundreds of thousands of com-
pounds. Currently, the implementation is limited to tens of continuous descrip-
tors, though discrete descriptors like fragment counts could be handled in
principle. Further work is also needed for even larger databases with hundreds
of descriptors.

2.4. Algorithms Based on Distance Metrics

Choosing a set of design points according to dissimilarity or distance mea-
sures underlies the algorithm of Kennard and Stone (22). Johnson et al. (23)

formalized two classes of distance-based designs: (1) “maximin” designs
maximize the minimum distance between design points and spread the points
maximally throughout the space of interest; and (2) “minimax” distance
designs minimize the maximum distance between candidate points and the
design points, making every candidate close to a design point and hence
the design covers the candidate space. Figure 3 illustrates these criteria. It is
seen that a maximin design (Fig. 3A) tends to push many of the chosen
points to the edge of the space, whereas a minimax design (Fig. 3B) can
often get closer to all the points by drawing in from the edges. Similar ideas
have been widely described in chemical contexts, e.g., ref. 24. As in cluster-
ing (see Subheading 2.2.), scaling of the variables is an issue. The wider use
of these methods is mainly limited by the prohibitive computational cost of
optimizing distance-based criteria.

3. Methods for Predicting Activity via Similarity

3.1. Cluster Classification

The clustering method of choosing a diverse set of points (Subheading 2.2.)

leads directly to a method of analysis of the resulting activity data. It is
assumed that molecules in the same cluster have similar chemical structure and
hence are likely to have similar activity. If a selected molecule shows activity,
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then all the members of its cluster are considered to be promising candidates
and assayed. Conversely, if a selected molecule turns out to be inactive, all
members of its cluster are thought to be inactive and discarded.

3.2. Cell-Based Analysis

Cell-based analysis (19,25) is related to cell-based design (see Subhead-

ing 2.3.). When the compounds in the initial set are assayed, the cells in the
various subspaces are scored according to the proportion of active compounds.
A new and not assayed compound can then be rated by combining the scores
of the cells to which it belongs. Cells for analysis are typically made a little
larger than those used for design, so that each cell has about 10 assayed com-
pounds and the proportion that are active is a reasonably reliable measure. This
leads to reliable scores for new compounds.

The logic of cell-based analysis parallels that of classification based on
clusters. Just as molecules in the same cluster should share similar chemical
structures and may have similar activities, molecules falling in highly scored
cells are likely to share the chemical structures crucial for activity. Unlike clus-
tering, however, cell-based scoring can assign more weight to important subsets
of variables. The method is capable of finding multiple, highly localized active
regions in chemical space. Yi et al. conducted a fractional factorial experiment
aiming at tuning the efficiency of cell-based analysis (26).
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Fig. 3. Five points (solid circles) are selected from 30 (open and solid circles) using
distance-based design criteria: (A) maximize the minimum distance between design
points; (B) minimize the maximum distance from any point to its nearest design point.



4. Results

4.1. Experimental Plan

In our study we compare two diversity-driven design methods (uniform cell
coverage and clustering), two analysis methods motivated by similarity (cell-
based analysis and cluster-classification), and two descriptor sets (BCUT and
constitutional). Thus, our study addresses some of the many questions arising
in a sequential screen: how to choose the initial screen, how to analyze the
structure–activity data, and what molecular descriptor set to use. The study is
limited to one assay and thus cannot be definitive, but it at least provides
preliminary insights and reveals some trends.

For example, we address the following questions. Does diversity generated
by one method and descriptor set correspond to diversity according to another?
How do various designs compare with random selections? In structure–activity
analysis, does one method outperform another in the identification of active
compounds?

We use assay data from a National Cancer Institute HIV/AIDS database in
our study (http://dtp.nci.nih.gov/docs/aids/aids  data.html). As descriptors, we
apply a set of six BCUT descriptors and a set of 46 constitutional descriptors
computed by the Dragon software. These descriptors could be computed for
29,374 of the compounds in the database. The assay classifies each compound
as confirmed inactive (CI), moderately active (CM), or confirmed active (CA).
We treat the data as a binary classification problem with two classes: inactive
(CI) and active (CM or CA). According to this classification, 542 (about 1.8%)
of the compounds are active.

For consistent assessment of the design and analysis methods, the database
is divided randomly into two halves: training and test data. However, the two
halves are balanced to have roughly equal numbers of active compounds. All
design methods choose 4096 compounds from the 14,688 compounds in the
training data; the remaining training compounds are discarded. All analysis
methods are compared on the same set of 14,686 test compounds. Thus, the
comparisons of the analysis method use consistent test data. Therefore, design
comparisons and analysis comparisons are independent from each other.

4.2. Diversity Design

Two designs of 4096 compounds are selected from the training data by each
of the following methods:

• At random, to serve as a benchmark.
• Using the uniform-cell-coverage (UCC) criterion in Subheading 2.3., with 4096

cells in every 1D, 2D, and 3D subspace of a descriptor set.
• Using the clustering method in Subheading 2.2., with 4096 clusters formed.
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Generating two replicate designs provides a measure of variability within a
method due to chance.

The UCC and clustering methods require a descriptor set—BCUT or
constitutional descriptors. As our implementation of UCC requires continuous
descriptors, the 46 constitutional descriptors, which include discrete counts,
were also reduced to either the first 6 or the first 20 principal components
(PCs). Thus, the UCC algorithm was applied to the BCUT descriptors and
either 6 or 20 PCs from the constitutional descriptors. In addition to these three
sets, clustering was also applied to the 46 raw constitutional descriptors. The
random design requires no descriptors.

Thus, there are eight design-method/descriptor-set combinations to compare,
as shown in the first two columns of Table 1. We use UCC to measure diversity,
as it provides a comprehensive assessment of coverage in all low-dimensional
subsets of variables. Recall that a small value of UCC is better. Furthermore, no
matter how the design is generated, UCC can be measured according to the
BCUT or constitutional descriptors (6 or 20 PCs). The results are very similar
for the two replicates, hence only the first replicate is reported.

If the BCUT descriptors are used for evaluating a design according to UCC,
the UCC design based on BCUTs is of course optimal. Surprisingly, at least to
us, however, the third column of Table 1 shows that all the remaining designs
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Table 1

Uniform-Cell-Coverage (UCC) Criterion Evaluated 
for Three Descriptor Sets and Various Designsa

UCC criterion

Descriptor set Constitutional Constitutional
Design method used for design BCUT — 6 PCs — 20 PCs

Random NA 21,659 13,729 37,852
UCC BCUT 7,058 13,105 31,575

Constitutional — 6 PCs 21,316 4,512 18,675
Constitutional — 20 PCs 19,603 7,295 10,704

Clustering BCUT 18,906 13,477 37,030
Constitutional — 6 PCs 20,017 12,778 33,470
Constitutional — 20 PCs 19,362 13,083 32,664
Constitutional 20,674 13,016 32,306

aOnly the first of two replicates is reported for each design. The UCC criterion measures the
discrepancy from the ideal of one compound per cell in all 1D, 2D, and 3D subspaces; small
values of UCC are desirable. No descriptors are required for a random design, hence the “NA”
for “not applicable” in the table.



have much larger UCC/BCUT values. In other words, a design chosen for
diversity via clustering with any descriptor set (including BCUTs) or via UCC
with a different descriptor set performs about the same as a random design in
terms of UCC/BCUT. Similar results pertain in the last two columns of Table 1

when UCC is evaluated using the constitutional descriptors. The conclusion is
that a “diverse” design turns out to be not much more diverse than a random
choice when evaluated according to a different method or descriptor set, which
we find surprising.

Table 2 gives analogous results for the percentage of 1D, 2D, and 3D cells
covered by the various designs. This measure is somewhat easier to interpret
than UCC. For example, if UCC and BCUTs are used for design, approx 85%
of the cells in BCUT space are covered. For any other design, the coverage in
BCUT space drops substantially.

Table 3 reports the number of active compounds found in the initial screen
by each design. None of the methods deviates substantially from the 76 hits
expected under random sampling. The UCC designs are highly optimized;
hence, the two replicates have many common compounds, as shown in the last
column of Table 3. The cluster-based designs choose one compound at random
from each cluster; there is much chance occurrence in this process and the two
replicates share only about the same number of compounds as random sam-
pling. Therefore, the random and cluster-based designs vary substantially and at
least two runs are required for evaluation purposes.

310 Lam and Welch

Table 2

Cell Coverage in 1D, 2D, and 3D Subspaces 
for Various Descriptor Sets and Designsa

Percentage of covered cells

Descriptor set Constitutional Constitutional
Design method used for design BCUT — 6 PCs — 20 PCs

Random NA 65.0 63.8 61.6
UCC BCUT 85.3 67.1 66.3

Constitutional — 6 PCs 67.2 84.2 75.2
Constitutional — 20 PCs 68.2 77.3 81.8

Clustering BCUT 69.9 65.3 63.6
Constitutional — 6 PCs 67.3 67.6 65.9
Constitutional — 20 PCs 68.0 67.5 67.0
Constitutional 66.5 67.3 66.1

aOnly the first replication is reported for each design. Large percentages are desirable.



4.3. Structure–Activity Analysis

Here we compare cluster classification (Subheading 3.1.) and cell-based
analysis (CBA, Subheading 3.2.) in terms of the number of hits found in the
test data.

Table 4 presents the results for CBA. Four designs from the training data are
considered, but only the BCUT descriptors are used here for analysis. CBA
prioritizes the test compounds, and those with the highest scores are selected;
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Table 3

Number of Active Compounds in the Initial Design 
of 4096 Compounds Found by Various Methodsa

Descriptor set
No. active compounds

No. common
Design method used for design Rep 1 Rep 2 compounds

Random NA 73 66 1,358
UCC BCUT 81 78 3,708

Constitutional — 6 PCs 86 87 3,511
Constitutional — 20 PCs 74 73 3,935

Clustering BCUT 59 81 1,343
Constitutional — 6 PCs 69 89 1,309
Constitutional — 20 PCs 77 71 1,399
Constitutional 59 69 1,302

aBoth replicates are reported and the number of compounds they share. Under random sam-
pling conditions, the expected number of active compounds is 76.

Table 4

Number of Active Compounds Found by Cell-Based Analysis

No. active compounds

Descriptor set 100 200
Design method used for design selected selected

Random NA 52, 42 62, 53
UCC BCUT 40, 35 47, 44

Constitutional — 6 PCs 31, 37 46, 58
Constitutional — 20 PCs 30, 31 40, 40

aReported is the number of active compounds found by CBA when 100 or 200 top scoring
compounds are selected from various designs, each replicated twice. In all cases, CBA uses the
six BCUT descriptors for analysis.



we report the number of hits found when the 100 or 200 compounds with the
highest scores in the test data are selected.

The most surprising finding in Table 4 is that random designs outperform
the diverse UCC designs, even when the BCUT descriptors are also used at
the design stage. This contradicts previous results (19,25), where it was found
that a cell-based analysis using BCUT descriptors was improved if a matching
UCC/BCUT design was used.

Table 5 provides analogous performance results for cluster-classification.
Each test compound is assigned to the nearest cluster. If the cluster is active,
i.e., the compound randomly chosen from the cluster in the training data was
active, the test compound is selected for testing. Results from clustering accord-
ing to the four possible descriptor sets are reported. With cluster classification,
the number of test compounds selected is random and not easily controlled;
31–58 active compounds are found in 218–293 selected. CBA finds 40–62
active compounds among 200 (see Table 4), suggesting that CBA performs
somewhat better in this case than cluster classification.

Young and Hawkins have analyzed the same dataset using recursive parti-
tioning and the same designs from the training data. Comparison with their
results reported in Chapter 12 suggests that both cluster classification and CBA
are competitive with recursive partitioning as predictors of active compounds.

5. Conclusions

To our surprise, the comparisons in Subheading 4.2. of diversity design
strongly suggest that a design constructed to be diverse according to one
method and descriptor set is not much more diverse than random when assessed
by a different diversity criterion. In the absence of compelling reasons for a
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Table 5

Number of Active Compounds Found 
by Cluster Classificationa

No. active compounds/
Descriptor set No. compounds selected

BCUT 44/274, 58/293
Constitutional — 6 PCs 31/218, 33/259
Constitutional — 20 PCs 54/240, 46/203
Constitutional 45/220, 45/243

aReported is the number of active compounds found versus number of
compounds selected by the cluster classification for four descriptor sets
(two replicates).



particular descriptor set and diversity measure, these results suggest that
random sampling is about equally effective.

The results in Subheading 4.3. on performance of classification methods in
identifying active compounds do not clearly favor either the BCUT or consti-
tutional descriptors. Again, these results are surprising, given that the two
descriptor sets are qualitatively different. Cell-based analysis performs slightly
better than cluster classification. Probably the most surprising result of all is
that random initial compound sets were as good as diverse sets for cell-based
analysis. Similar findings have indeed been obtained for recursive partitioning
(27). We would expect CBA to be advantaged by a matching cell-based
uniform-coverage design, however, as the design would tend to ensure that
every cell is well-populated, leading to reliable scores, during analysis.

The above findings relate to one assay and one data set built up over time,
possibly with many analogs of active compounds, and the findings might be
different for commercial molecular databases. More benchmarking along these
lines is needed.
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Using Recursive Partitioning Analysis to Evaluate
Compound Selection Methods

S. Stanley Young and Douglas M. Hawkins

Abstract

The design and analysis of a screening set for high throughput screening is complex. We
examine three statistical strategies for compound selection, random, clustering, and space-filling.
We examine two types of chemical descriptors, BCUTs and principal components of Dragon
Constitutional descriptors. Based on the predictive power of multiple tree recursive partitioning,
we reached the following tentative conclusions. Random designs appear to be as good as clus-
tering and space-filling designs. For analysis, BCUTs appear to be better than principal compo-
nents scores based upon Constitutional Descriptors. We confirm previous results that model-based
selection of compounds can lead to improved screening hit rates.

Key Words: Decision trees,; high throughput screening; initial screening sets; random recursive
partitioning; recursive partitioning; sequential screening.

1. Introduction

Many of the initial leads for drug development originate from high-throughput
screening (HTS); there, many hundreds of thousands of compounds are typically
tested for biological activity. Both the number of compounds available for screen-
ing and the number of targets for screening are increasing, so there is a need to
consider methods for making this process much more time and cost efficient.

We give a cause-and-effect, fishbone, or Ishikawa (1) diagram in Fig. 1 to
organize our conception of the early drug discovery process. The diagram is
organized in time sequence from left to right. There are a number of distinct
steps in finding lead compounds. The first two steps are the identification of a
suitable biological target and development of an assay to assess that target. We
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merely list those steps here and in Fig. 1 to put our current efforts in context.
We also list compound optimization as the next step in the process without
going into any detail on that step.

We are most interested in how to design a set of compounds for initial
screening: the design method, the design size, and the method of statistical

analysis, and concentrate on factors that might influence the success of this
operation. We would like to find a sample size that is large enough to provide
useful information, but not so large as to increase discovery costs unreason-
ably. There are various methods for selecting representative compounds from a
collection; three of these are random, clustering, and space-filling (2, hereafter
LWY). Various methods have been used to analyze HTS data; we use recursive
partitioning (RP), which has been very successful (3–5), so we will concentrate
on RP and use the results of statistical analysis and prediction of holdout
compounds to assess the selection method.

One approach to drug discovery is to screen sequentially, whereby a rela-
tively small set of compounds is selected and assayed and the results are ana-
lyzed statistically to produce a mathematical model (6,7). The model is used
to predict activity and also to identify additional compounds for screening—
see Fig. 2. The new compound bioassay results are added to the results for the
initial set and a new model is fitted. The process iterates, with new interesting
candidate compounds being added. The focus of this chapter is to evaluate
how the selection of a training set of compounds influences model building,
and how the success of model building points to a good method for selecting
training compounds. It is presumed, but not known, that the size and quality
of the initial screening set will affect the subsequent model building and,
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Fig. 1. Fishbone diagram of early drug discovery.



hence, the efficiency of finding active compounds. A good review of compu-
tational methods for early drug discovery is given by Xu and Hager (8).

2. Single Tree

RP (9–11) is a family of data analysis techniques that works by dividing
(partitioning) a dataset into smaller, disjoint sets. These groups are then ana-
lyzed as if they were an original dataset and are, in turn, divided in subgroups
(Fig. 3). There are three issues involved in performing RP: how to form
groups, how to decide which grouping to use for splitting, and how to stop. As
a division takes place, there is a grouping or segmentation step. Each predic-
tor variable is converted into a small number of groups or classes. If the pre-
dictor is nominal, then groups are amalgamated by grouping classes with
similar response. If the predictor is continuous, then it is cut into segments
such that the within-segment variances are minimized subject to the constraint
of the number of groups under consideration. It is instructive to consider an
example tree (Fig. 4). The compounds are rated active (coded 1) or inactive
(coded 0), and the mean hit rate is low, 0.020, or 2%, a rate quite typical in
drug discovery. The algorithm examines six continuous BCUT variables
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Fig. 2. Drug discovery paradigm. [Reproduced with permission from Current Drugs

and Young, S. S., Lam, R. L. H., and Welch, W. J. (2002) Initial compound selection
for sequential screening. Current Opinion in Drug Discovery Development 5, 422–427.
© 2002 PharmaPress Ltd.]



(12,13), and splits using BCUT4 into four segments. Most of the compounds,
3191, are in the first segment. Only 1.2% of these compounds are active. The
next two segments contain more active compounds. They can be split and will
be discussed in turn. The rightmost segment also contains mostly inactive
compounds; 2% are active. Node names are given in the lower left hand corner
of each node. The topmost node is the parent node and the nodes without
daughter nodes are called terminal leaves or terminal nodes. The mean, u=,
and standard deviation, s=, of the objects in a node are given.

The dendrogram lists a number of p-values for each node that is split. These
p-values can be used to judge the veracity of a split. Keep in mind that the
algorithm is examining a very large number of potential splits. Because there is
such a thorough search over so many possibilities, there needs to be adjust-
ment in the statistics used for splitting. The first p-value given, P=, is the “raw”
p-value. This is the p-value for the t-test, F-test, or chi-square test for the split,
computed as if this split was the only preplanned comparison. The chi-squared
value of the four-way split of this “root” node is 973 with three degrees of
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Fig. 3. Recursive partitioning. Recursive partitioning divides compounds into
progressively smaller groups using specific features. The splitting features are selected
using the potency of the compounds.

Fig. 4. (see facing page) Example tree. An RP tree was built using compounds
selected by a space-filling design; BCUT descriptors were used for the analysis.
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freedom. If we knew before we collected the dataset that we would split the
variable BCUT4 into these four groups and got this chi-squared, the p value
would be 1.82 × 10–25. However, this split was actually arrived at by combing
through BCUT4 to pick the most significant cutpoints. Adjusting the p value to
reflect this multiple testing brings it down to ap = 2.48 × 10–14. We see that ap,
although 1011 times larger than p, is still highly statistically significant. There
is one more adjustment to the p-value given in this node. After segmenta-
tion, we still need to take into account the number of variables, in this case
six. Here we do a simple Bonferroni adjustment, we multiply ap by six to get
bp. It is the bp that is used to select the split variable and segmentation, where
we select the split with the smallest bp.

We now turn our attention to node N2 with 145 compounds and 7% active.
Here the p-value, bp = 7 × 10–3, looks good for making a split. Illustrating an
additional option for split evaluation, we report two additional p-values
obtained by resampling. Resampling gives an independent method of comput-
ing p-values (14). In this case the observations in node N are placed at random
into the four daughter nodes while maintaining the sample sizes of the daugh-
ter nodes. This is done many times and each time the test statistic is computed.
By looking at the placement of the original statistic in the distribution of the
resampling-based statistics, we can judge the veracity of the p-value computed
from theory. The agreement in p-values is good. That the resampling p value is
appreciably lower than the Bonferroni is an expected reflection of the fact that
the Bonferroni p value is conservative whereas the resampling value is not.
Both p-values, 7 × 10–3 and 2 × 10– 4, are statistically highly significant,
supporting making the indicated split. Looking at N22, we see that 18% of
the 56 compounds are active. Node N31 also looks good with 81% of the
21 compounds active.

It is useful to examine the predictions from a RP analysis. The original NCI
HIV dataset was divided into two groups with the first used for modeling. We
now cascade the second group down the tree constructed from the 4096 com-
pounds selected by the space-filling algorithm. Compounds are sent down the
tree following the values of their BCUTs and the dictates of the original tree.
For example, a compound with BCUT4=1.77 and BCUT6=0.43 will go into
node N31. These predictions for the holdout compounds are given in Fig. 5; the
predictions are in good qualitative agreement with the results of the original
calibration dataset in that the nodes predicted to have activity well above or
well below average do so, although the actual size of the enhancement or
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Fig. 5. (see facing page) Holdout set in SF/BCUT design tree.
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reduction is generally smaller in the holdout data. This is a “regression to the
mean” effect, and is also expected.

The primary result of a recursive partitioning analysis is a tree-like model or
dendrogram. All the data are in the top or parent node and the terminal nodes
are a disjoint partitioning of the data. The rules that trace along the arms of a
tree are important predictor variables. Recursive partitioning has many attrac-
tive qualities. One of the most useful features of a tree is the ability to convey
complex relationships easily. From a statistical point of view, first and fore-
most, the technique is free of many of the restrictive assumptions associated
with standard linear regression models. In a standard linear model, it is
assumed a single model fits the data. In RP analyses, in stark contrast, each
node (subgroup) is analyzed independently of the other nodes; thus, no single
model is fit to the entire dataset. If there are multiple mechanisms, then they
may be separated out in the different arms of the tree. This flexibility allows
models that would be difficult to construct in a standard linear model. Second,
in a standard linear model we often make strong distributional assumptions
about the nature of the error, and these assumptions must be checked to ensure
the validity of our inference. In recursive partitioning, it is possible to use
robust methods, freeing us of strong distributional assumptions. We repeat, the
result of a recursive partitioning analysis is the dendrogram, which is easily
read and understood by non-statisticians. Thus, recursive partitioning is gaining
ascendancy in the analysis of large, complex datasets.

3. A Forest of Trees

Recursive partitioning is a feature selection method. As such it shares the
deficiencies of other feature selection methods such as stepwise or subset
regression. The major deficiencies are as follows:

1. It provides just a single answer, whereas there may be several substantively
different models giving roughly equally good results.

2. The tree selected is not necessarily the best tree, even among trees of the same
“complexity,” the same number of terminal nodes.

3. It can be confounded by highly interactive variables, variables that are useless on
their own, but show synergy when used together.

The solution to these problems lies in creating, not a single tree, but a forest
of trees (see Fig. 6); the reasoning is if one tree is good, then a forest should be
even better. Random recursive partitioning (RRP) incorporates some random-
ness into the splitting procedure in place of the conventional method’s deter-
ministic approach so that running the analysis many times will generate a
number of different trees.
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There are two basic ways of introducing randomness into the tree
generation—you can put a random element into the data and leave the split
selection step fixed; or you can put a random element into the split selection
step and leave the data fixed. Bootstrapping uses the first of these approaches.
You create many new datasets by randomly sampling the original data set
with replacement. So, for example, if a dataset had 10 cases numbered
1 through 10, a bootstrap sample might consist of 3 copies of case 4, 2 each
of cases 3 and 10, and 1 each of cases 1, 7, 8. Putting many such randomly
sampled datasets through the “greedy, pick-the-best-split” algorithm will
usually give a variety of trees.

The second approach leaves the data fixed, and introduces a random ele-
ment into the selection of the splitting variable. So if, for example, predictors
x29, x47, and x82 were the only significant splitters and had multiplicity-
adjusted p values of say 2 × 10–7, 5 × 10–8, and 3 × 10–3, the conventional
greedy algorithm would pick x47 as the splitting variable as it was the most
significant. The RRP procedure would pick one of these three at random.
Repeating the analysis with fresh random choices would then lead to a forest of
trees; different random choices will create different trees.

Once we have generated the forest of trees, the next question is what to do
with the information it contains. To explore this, recall that the analysis has two
possible purposes—prediction and feature selection. Prediction is the problem
that arises if we have a new compound whose activity is unknown and wish to
predict its activity on the basis of the relationships seen in the calibration
sample. A good way to use the forest to make such a prediction is “bagging.”
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You run the unknown compound through each of the trees in the forest and
average the predictions that the different trees make for it. The term “bagging”
is a contraction of “bootstrap aggregating,” and so it would seem to apply only
to forests created by bootstrapping, but in fact bagging is effective also with
RRP forests.

The second potential purpose of an RP analysis is feature selection—trying
to identify which predictors are strongly associated with high activity. This is
a standard use of RP in sequential screening, where you will use the appar-
ently important features as a guide to locate or synthesize new compounds that
contain the features associated with high activity and avoid those associated
with low. Feature selection is not done by averaging across the forest. Rather it
consists of looking at the structure of the different trees. Each different tree
morphology gives an indicator of a different set of features that are associated
with differences in activity. Common findings among the different trees are the
following:

• Alternative models. In complex high-dimensional data sets there will commonly be
a number of very different-looking models all of which describe the data about
equally well. Scanning the forest uncovers these alternative models. The alternative
models can look different but be relatively trivial, based on correlated variables. Or
they can point to multiple mechanisms.

• Substitutability—if two predictors are seen often, but never in the same tree, then
this is an indication that they are mutually substitutable. “Substitutable” here is not
meant to imply anything about structural chemistry, but is a purely descriptive
term. If all the compounds in a library contain both feature A and feature B, or
neither feature A nor feature B, and if feature A causes biological activity, then
analysis of the data could wrongly suggest that feature B was important. The error
in this will be discovered when the random forest shows that A and B are substi-
tutable. This situation would suggest finding or synthesizing compounds with A
alone or B alone to decouple the features.

• Synergy is the converse of this, where all trees contain either feature A and fea-
ture B; or neither feature A nor feature B. This implies that there is a synergistic
interaction between the two features. Some more detail of how to read the forest
to find synergies and variables that substitute is given in Hawkins and Musser
(15), who give some formal approaches for measuring the similarity of trees in the
forest and analyzing the dependencies between pairs of features.

• In any recursive partitioning technique, power drops dramatically as we split our
data into smaller and smaller groups so that, except in huge samples, the final
model selected understates the actual number of useful predictors. By giving all
significant predictors the opportunity to be used for splitting, RRP makes it easy
to find a more complete set of relevant variables.

We use FIRMplus® for this analysis (16).
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Standard RP uses a greedy algorithm to build its trees and, as such, it is not
guaranteed to find a globally “optimal” tree. RRP, if run long enough, should
be able to find the optimal tree. Clearly, there is ample justification for con-
sidering RRP. Having multiple trees does present a problem: how to interpret

the multitude of trees. Comparing two trees is relatively easy; we can view two
trees or dendrograms at the same time and make simple visual comparisons to
answer basic questions: Do the trees use the same number of predictors? Do the
trees have the same number of terminal nodes? However, comparing more trees
is much harder: even answering basic questions, such as how many terminal
nodes each tree has, becomes cumbersome to do by hand; answering complex
questions that require pairwise comparisons between trees requires tools
beyond paper and pencil. Thus, creating multiple trees is easy, but interpreting
them is not.

There is extensive literature showing that multiple trees generally give better
predictions than single trees (17).

4. NCI Data

The NCI maintains databases for research on the treatment of HIV/AIDS.
We use a NCI database in this paper: dtp.nci.nih.gov/docs/aids/aids_data

5. Experimental Plan

We are interested in the question of how the selection of compounds, the
design, might affect the predictive power of the analysis. Compounds can be
selected at random or they can be selected based on some statistical algorithm,
space-filling or clustering. The statistical selection method operates on numer-
ical descriptions of the compounds and here we use four sets of descriptors for
the design selection process. BCUT descriptors (12,13) are becoming popular
and have been shown to effectively capture chemical information (18–20). We
use six BCUT descriptors. We also use either 6 or 20 principal components
scores, PC6 or PC20, based upon the so-called Constitutional Descriptors
computed by the Dragon software (21). We have a total of eight experimental
designs and these are given in the margin of Table 1. Lam and Welch computed
these designs and they are described in Chapter 11. For each design, 4096
compounds are selected from the 14,688 compounds in the training set.

We decided to examine only one sample size for the design, 4096. Abt et al.
(6) examined sample size, among other factors, when studying sequential
screening. Yi et al. (20) also used a sample size of 4096 when studying the
optimization of a statistical analysis method for this dataset. Both studies indi-
cated that relatively small sample sizes of 5000 to 10,000 compounds could
be used to produce useful trees. Clearly, large sample sizes should lead to better
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models, but as we are interested in reducing the cost of drug discovery, we
chose a number of compounds for the training set near the lower bound that
should be effective in producing usable models.

There is a subtle point. The original dataset is divided into training and test-
ing sets. The designs are selected from the training set and the tree model is
based on the compounds in the design from the training set. We are going to
test the design quality by the quality of the model predictions in the testing
set. We are not actually using the training compounds that are not in the design.
There is a potential problem in selecting the design from the whole dataset and
using the remaining compounds as the test set (as is often done in this type of
study). The space-filling and clustering design methods are constructed to cover
the space as uniformly as possible so they may select most of the thinly popu-
lated areas. In these sparse regions, there may be actives. When the analysis and
prediction is done, there may be no unusual compounds remaining in the test-
ing set. We have chosen to attempt to remove this potential bias by dividing the
compounds from the beginning into the training and testing sets.

We give a two-way plot of randomly selected and space-filling selected
compounds, BCUT4 vs BCUT3, in Fig. 7. It is clear that the space-filling
algorithm of LWY selects compounds more uniformly from the collection.
The compound density is spread out more.
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Table 1

Statistical Analysisa

Design Design
Analysis descriptors

selection descriptors BCUT C6 C20

Random NA Rep1 0.395 86 0.111 99 0.282 85
Rep2 0.186 97 0.270 89 0.274 95

Clustering Const 0.176 148 0.155 187 0.049 486
BCUT 0.183 109 0.042 1707 0.042 1707
C6 0.234 94 0.018 112 0.084 687
C20 0.398 93 0.085 686 0.085 686

Space-filling BCUT 0.183 109 0.008 245 0.030 198
C6 0.245 98 0.245 94 0.235 98
C20 0.208 96 0.230 100 0.128 94

aThree statistical methods were used for design selection—random, clustering and space-fill-
ing. For space-filling and clustering there were three sets of chemical descriptors used, BCUTs,
and either 6 or 20 principal component scores computed from Constitutional Descriptors. For
clustering we also used 46 individual Constitutional Descriptors. The random selection was repli-
cated twice. We give the fraction active for multiple trees using three different types of descrip-
tors for the N compounds predicted to be most active.
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6. Analysis Results

The basic results of these analyses are presented in Table 1. On the left
margin are the design methods and the descriptors used in the design phase.
Note that it is not necessary to use descriptors with a random design so the
design descriptors are given as not applicable (NA). For the space-filling design
of LWY we used BCUTs, and 6 and 20 principal components from the Dragon
Constitutional Descriptors. For clustering we added a clustering design using
46 individual Constitutional Descriptors. Computational considerations limit our
space-filling code to 10 dimensions, so we did not attempt a space-filling design
with the Constitutional Descriptors. At the top of the table we give the descrip-
tors used in the RRP analysis. BCUTs have been used successfully in QSAR
analysis (18–20), so we expected BCUTs to be effective. We know less about
the effectiveness of the Constitutional Descriptors. Simple descriptors, like the
Constitutional Descriptors, have been used successfully (22). We did not know
if 20 principal component scores would be necessary, or if 6 would be suffi-
cient. This question is more complex than many principal component users
suppose it to be. The principal components are pure linear functions of the pre-
dictors. While it is true that by using all components you should be able to
duplicate any model accuracy got using the original variables, it is not neces-
sarily the case that the predictive principal components will be those that explain
a high proportion of the variance of the original predictors. In other words, even
if a few principal components explain a high proportion of variance, they will
not necessarily capture any of the information important for predicting biologi-
cal activity. In the context of our immediate problem, this means that we should
decide between using 6 and using 20 principal components on the basis of the
quality of the models fitted using these components, and not on the basis of
their proportion of variance explained.

Given a design set of compounds, an analysis can be run based upon any
descriptors. We use three sets of descriptors, BCUT, PC6, or PC20. Consider the
body of Table 1 where we tabulate the results for the analysis of each design for
each of the three sets of descriptors; this table summarizes the results for
24 different multiple tree statistical analyses. For each design/descriptor combi-
nation we give two numbers: the fraction of the compounds that are active and
the number of compounds for which this fraction is computed. Note that each
statistical model will make a prediction for each compound in the testing dataset.
The predicted compounds are ranked by their predicted values. Because trees
make predictions based on the average of the compounds in a terminal node,
these predictions are a step function. We selected at the step that made predic-
tions for approx 100 compounds. To give a sense of the variability of this
process, we ran two replications of the random selection, Rep1 and Rep2.
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We computed an analysis of variance over Table 1, followed by tests of spe-
cific effects. Two results were statistically significant. Random selection of
compounds was better than cluster or space-filling selection. BCUT descriptors
were better for analysis than either of the principal component descriptor sets.

7. Discussion

By and large, the trees were valid in that the predicted activities from trees
agreed with the actual mean activities of the corresponding nodes in the hold-
out samples. There is, and is expected to be, some “regression to the mean,” in
that where the calibration tree had a node predicting extremely high or
extremely low activity, the observed means of the holdout samples will tend
toward the average. This is not a problem, but is a reminder that the dendro-
gram can identify very active or very inactive groups of compounds, but tends
to overstate their unusualness. Even so, the promising nodes uncovered in the
calibration have a hit rate for the hold out sample that is about 12 times the
background hit rate of 2%. This improved hit rate is in line with previous
results (20,23) and others.

There were however some cases where the tree on the hold out set did not
confirm the original tree; compounds in nodes predicted to be active were not.
As the holdout set was bigger, approx 14K vs approx 4K in the training set,
these discrepancies are not likely to be the result of random variability in the
holdout data, and they need some further investigation.

It is worth making some general comments on chemical databases. Chemi-
cals are not typically made for random reasons; chemicals are made for some
purpose. In particular, once a good chemical is identified, it is common practice
to make many variants of that chemical, making slight changes in an attempt to
make a better molecule. When screeners assemble chemical databases, they will
often augment their collection with compounds similar to active compounds in
their current collection, “analog by catalog,” as it is much cheaper to buy a
ready-made compound than to make one from scratch. All of this maneuvering
with compounds and databases improves the chances of useful discovery, but
means that most chemical databases cannot be viewed as “a random collection
of molecules.” Most chemical collections will have many subsets of compounds
that are very similar to one another, for example, numerous steroids are in cor-
porate collections. So, if you select a random set of compounds as an initial
screening set, there is a good chance that there will be groups of similar com-
pounds in the set. There is a tension between diversity and redundancy; to cover
more chemical space, you want diversity, but to statistically analyze screening
data you need feature redundancy in the screened set to give the statistical algo-
rithms replication. One basic test that is used is the t-test and that compares
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compounds that are grouped by the presence and absence of a specific chemical
feature. If all the compounds are completely unique, then all the comparisons
will be one compound against the rest and we will not be using the power inher-
ent in averaging. The space-filling statistical algorithm used for selecting the
initial screening set has the effect of spreading the selected compounds uni-
formly through the chemical space and there is no specific attention to building
redundancy into the set. Only if enough compounds are selected, will they be
close enough to one another to provide this redundancy. It is an open question
as to how densely the chemical space needs to be covered.

The nature of the chemical collections also makes it difficult to measure the
performance of specific screening strategies. We would like to say that a suc-
cessful screening strategy validates the entire process—the molecular descrip-
tors, the initial screening set selection method, and the statistical algorithm
used for model building. In particular, we would like the features associated
with activity to have chemical meaning and be useful in finding other active
compounds that have those specific features. As chemical databases are filled
with close analogs, what we may be doing is very fancy analog finding. Analog
finding can be done with other methods. There is some evidence that statistical
model building is doing something beyond analog finding in that the hit rates
for statistical models are typically better than gestalt analog finding. Usually
statistical model–based selection is better than gestalt analog finding, approx
10 times random selection versus approx 5 times, but this would need to be
established for each situation of descriptor type and analysis method.

Building predictive models when the hit rate is low is a challenge; there is
relatively little information in the data to guide the model building process.
Using a continuous response measure should be better than a binomial
response. We examined the quality of the model building process in the fol-
lowing way. We defined a good node as one with a hit rate of 10% or greater,
approx 5 times the hit rate in the dataset. For each of the eight design methods
(nine designs as we have two designs for the random selection), we computed
the average number of good nodes over the three types of analysis descriptors.
We note a trend toward more good nodes if the hit rate in the training set is
higher; see Fig. 8.

The hope was that having a good design would make for a better model.
We expected that the design quality would be in the order random, clustering,
space-filling. Basically none of the designs beat a random design. We suspect
two factors contribute to the success of random designs: The random design has
better redundancy, and the number of compounds selected, 4096, may not be
large enough to densely cover chemical space. The NCI dataset probably has
redundancy of actives in that it was augmented over time with analogs to active
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compounds so the random design has a better chance of dense coverage in
these active regions. Random versus rational selection of compounds has been
discussed (24).
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Designing Combinatorial Libraries Optimized
on Multiple Objectives

Valerie J. Gillet

Abstract

The recent emphasis in combinatorial library design has shifted from the design of very
large diverse libraries to the design of smaller more focused libraries. Typically the aim is to
incorporate as much knowledge into the design as possible. This knowledge may relate to the
target protein itself or may be derived from known active and inactive compounds. Other fac-
tors should also be taken into account, such as the cost of the library and the physicochemical
properties of the compounds that are contained within the library. Thus, library design is a multi-
objective optimization problem. Most approaches to optimizing multiple objectives are based on
aggregation methods whereby the objectives are assigned relative weights and are combined into
a single fitness function. A more recent approach involves the use of a Multiobjective Genetic
Algorithm in which the individual objectives are handled independently without the need to
assign weights. The result is a family of solutions each of which represents a different com-
promise in the objectives. Thus, the library designer is able to make an informed choice on an
appropriate compromise solution.

Key Words: Combinatorial libraries; combinatorial synthesis; computational filtering; drug-
like; library enumeration; genetic algorithms; MOGA; molecular descriptors; Multiobjective
Genetic Algorithm; multiobjective optimization; simulated annealing.

1. Introduction

The last decade has seen a shift from the traditional approach to chemical
synthesis, based on one compound at a time, to the use of robotics allowing the
synthesis of large numbers of compounds in parallel, in what are known as
combinatorial libraries. The related technique of high-throughput screening
(HTS) allows tens to hundreds of thousands of compounds to be tested for bio-
logical activity in a single day (1). Thus, the throughput of the synthesis and
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test cycle has increased enormously. However, despite the increase in the
number of compounds that can be handled, they still represent a very small
fraction of the number of drug-like compounds that could potentially be made;
for example, it has been estimated that as many as 1040 such compounds could
exist (2). Thus, it is clear that there is a need to be selective about the com-
pounds that are made in combinatorial libraries (3).

In the early days of combinatorial synthesis the emphasis was on synthesizing
as many diverse compounds as possible on the assumption that maximizing
diversity would maximize the coverage of different types of biological activity.
However, these early libraries gave disappointing results: they had lower hit rates
than expected and the hits that were found tended to have unfavorable physico-
chemical properties to provide good starting points for lead discovery (4).

It is now clear that if the new technologies are to be effective for drug dis-
covery, the libraries need to be designed very carefully. Consequently, the
emphasis has shifted away from large diverse libraries to the design of smaller
libraries that incorporate as much knowledge about the target as is available. At
one extreme, the three-dimensional (3D) structure of the biological target may
be known, in which case structure-based methods such as docking or de novo

design can be used in an attempt to design compounds that will fit into the
binding site (5,6). It is still the case, however, that in most drug-discovery pro-
grams the 3D structure of the target is unknown. When several actives and
inactives are known, it may be possible to generate a model of activity in the
form of a quantitative-structure activity relationship (QSAR), the model could
then be used to design libraries consisting of compounds with high predicted
activities (7). Other approaches are based on similarity methods (8) where com-
pounds are selected based on their 2D or 3D similarity to one or more known
active compounds. Diverse libraries are appropriate when they are to be
screened against a range of biological targets or when little is known about the
target of interest. As a general rule, the amount of diversity required is inversely
related to the amount of information that is available about the target.

Whether the primary aim is to design diverse or focused libraries, or indeed
to provide a balance between the two, many other criteria should also be taken
into account. For example, the compounds should possess appropriate physico-
chemical properties to enable them to be progressed through the drug-discovery
pipeline (9). In addition, the reactants should be readily available, for example,
already present in in-house collections or cheap to purchase with acceptable
delivery times. Thus, library design is increasingly being treated as a multi-
objective optimization problem that requires the simultaneous optimization of
several criteria. In common with most real world optimization problems, the
criteria are often in conflict, for example, optimizing diversity simultaneously
with drug-like properties, and thus a compromise in the objectives is usually
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sought. This chapter discusses approaches for the optimization of combinatorial
libraries based on multiple objectives.

2. Methods

2.1. Reactant- versus Product-Based Designs

A simple two component combinatorial synthesis is shown in Fig. 1. The
reaction involves the coupling of α-bromoketones and thioureas. Multiple prod-
ucts (2-aminothiazoles) can be synthesized in parallel by selecting different
examples of each of the components, or reactants. The positions of variability
in the reactants are indicated by the R groups.

In general, there are many more examples of the reactants available than
can be handled in practice and thus selection methods must be used. For exam-
ple, when designing peptides: there are 20 amino acids and hence 20 × 20 or
400 dipeptides; 8000 tripeptides; 32K tetrapeptides, and so on. When designing
libraries of small drug-like compounds, in general there could be tens or even
hundreds of possible reactants available for each position of variability. Thus,
even when libraries are limited to a single reaction scheme, the numbers of
compounds that could potentially be made can be very large.

Library design methods can be divided into reactant-based or product-based
design. In reactant-based design, reactants are chosen without consideration of
the products that will result. For example, diverse subsets of reactants are
selected in the hope they will give rise to a diverse library of products. In
product-based design, the selection of reactants is determined by analyzing the
products that will be produced.

Reactant-based design is computationally less demanding than product-based
design, since there are fewer molecules to consider. Consider a two-component
reaction where there are 100 examples of each type of reactant. Now assume
that the aim is to design a library of 100 products with configuration 10 × 10, i.e.,
10 examples of each reactant. There are approx 1013 different possible subsets of
size 10 contained within 100 compounds, as determined by the equation below:
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Examining this number of subsets is clearly not feasible. Hence, a number of
computationally efficient, albeit approximate, methods have been devised for
performing reactant-based selection (10). Product-based design, however, is
much more computationally demanding and would require the analysis of
100 × 100 potential products (i.e., 104 molecules). Despite the increased com-
putational cost of product-based design, it has been shown that it can result
in better optimized libraries especially when the aim is to optimize library-
based properties such as diversity (11,12). Product-based design is even more
appropriate for targeted or focused designs where it is the properties of the
product molecules themselves that are to be optimized, for example, similarity
to a known active compound.

Product-based approaches can be divided into those that take the combina-
torial constraint into account such that each reactant in one pool appears in a
product with every reactant from every other reactant pool, and those that
merely pick product molecules without consideration of the synthetic con-
straint. The latter approach is often referred to as cherry-picking and is syn-
thetically inefficient as far as combinatorial synthesis is concerned. In this
chapter the emphasis is on product-based library design methods that take the
combinatorial constraint into account.

2.2. Filtering

The first step in library design is to identify potential lists of reactants. This
can be done by searching databases of available compounds, for example,
in-house databases or databases of compounds that are available for purchase such
as the Available Chemicals Directory (13). The next step is to filter the reactant
lists. This is a very important step because it can vastly reduce the computa-
tional complexity of the subsequent library design step. The aim is to remove
reactants that could not possibly lead to “good” products. A variety of filtering
techniques can be used. For example, removal of compounds that contain func-
tionality that will interfere with the synthesis or that contain functional groups
known to be toxic. In addition, thresholds on various physicochemical proper-
ties could also be applied, for example, removal of compounds with more than
eight rotatable bonds or molecular weights greater than 300, because com-
pounds with these properties are not generally considered as drug-like.

2.3. Library Enumeration

Enumeration is the computational equivalent of carrying out a combinatorial
synthesis. The result is a virtual library of product molecules that can then be
analyzed using a library design program to select compounds of interest. Two
different approaches to library enumeration have been developed: fragment
marking and the reaction-transform approach (14).
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Fragment marking involves representing a library by a central core (for
example, a benzodiazepine ring) that is common to all compounds in the virtual
library with one or more R groups to indicate the positions of variability. The
library is enumerated by creating bonds between the core template and the
reactants. The reactant lists must first be “clipped,” for example, the hydoxyl
group must be removed from a carboxylic acid selected to be combined with an
amine group in the formation of an amide bond. Fragment-marking approaches
usually require that there is a central core template that can be defined and that
fragment clipping can be automated; however, this may not always possible, for
example, for a Diels–Alder reaction.

The reaction-transform approach is based on a computer-readable representa-
tion of the reaction mechanism that describes the transformation of the atoms in
the reactants to the product. The transform is applied to the input reactants them-
selves to generate the products. The reaction-transform approach thus more
closely mimics the actual synthetic process; however, it can be difficult to con-
struct efficient transforms. This is the approach used in the ADEPT software (14).

2.4. Design Criteria

As discussed in Subheading 1., the primary design criterion is often based
on either similarity or diversity. Quantifying these measures requires that the
compounds are represented by numerical descriptors that enable pairwise mol-
ecular similarities or distances to be calculated or that allow the definition of a
multidimensional property space in which the molecules can be placed.

A variety of different descriptors have been used in library design (15,16).
They can be divided into descriptors that represent whole molecule properties;
descriptors that can be calculated from the 2D graph representations of mole-
cules including topological indices and 2D fingerprints; and descriptors calcu-
lated from 3D representations of molecules. Whole molecule properties include
physicochemical properties such as molecular weight, molar refractivity, and cal-
culated logP. Topological indices are single-valued descriptors that characterize
structures according to their size, degree of branching, and overall shape. Many
different topological indices have been devised and they are often used together
with a molecule being represented by a vector of real numbers. 2D fingerprints
are binary vectors and can be divided into fragment-based methods and path-
based methods. In the fragment-based methods, each bit in the vector corresponds
to a particular substructural fragment and is set to “on” or “off” to indicate the
presence or absence of the substructure within a molecule. In the path-based
methods, all paths up to a given length in the molecule are determined and each
path is hashed to a small number of bits that are then set to “on.”

The most commonly used 3D descriptors are pharmacophore keys, which are
usually represented as binary vectors (17). The starting point when generating a
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pharmacophore key is a 3D conformation of a molecule that is represented by its
pharmacophoric features, that is, its atoms or groups of atoms that can form inter-
actions with a receptor such as hydrogen bond donors, acceptors, aromatic
centres, anions, and cations. In three-point pharmacophore keys, each bit in the
vector represents three pharmacophoric features together with a set of distance
ranges that define how the features are positioned in 3D space. As with 2D
fragment-based fingerprints, a bit is set to “on” to indicate the presence of a
pharmacophore triplet within a molecule, otherwise it is set to “off.”

When molecules are represented by high-dimensional descriptors such as
2D fingerprints or several hundred topological indices, then the diversity of a
library of compounds is usually calculated using a function based on the pair-
wise (dis)similarities of the molecules. Pairwise similarity can be quantified
using a similarity or distance coefficient. The Tanimoto coefficient is most often
used with binary fingerprints and is given by the formula below:

where there are a bits set to “on” in molecule A, b bits set to “on” in molecule
B, and c “on” bits common to both A and B. When molecules are represented
by real-numbered vectors, then the comparison is usually based on Euclidean
distance. Various diversity functions have been suggested for library design
including the average nearest-neighbor distance and the sum of pairwise
dissimilarities (18).

When molecules are represented by low-dimensional descriptors, then the
descriptors can be used to define the axes of a chemistry space. Typical descrip-
tors are a small number of physicochemical properties or the principal compo-
nents generated by the application of principal components analysis to
high-dimensional descriptors. Each descriptor then defines one axis and is
divided into a series of bins. The combination of all bins over all descriptors
defines a set of cells over a chemistry space. Molecules can be mapped onto the
cells according to their physicochemical properties. A diverse library is one
that occupies a large number of cells in the space, whereas a focused library is
one where the molecules occupy a small localized region of the space.

The optimization of physicochemical properties can be dealt with by apply-
ing simple thresholds such as Lipinski’s rule-of-five (19). The rule states that if
a compound violates any two of the following rules it is predicted to have poor
oral absorption:

• Molecular weight > 500
• logP > 5
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• More than five hydrogen bond donors (defined as the sum of OH and NH groups)
• More than ten hydrogen bond acceptors (defined as the number of N and O atoms)

Alternatively, they can be optimized by matching the profile of properties in
the library to some collection of known drug-like molecules. The latter
method will typically allow some compounds to be present in the library that
violate the more stringent rules. Several groups have developed more sophis-
ticated methods for predicting drug-likeness (20) and, more recently, lead-
likeness (because it has been recognized that lead compounds tend to be less
complex than drugs) (21,22).

2.5. Optimization Methods

The computational complexity of product-based library design has led to the
development of programs that are based on optimization techniques such as
genetic algorithms and simulated annealing. The methods require the defini-
tion of a function that is able to measure the degree to which a potential solu-
tion meets the library design criteria. The optimization technique then attempts
to maximize (or minimize) the given function. Typically, many potential solu-
tions are explored during the operation of the algorithm and thus the function
must be relatively rapid to calculate.

Several groups have approached multiobjective library design by combin-
ing individual objectives into a single combined fitness function. This is a
widely used approach to multiojective optimization and effectively reduces a
multiobjective optimization problem to one of optimizing a single objective.

This approach has been adopted in the SELECT library design program (23).
SELECT is based on a GA and aims to identify a combinatorial subset of
predetermined size and configuration, from within a virtual, fully enumer-
ated library. The chromosome representation in SELECT encodes potential
subsets as the lists of reactants from which the library will be synthesized.
Thus, the chromosome is an integer string that is partitioned according to the
number of positions of variability in the library. The size of a partition is
determined by the number of reactants to be selected. Thus, when configured
to select an nA × nB subset from a virtual library of size NA × NB, the chro-
mosome consist of nA + nB integers. Each integer corresponds to one of the
possible reactants available. The standard genetic operators of crossover and
mutation are used with the special condition that the same reactant must not
appear more than once in a partition.

SELECT has been designed to allow optimization of a variety of different
objectives. Diversity (and similarity) is optimized using functions either based
on pairwise dissimilarities and fingerprints or using cell-based measures. The
physicochemical properties of libraries are optimized by minimizing the dif-
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ference in the distribution of the library being designed and some reference
distribution, such as that seen in the World Drug Index (WDI) (24). Cost is
optimized simply by minimizing the sum of the cost of the reactants. Each
objective is usually standardized to be in the range 0 to 1 and user-defined
weights are applied prior to summing the contributions into a weighted-sum
fitness function as show below:

f (n) = w1.diversity + w2.cost + w3.property1 + w4.property2 + . . .

The HARPick program also tackles multiobjective library design by com-
bining individual objectives, via weights, into a single function. HARPick uses
Monte Carlo simulated annealing as the optimization technique (25) with
library design being based on pharmacophore keys. A library is represented by
an ensemble pharmacophore key, which is the union of the individual molecule
keys. In HARPick the pharmacophore keys are integer vectors that indicate the
frequency of occurrence of each three-point pharmacophore. The fitness func-
tion is composed of several individual functions: diversity is based on the
number of unique pharmacophore triplets covered by the library and is tuned to
force molecules to occupy relative voids (underrepresented three-point phar-
macophores) as well as absolute voids; libraries can be optimized to fill voids
underrepresented in an existing library; a function based on the number of
conformations per molecule is used to control molecular flexibility; various
properties are calculated that are crude measures of molecular shape with the
aim of producing an even distribution of shapes in the library; and finally a
count of the total number of pharmacophores present is used to limit the inclu-
sion of promiscuous molecules (that is, molecules that contain a large number
of pharmacophore triplets). As in the SELECT program, the individual func-
tions are combined into a single fitness function via user-defined weights.

The method has subsequently been extended to include four-point pharma-
cophores and to allow pharmacophoric measures to be combined with 3D BCUT
descriptors (26). BCUT descriptors were designed to encode atomic properties
relevant to intermolecular interactions. They are calculated from a matrix rep-
resentation of a molecule’s connection table where the diagonals of the matrix
represent various atomic properties such as atomic charge, atomic polarizability,
and atomic hydrogen bonding ability, and the off-diagonals are assigned the
interatomic distances. The eigenvalues of the matrix are then extracted for use as
descriptors. Five such descriptors were calculated: two based on charge, two on
atomic polarizability, and one on hydrogen bond acceptors. These descriptors
then define a 3D BCUT chemistry space, as for the cell-based methods
described previously, with BCUT diversity being measured as the ratio of occu-
pied cells to the total possible occupied cells. Pharmacophore diversity is based
on the number of unique pharmacophores and the total number of pharma-
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cophores in the product subset. An overall score for a library is then calculated
by summing the two diversity measures. The method has been tested on a vir-
tual library of 86,140 amide products in which pharmacophores were calculated
on-the-fly, i.e., during the optimization process itself, with pharmacophore keys
being stored for reuse as they are calculated.

Other similar aggregation approaches to multiobjective library design
include the methods described by Agrafiotis (27), Zheng et al. (28), and
Brown et al. (29).

2.6. Multiobjective Optimization Using a MOGA

The aggregation approach to multiobjective optimization in which multiple
objectives are combined into a single fitness function is limited for a number of
reasons, some of which are identified here. First, the selection of weights for
the individual components is non-intuitive especially when comparing different
properties, for example, diversity and calculated logP. Second, the use of
weights limits the search space that is explored. Third, in general, the methods
are restricted to finding a single solution that represents one particular com-
promise in the objectives; assigning a different set of weights will typically
result in a different solution, one that may be equally valid but that represents
a different compromise in the objectives. Thus, in practice, it is usual to
perform a number of trial-and-error runs using different weights in order to
identify a “good” solution.

Multiobjective evolutionary algorithms (MOEAs) belong to a class of algo-
rithms that is based on optimizing each objective independently and thus avoids
the need to assign weights to individual objectives (30). They exploit the pop-
ulation nature of evolutionary algorithms in order to explore multiple solutions
in parallel. The MOGA is one example of a MOEA and is based on a GA (31).
In MOGA, the fitness ranking in a traditional GA is replaced by Pareto rank-
ing. Pareto ranking is based on the concept of dominance, where, in a given
population, one solution dominates another if it is better in all objectives and a
non-dominated solution is one for which no other solution is better in all the
objectives. In MOGA, an individual is assigned fitness according to the number
of individuals by which it is dominated. Parent selection is then biased toward
the least dominated individuals so that all non-dominated solutions have equal
chance of being selected and they have a higher chance of being selected than
solutions that are dominated. The non-dominated individuals form what is
known as the Pareto surface. In the absence of further information, all solutions
on the Pareto surface are equally valid with each one representing a different
compromise in the objectives.

The MOGA algorithm has been adopted in the MoSELECT library design
program (32–34). MoSELECT derives from the earlier SELECT program with
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the original GA being replaced by a MOGA. Thus, in MoSELECT different
objectives such as diversity, similarity, physicochemical property profiles, and
cost are treated independently to generate a family of different compromise
solutions as will be shown in Subheading 3.

2.7. Varying Library Size and Configuration

Many library design methods require that the size (number of products) and
configuration (numbers of reactants selected for each component) of the library
are specified upfront. However, it is often difficult to determine optimum values
a priori and usually there is a trade-off between these criteria and the other
criteria to be optimized. Consider the design of a library where the aim is to
maximize coverage of some cell-based chemistry space. It is clear that as more
products are included in the library the chance of occupying more cells
increases. Thus, an optimal library is likely to be one that represents a com-
promise in size and diversity.

MoSELECT has been adapted so that size and configuration can be opti-
mized simultaneously with other library design criteria. Size is allowed to vary
by using a binary chromosome representation. The chromosome is partitioned,
as before, with one partition for each position of variability. However, now
each partition is of length equal to the number of reactants available with each
reactant represented by a binary value. The value “1” indicates that a reactant
has been selected and the value “0” indicates that it has not been selected for
the final library. Thus the chromosome is now of length NA + NB (as opposed
to nA + nB as described earlier). The application of the genetic operators results
in different reactants being selected and deselected, and library size (and con-
figuration) is thus varied by altering the number of bits set to “1.”

As described previously, diversity and library size are usually in conflict
with larger libraries resulting in greater cell coverage. Thus, when optimizing
on diversity alone there will be a tendency to select very large libraries. Thus,
in MoSELECT size is included as an objective alongside diversity with each
objective being handled independently. This allows the trade-off between size
and diversity to be explored in a single run.

2.8 Multiobjective Design Under Constraints

The MOGA approach allows the mapping of the entire Pareto surface with
solutions at the extremes being identified as well as a range of solutions in
between the extremes. When optimizing size and diversity, this means that a
wide range of solutions is possible, from libraries consisting of a single product
up to the library size that achieves maximum cell coverage. While having the
ability to map the entire Pareto surface can provide useful insights into the shape
of the search space of a particular library design problem, in practice there are
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often external constraints that must be taken into account. For example,
constraints on library size may arise from the equipment available or simply on
the basis of cost.

Library configuration can be a factor in cost as well as library size. Typically
it is desirable to minimize the total number of reactants required. Thus, if
the aim is to synthesize a library of 400 products from two positions of vari-
ability, then the most efficient use of reactants is achieved for the configuration
20 × 20. Other configurations (40 × 10, 25 × 16, etc.) would require access to
a greater number of unique reactants.

Constraints can be implemented within the MOGA to direct the search
toward restricted regions of the search space. Constraints are handled by penal-
izing solutions that violate the constraints. Such infeasible solutions are allowed
to exist within the population (rather than being removed entirely) because their
presence may lead to feasible solutions later in the search through the use of
crossover. They are penalized so that they have a lower chance of being
selected for reproduction and so that they do not appear in the final solution set.
In the example described in the next section, constraints are applied on library
size and configuration; however, they could equally be applied to any of the
objectives incorporated within the library design.

3. Results: Designing 2-Aminothiazole Libraries

The two-component 2-aminothiazole library shown in Fig. 1 is used to illus-
trate different library design scenarios using the SELECT and MoSELECT
programs.

As discussed, the starting point for library design is to identify available
reactants, for example, by searching in-house databases and/or by identifying
reactants that can be purchased. In this case, substructure searches were per-
formed on the ACD. When constructing a query, it is often necessary to place
constraints on the compounds to be returned as hits. Thus, the α-bromoketone
substructure was constrained so that it should not be embedded within a ring
and explicit hydrogens were attached to one of the nitrogen atoms in the
thiourea query with the additional constraint that substitution on the sulfur atom
was prohibited.

Once initial sets of reactants were found computational filters were applied
to remove reactants that are known to be undesirable. This was done using the
ADEPT software (14) with the following compounds being removed: reactants
having molecular weight greater than 300; reactants having more than eight
rotatable bonds; and a series of substructure searches were performed to
remove reactants containing undesirable substructural fragments. After filtering
there were 74 α-bromoketones and 170 thioureas remaining, which represents
a virtual library of 12,850 product molecules. The next step in the design
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process was to enumerate the full virtual library, which was done using the
transform method in ADEPT.

The virtual library was then characterized using the Cerius2 default topo-
logical descriptors and physicochemical properties (35). The 50 default descrip-
tors were reduced to three principal components using principal components
analysis, and this defined a 3D chemistry space into which the virtual library
could be plotted. The chemistry space consisted of 1134 cells and, when the
virtual library was mapped into the space, it was found to occupy 364 of the
cells; thus, this represents the maximum cell coverage that is achievable.

The SELECT program was then used to design a 15 × 30 library that was
simultaneously optimized on diversity (measured by the number of occupied
cells) and to have a drug-like molecular weight profile (measure by the RMSD
between the profile of the library and the profile of molecular weights found in
the WDI). The resulting library was found to occupy a total of 234 cells and its
molecular weight profile is shown in Fig. 2 together with the profile of molec-
ular weight found in WDI. When optimizing a library on diversity alone, the
best library found occupies 282 cells and, when optimizing on molecular weight
profile alone, the best library was found to occupy 169 cells. Thus, when opti-
mizing both objectives simultaneously using the weighted-sum approach in
SELECT, the resulting library represents a compromise in the two objectives.
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Performing a single run of SELECT with one set of weights does not allow
the library designer to explore the relationship between the two objectives and
a single somewhat arbitrary solution was produced.

The relationship between molecular weight profile and diversity was then
explored using the MOGA approach implemented in MoSELECT. The result was
a total of 11 different libraries with each library representing a different trade-
off between the objectives, as shown by the crosses in Fig. 3. The most drug-
like library (the library with the best molecular weight profile) is the least
diverse (169 cells occupied), whereas the most diverse library (282 cells occu-
pied) has the least drug-like profile. The SELECT solution found previously is
shown by the solid diamond.

Thus far, the size and configuration of the libraries were fixed. The relationship
between library size and diversity was investigated by performing multiple runs
of the SELECT program with each run configured to find a library of increas-
ing size. The results of performing this exercise are shown in Fig. 4, where it can
be seen that diversity (cell coverage) increases as library size increases.

MoSELECT allows the trade-off in library size and diversity to be investi-
gated in a single run. The libraries found are shown by the solid squares
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(superimposed on the SELECT results) in Fig. 5. Thus, the full range of library
sizes is explored, from very small libraries with low diversity up to a library
size of 1392, which has the maximum diversity that is possible: it occupies all
364 cells that are occupied by the full virtual library.

The remaining library designs are based on applying the MOGA under var-
ious constraints. In Fig. 6, the libraries are constrained to contain between
250 and 500 products. Finally, the libraries are constrained to contain between
15 and 20 reactants in each component. The libraries found when no constraint
is placed on configuration are shown by the crosses in Fig. 7A, and the
libraries found when the constraints are applied are shown by the solid
squares. Figure 7B illustrates that the constrained (more efficient) libraries
were found without any loss in diversity.

4. Discussion and Notes

Combinatorial library design is a complex procedure that can be divided into
several steps as indicated above. A wide variety of different computational tools
are available that can be applied to the different steps; however, effective use of
the tools can require considerable user interaction in order to maximize the
chances of finding useful compounds. Thus, the tools should not be considered
as black boxes.

For a given reaction scheme, the first step is usually to identify available
reactants. Care should be taken when constructing substructural queries to
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ensure that the compounds retrieved are indeed capable of undergoing the reac-
tion; for example, when searching for primary amines, it may be desirable that
hits are restricted to those that contain a single amine group. Visual inspection
of the results can be used to ensure that the substructural query was correctly
specified and it can also be useful in determining which computational filters to
apply. For example, the presence of highly flexible molecules in the answer
set may suggest the use of a filter to remove reactants where the number of
rotatable bonds is above some threshold value. Filters are extremely important
because the early removal of undesirable compounds can simplify the later
stages of library design.

Once the reactant pools have been filtered, the next step in product-based
designs is usually to enumerate the full virtual library. This can be a very time-
consuming step and hence a useful precursor can be to enumerate carefully
chosen subsets that will give an indication of the success or otherwise of the
full virtual experiment. Thus, in a two component reaction it can be useful to
take the first reactant in the first pool and combine it with all the reactants in
the second pool (to generate 1 × nB products). This should then be followed by
the enumeration of one reactant in the second pool with all reactants in the
first pool to give nA × 1 products. If either of these two partial enumeration
steps fail, then the full enumeration will also fail. Thus, troublesome reactants
can be identified early.
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The next step is to determine the descriptors to use for the library optimiza-
tion. It is important that descriptors are chosen that are relevant to the type of
compounds that the library is being designed for. The descriptors should result
in a high degree of similarity between compounds that are known to have the
desired properties. Thus, if some active compounds are known, then, ideally,
these should cluster together within the descriptor space. Another criterion to
take into account when choosing descriptors is the number of compounds in the
virtual library. Some descriptors can be costly to compute, especially 3D
descriptors when the conformational flexibility of the compounds is taken into
account. Thus, it is important to be aware of the computational resources that
will be required for a given library design strategy.

Finally, the optimization step itself usually involves human intervention.
With the traditional aggregation approaches to library design, the user must
decide on appropriate weights for the various objectives being optimized. This
can involve several trial-and-error experiments where different combinations
of weights are applied. In the novel library design method based on a MOGA,
the user no longer needs to determine relative weights; however, a family of
different compromise solutions is found and hence the user must apply his or
her own knowledge to decide which library represents the best compromise in
the objectives.
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Fig. 7. (A) The crosses show a run where library size is constrained, but no con-
straints are placed on library configuration. The solid squares show the effect of also
constraining configuration so that between 15 and 20 reactants are used from each pool.
The solid line shows the ideal solution in terms of efficiency, that is, equal numbers of
reactants are selected from each reactant pool. (B) No loss of diversity is seen in the
configuration-constrained library relative to the less efficient unconstrained solutions.
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Approaches to Target Class 
Combinatorial Library Design

Dora Schnur, Brett R. Beno, Andrew Good, and Andrew Tebben

Abstract

The wealth of information available from the solution of the human genome has dramati-
cally altered the nature of combinatorial library design. While single-target-focused library design
remains an important objective, creation of libraries directed toward families of receptors such as
GPCRs, kinases, nuclear hormone receptors, and proteases, has replaced the generation of
libraries based primarily on diversity. Although diversity-based design still plays a role for recep-
tors with no known ligands, more knowledge-based approaches are required for target class
design. This chapter discusses some of the possible design methods and presents examples where
they are available.

Key Words: 3D pharmacophores; library design; combinatorial library; structure-based design;
target class library; gene family; target class knowledge database; cell-based library design meth-
ods; BCUTs; privileged substructure; DiverseSolutions; ClassPharmer™.

1. Introduction

With the onslaught of data that has arisen from the mapping of the human
genome, there has been a distinct shift in the nature of combinatorial library
design. Initially, library design efforts focused on the production of large num-
bers of diverse products to augment high-throughput screening (HTS) decks
(1–8). Improvements to the pure diversity approach included the design of drug-
like diverse libraries that utilized Lipinski’s rule of 5 (9), polar surface area (10),
and other metrics to produce compounds having desirable ADME properties
(11). More recently, the focus has moved from diversity in favor of combinato-
rial libraries designed to target specific receptors or enzymes (12). While these
single-target-focused libraries remain a key component of many drug-discovery
programs, and are useful in both “hit to lead” and “lead optimization” contexts,

From: Methods in Molecular Biology, vol. 275:
Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery

Edited by: J. Bajorath © Humana Press Inc., Totowa, NJ



creation of target class libraries has largely replaced generation of purely
diversity-based libraries.

These target class libraries fall between the two extremes of diverse and
target-focused libraries (13). These are combinatorial libraries in which the
products are biased toward multiple members of families of related receptors or
enzymes, rather than individual targets (14). The basis for the design and syn-
thesis of target class combinatorial libraries is the observation that receptors
and enzymes that belong to the same functional family (e.g., kinases, Class I
GPCRs) often share similar steric and electronic features in their binding/active
sites. Kinases, which have been shown to have highly similar active sites, pro-
vide one example of this (15). Another example is provided by the Family A
GPCR receptors, of which several require aromatic rings and basic moieties in
their ligands (16). Identification and exploitation of these intrafamily similari-
ties affords the opportunity to design and synthesize target class combinatorial
libraries in which the products contain features that are complementary to the
common motifs found in the binding/active sites of the receptors or enzymes
comprising the target family.

Target class libraries are well suited to augment large HTS decks with drug-
like compounds designed to include key receptor/enzyme binding features. In
addition, they are likely to prove even more valuable in focused screening cam-
paigns where compounds are assayed against multiple targets from the same
family (presumably the family for which the library was designed). Another
potential application of target class libraries is the de-orphaning of biological
targets of unknown function.

There are two basic paradigms for the design of target class combinatorial
libraries. These are applicable for target class libraries composed of compounds
“cherry-picked” from a larger screening set, as well as combinatorially syn-
thesized libraries. The following descriptions assume an ultimate library design
goal of a combinatorially synthesized, target class library of 10,000 compounds
for a target class composed of 10 members.

In the first design approach, the common features required for ligand bind-
ing to all (or many) of the target family members are identified, then used to
derive a model for selecting library products for a 10,000 compound library
based on one or more combinatorial templates. In the second approach, ten
1000 compound combinatorial libraries are designed, where each library is
directed at a single member of the target class using target-specific computa-
tional models. These 10 focused libraries are then combined to form the large
10,000 compound target class library. The amount of effort required (both com-
putational and synthetic) for the first method is much less than that required for
the second approach. However, intuitively, a library of this type would be
expected to provide weak, non-selective hits against members of the target class
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because the model used to design the library emphasizes their similarities,
rather than the differences that are responsible for ligand specificity.

The second approach, although requiring more effort, has the potential to
provide some combinatorial products that are potent against the individual tar-
gets, and other products that bind to members of the target family which were
not explicitly considered in the design effort. Potency against the individual
targets depends on the quality of the individual focused designs that make up
the target class library. However, even the most successful focused library
designs provide product sets in which only a fraction of the products bind to
their intended targets. Combinatorial products, which, as a result of some unfa-
vorable interaction, do not bind to the target for which they were designed,
may bind to a related target where the unfavorable interaction is absent. This
latter approach for target class library design has the added benefit of provid-
ing “more shots on goal.”

There are no published examples directly comparing these two paradigms for
target class combinatorial library design. However, in practical experience, it is
often the case that compounds which were designed during lead optimization
phases of projects focused on particular biological targets are identified as hits
in HTS assays run for other targets within the same family. By extension, it is
reasonable to expect that compounds from combinatorial libraries designed
against one member of a target family, may also bind to other enzymes/receptors
within that same family.

Regardless of which target class library design paradigm is employed,
computational methods that can identify the interactions responsible for
ligand–receptor binding and/or the molecular features needed to form these
interactions are required for the library design process. The preferred method is
direct examination of high-resolution crystal structures of the enzymes or recep-
tors co-crystallized with ligands. This provides information regarding the
explicit interactions relevant to ligand binding, and also allows the shapes of the
binding/active sites to be compared. Given this type of data, docking is an
extremely powerful computational tool that can be utilized for target class
library design.

Unfortunately, it is often the case that crystal structures are not available for
targets of interest. This limitation is especially acute for GPCRs, which are the
biological targets of as many as 50% of recently launched drugs (16). The
paucity of structural data for GPCR targets is offset, at least partially, by
the large amount of data available for classes of ligands that bind to these targets.

Computational models relating molecular structure and/or properties to bio-
logical activity are required for the design of both target-focused and target class
combinatorial libraries based on known active ligands. These models are devel-
oped from descriptors, which encode information about molecular properties
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and structure. Many different descriptor types ranging from simple physico-
chemical properties [e.g., molecular weight, cLogP (17), rotatable bond count]
to 2D descriptors based on molecular connection tables [e.g., atom pairs (18),
Daylight Fingerprints (17)] to 3-D pharmacophores (19–21) and 3D property-
derived BCUTs (22) have been utilized for library design purposes.

An essential starting point for ligand-based designs is the development of a
target class knowledge database. Known drugs, analogs, and other active com-
pounds along with their biological response information have to be collected
from the literature, commercial drug databases, and proprietary sources. The
importance of these databases has been sufficiently recognized in the pharma-
ceutical industry that numerous companies such as Aureus Pharmaceuticals,
Jubilant Biosystems, Sertanty, and Biowisdom have developed products to
address the need.

2. Methods

Most of the available computational methods for library design can be applied
to target class libraries. In this chapter, rather than striving for a complete review
of all possible methods, we will focus on several significant applications. Among
them are 3D pharmacophore descriptor based design applications, privileged
substructure methods, cell-based design methods, and structure-based methods.
Where target class design examples exist, they will be discussed.

2.1. Three-Dimensional (3D) Pharmacophore Descriptors

Three-dimensional (3D) pharmacophore descriptors essentially quantify what
the medicinal chemist envisions when considering biological pharmacophores
relevant to ligand–receptor binding: several key molecular features/functional
groups in a specific relative orientation. The molecular features encoded in
3D pharmacophore descriptors include hydrogen-bond donors and acceptors,
lipophiles, aromatic rings, and acidic and basic moieties. Each of these can
play a role in ligand–receptor binding interactions. The relative positioning of
combinations of these features within a molecule is determined from 3D con-
formational models represented by a single low-energy conformation or multi-
ple conformations (Fig. 1). Typically, 3D pharmacophores composed of three or
four features (three-point and four-point 3D pharmacophores) separated by
three or six distances, respectively, are utilized for CADD and combinatorial
library design purposes. In order to limit the number of possible 3D pharma-
cophore descriptors to a manageable quantity, distances are generally binned.
Detailed discussions of methods for calculating 3D pharmacophores are found
in the literature (19,20,23).

If the bioactive conformation of a ligand for a particular receptor is known,
then a single three- or four-point 3D pharmacophore that is crucial for the
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binding of that ligand to its receptor may be identified. Other compounds,
which contain the 3D pharmacophore of interest, can then be identified via
virtual screening or specifically designed.

Alternatively, bitstrings in which the state of each bit (0 or 1) represents the
presence or absence of a single three- or four-point 3D pharmacophore can be
utilized. These 3D pharmacophore “fingerprints” encode all of the three- or
four-point 3D pharmacophores that can be attributed to a particular molecule
(within the limits of conformational sampling resolution). Pharmacophore fin-
gerprints can also be generated for sets of compounds by performing a logical
OR operation on the fingerprints for the individual molecules. The similarity of
one molecule to another can be assessed by calculating the Tanimoto coefficient
(24) of the 3D pharmacophore fingerprints for the two molecules.

Mason and coworkers reported one of the first examples of a target class
library design utilizing 3D pharmacophore descriptors (20). In this example,
the authors designed a set of GPCR-targeted libraries based on Ugi chemistry
(25). A key feature of the design is the incorporation of a GPCR privileged
substructure in each of the combinatorial products. GPCR-privileged substruc-
tures are chemical moieties that occur with high frequency in the ligands of
multiple GPCRs (16). Examples include biphenyl tetrazole, indole, and
biphenyl-methyl groups. Methods to derive them will be discussed below.

In the published example, 502 compounds from the MDL Drug Data Report
(MDDR) (26) that were active against a GPCR target and also contained a
biphenyl tetrazole moiety were used to generated a “privileged” four-point 3D
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Fig. 1. Schematic illustrating three- and four-point 3D pharmacophores. Three-point
3D pharmacophores encode three functional group types and the three distances sepa-
rating them, and four-point 3D pharmacophores encode four functional group types and
the six distances separating them. Functional group types commonly included are acids,
bases, hydrophobes, H-bond acceptors, H-bond donors, and aromatic systems. Distances
are assigned to bins (e.g., 2.5–4.0 Å) to limit the individual 3D pharmacophore descrip-
tors to a tractable number, and to aid in comparing the individual 3D pharmacophores.



pharmacophore fingerprint. A privileged four-point 3D pharmacophore is a
four-point 3D pharmacophore in which one of the four molecular features is a
privileged moiety, and the other three are members of the standard set of fea-
ture types (H-bond donors, acids, etc.) In this case, the privileged feature was
represented by the centroid of the biphenyl tetrazole moiety in each compound.
The four-point 3D pharmacophore fingerprint for the set of 502 GPCR ligands
was the union of the fingerprints of the individual molecules, and represented
approx 161,000 privileged four-point 3D pharmacophores.

Utilizing a simple greedy algorithm, a set of 22 acid reagents (along with
12 aldehydes and 8 isonitriles to yield 2112 products) was selected to maximize
the intersection of the privileged four-point 3D pharmacophore fingerprint of
the combined combinatorial products with the GPCR-privileged 3D pharma-
cophore fingerprint derived from the MDDR compounds. Approximately 49%
of the GPCR-privileged 3D pharmacophores found in the GPCR-privileged
fingerprint were covered by the products of the optimized reagents. Subsequent
libraries were designed to cover the four-point 3D pharmacophores present in
the GPCR reference fingerprint that were not covered by the original library.

The GPCR target class bias in this first example was achieved using two
key design elements. The first is the incorporation of a GPCR-privileged
substructure, and the second is maximal coverage of GPCR-privileged four-
point 3D pharmacophores found in known GPCR ligands. This approach
weights all of the four-point 3D pharmacophores found in the set of known
GPCR ligands equally in terms of their importance for receptor–ligand binding.

In a similar target class design effort utilizing a set of 3321 GPCR ligands
with reported in vivo activity, Lamb and coworkers identified a set of 1.8 million
two-, three-, and four-point pharmacophores predicted to be important for GPCR
binding (27). However, in this case, rather than treating all of the 3D pharma-
cophores found in the known actives as equally important, only those 3D phar-
macophores that occurred in at least 10 active compounds were included in the
GPCR-reference 3D pharmacophore key. Utilizing this reference key, the
Dupont Pharmaceuticals group designed a library of 7865 products that cov-
ered 66% of the 1.8 million GPCR-relevant 3D pharmacophores that were iden-
tified. The use of a 3D pharmacophore “frequency count” in the analysis of
known active ligands improves the odds of identifying 3D pharmacophores that
are actually relevant to ligand–receptor binding (28).

The previous two examples both utilized the 3D pharmacophores found in
known GPCR-active ligands to design GPCR target class combinatorial libraries.
The following example illustrates an extension of the pharmacophore method-
ology in which 3D pharmacophore fingerprints from known inactives are also
utilized to help further focus in on those 3D pharmacophores that are important
for ligand–receptor binding. Although the designed combinatorial library is more
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accurately termed a focused library, rather than a target class library, the tech-
niques employed are directly extensible to target class library design.

Utilizing a set of 43 known α1-adrenergic receptor ligands with Ki values
<5 nM (actives), and a set of 62 compounds with Ki values >5 µM against
α1 receptor subtypes (inactives), Bradley and coworkers derived a 3D pharma-
cophore ensemble model that correctly identified 80% of the actives and only
10% of the inactives as active compounds in validation studies (29). This
ensemble model was composed of a set of 500 two-, three-, and four-point
3D pharmacophores with the highest “information content” found in the
analysis of the active and inactive compounds in the model training set. The
information content for each 3D pharmacophore was calculated using an
equation derived from information theory. Essentially, those 3D pharma-
cophores that occur with high frequency in known actives, but are absent or
occur with low frequency in known inactives for a particular target are high in
“information content” and may be used in combination to discriminate actives
from inactives.

Bradley and coworkers used the 3D pharmacophore ensemble model to filter
a virtual combinatorial library of 3924 N-substituted glycine peptoids (30)

containing three known α1 actives down to a set of 639 products. Using a
“cut-down” technique, a 160 compound combinatorial library was designed in
which the number of compounds that passed the ensemble model filter was
maximized. This library contained two of the three known actives present in
the original 3924 compound virtual library. This represents a substantial enrich-
ment [(2 actives/160 products) × 100 = 1.25% vs (3 actives/3924 products)
× 100 = 0.076%].

Beno and Mason reported an alternative design approach based on 3D phar-
macophore frequency counts that used the same set of 43 known α1 ligands,
and a virtual library of 10,648 N-substituted glycine peptoids (30,31). The vir-
tual library contained at least three products known to be active at α1. In this
case a library of 343 products (7 R1 × 7 R2 × 7 R3) was selected with a sim-
ulated annealing procedure that maximized the similarity of the normalized
four-point 3D pharmacophore frequency distributions of the active α1 ligands
and the products comprising the selected virtual library subset. In this case,
one of the three known α1 actives was found in the final library. Comparison of
these results to those of Bradley et al. (29) suggests the importance of includ-
ing inactive compounds when deriving 3D pharmacophore-based computational
models. The inclusion of two- and three- as well as four-point 3D pharma-
cophores may also lead to models with improved discriminating power.

Other approaches that could be extended to target class library design
include work by McGregor and Muskal (13,19). These utilized PharmPrint™

3D pharmacophore descriptors (three-point pharmacophores) and partial least
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squares and principal component analysis to develop models for focused and
drug-like libraries, respectively.

The examples provided above all use (or could use) multiple-point 3D phar-
macophores from sets of known active ligands, and in some cases, inactive lig-
ands as well, to generate models for library design. These models discern to
varying degrees the 3D pharmacophores that are relevant to binding of ligands
to their receptors, and may be derived from large numbers of diverse com-
pounds covering many different chemotypes. These models represent the
common ligand features that may be recognized by different members of a bio-
logical target class. Thus, they are well suited to the design of target class
libraries, which emphasize the commonalties between related targets.

Multiple-point 3D pharmacophore fingerprints can also be used to calculate
the similarity between pairs of molecules using the Tanimoto coefficient, or
similar metrics. Individual target-focused libraries may be designed by maxi-
mizing the 3D pharmacophore similarity of product compounds to ligands
known to be active against the target of interest (32). Target class combina-
torial libraries may then be created by combining smaller libraries focused to
individual, related targets.

Multiple-point 3D pharmacophore descriptors are also useful for designing
libraries when crystal structures are available for the target(s) of interest.
Fingerprints consisting of 3D pharmacophores that are complementary to bind-
ing site features can be created and used in conjunction with docking studies to
select products with optimal shape and pharmacophoric features from virtual
combinatorial libraries (20,33,34). This technique has been used to design
Factor Xa (20) and cyclin-dependent kinase (CDK-2) (35) focused libraries.
This approach could be extended to multiple targets within a target class by cal-
culating multiple-point 3D pharmacophore fingerprints that are complementary
to the binding/active site for each target, and then performing a logical AND
operation on all of the fingerprints to determine their intersection. The resultant
fingerprint of receptor-complementary, common 3D pharmacophores could then
be used in conjunction with a docking algorithm to select products from a
virtual combinatorial library.

Target class combinatorial libraries are intended to contain products that are
active against multiple members of a family of biological targets. However,
activity/potency is not the only concern. Optimally, the combinatorial products
should be as drug-like as possible, with minimal ADMET liabilities. This is a
difficult goal to achieve. However, computational models utilizing multiple-point
3D pharmacophore descriptors may be used to address some of these issues as
well. A 3D pharmacophore model for PGP substrates has been published (36),
and key pharmacophores common to many CYP3A4 inhibitors (37,38) have
been identified as well. These may be utilized for target class library design.
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For example, one might design a GPCR target class library in which the cover-
age of GPCR-relevant 3D pharmacophores is maximized, while the coverage
of PGP substrate pharmacophores is minimized in the selected products.

At present, there are relatively few reported examples of target class library
design efforts that utilize multiple-point 3D pharmacophore descriptors. How-
ever, multiple-point 3D pharmacophores are well suited for target class library
design efforts owing to their ability to encode common features recognized by
receptors/enzymes and displayed by small molecules. They can be utilized with
protein structures, collections of ligands, or single ligands. Models that predict
desirable biological activity or potential ADMET liabilities can be developed
with 3D pharmacophore descriptors. As interest in target class libraries
increases, multiple-point 3D pharmacophore descriptors should see extensive
use in combinatorial library design.

2.2. Privileged Substructures for Target Class Library Design

One of the early and effective approaches to target class library design was
the analysis of a set of ligands for frequently occurring chemical moieties or
substructures. Various methods including both pharmacophores (20) and frame-
works analysis (39) have been employed to find these substructures. To use
the latter method to find privileged substructures, one first selects a set of lit-
erature structures such as “Family A” or “Family B” GPCR non-peptide ligands
in the MDDR and performs frameworks analysis. One then performs maxi-
mum common substructure (MCS) analysis on all the frameworks and removes
the ligands with that substructure from the superset of ligands. The frameworks
analysis, MCS analysis, and ligand removal are iterated until 90% of the lig-
ands have been accounted for. For a ligand set from the 1999 version of the
MDDR, 15 SLNs (SYBYL line notation structures) (40) accounted for 90%
of the Family A and B GPCR ligands (41).

A more recent variation on privileged substructure analysis involved the use
of ClassPharmer™ (42,43). This software tool uses graph-based analysis to
derive keys that capture substructure common features in the ligand training
set. The resultant classes or clusters of compounds represented by common
substructures can be further analyzed using the R-table generation module and
through importation of activity/selectivity data as property attributes of the
classes. The substructures, which are displayed by the viewer module with
attached R-group attachment positions indicated, potentially provide a rich
source of scaffolds for combinatorial library elaboration. Because a redundancy
setting controls the number of classes in which a compound may appear,
ligands can be broken into a variety of substructure fragments that may not be
identified with methods that allow a compound to be assigned only to one clus-
ter. Additionally, compounds that are singletons appear as separate classes.
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Because test lists of compounds may be filtered through the classes, retention
of singletons is an important feature for subsequent virtual screening of
compound sets or libraries.

In a preliminary application of this methodology to target class or gene family
ligand analysis, Schnur and Hermsmeier (43) looked at the ClassPharmer™

analyses of sets of GPCR, ion channel, and NHR ligands from the MDDR. For
the NHR’s, 88 thyroid hormone-like ligands yielded 15 classes and 4 singletons,
while the 564 estrogenic ligands yielded 48 classes with 3 singletons. For
the ion channels, the glutamate cationic family set of 145 compounds yielded
17 classes and 4 singletons while the nicotinicoid anionic set of 550 compounds
yielded 57 classes with 4 singletons. A set of 65 Family B GPCR ligands yielded
only four classes but gave 39 singletons. This is not surprising because most of
the ligands were peptidic and ClassPharmer™ is not optimized for peptides. A set
of 6230 Family A GPCR ligands yielded 503 classes and 333 singletons.

This last set was utilized for a proof of principle for target selectivity analy-
sis. The 96 activity keys associated with the compounds in the MDDR were
assigned a number from 1 to 96 and imported as an attribute for each com-
pound into ClassPharmer™. Visualization as a distribution histogram for the
compounds of each class allowed a crude gauge of the specificity of the classes
with regard to GPCR targets. As expected, some classes were more selective
than others. The utility of this result was confirmed by filtering a 10K combi-
natorial library and a 10K random compound set (from the corporate inventory)
through the GPCR classes. Because the library was designed using frame-
works/MCS-derived privileged structures to filter starting reagents into GPCR-
like and diversity-based, it was not surprising that 90% of the compounds fell
into 32 ClassPharmer™ classes. The remaining 10% of the compounds did not
fall into any of the classes. This was an expected result because a focused/
diverse library design had been employed. A number of the classes represented
in the library were relatively non-selective; in accord with this, the library was
active in a number of GPCR target screens. In contrast, only a third of the 10K
random set of compounds occupied 220 of the GPCR ClassPharmer™ classes.
The much greater number of occupied classes reflects the diversity of the com-
pound set relative to the combinatorial library that was derived from a relatively
small number of starting reagents. The low compound occupation for this set
needs to be viewed with caution however. Not all GPCR targets were repre-
sented by the initial MDDR compound set and proprietary compound classes
that might be intended for GPCR targets were not represented in the MDDR
set used for the analysis. Nonetheless, ClassPharmer™ seems to be a promising
tool for finding privileged substructures and designing either selective or promis-
cuous libraries by filtering virtual libraries through classes defined by a gene
family ligand test set.
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2.3. Cell-Based Library Design Methods

Cell-based methods for combinatorial library design have been discussed at
length in the literature (44). The method divides each axis of a multidimen-
sional property space into bins and, thereby divides the space into hypercubes
or cells. The known ligands of individual targets or an entire target class can be
associated with the cells they occupy. Unlike clustering methods that define
clusters based on the compounds in the set, cell-based analyses allow compar-
ison of molecules not originally in the definition set without alteration of the
chemistry space (Fig. 2). A basic assumption of this method is that compounds
that are near neighbors of known ligands are more likely to be active for a
particular target or class of targets. Clearly, the validity of this assumption is
related to the validity of the descriptors used as axes of the chemistry space.
This method easily lends itself to ligand-based target class design if a knowl-
edge database of the target ligands is available to define a target class space that
contains regions where ligands for specific targets cluster.

The most commonly used software tool for the purpose, DiverseSolutions
(45), employs a unique set of descriptors, BCUTs (22), that are based on both
connectivity-related and atomic properties such as charge, polarizability, and
hydrogen bonding abilities which appear to correlate with ligand receptor bind-
ing and activity (46,47). An example (48) is shown (Fig. 3) for an ion channel
target. Channel openers and blockers are differentiated in the cell-based space
derived from an optimally derived diversity space for the entire combinatorial
library that contained them. Because the diversity space in this case has four
dimensions and the plots are 3D, it is possible to observe that some subsets of the
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Fig. 2. 2D representation of two compound sets in a cell based chemistry space.
Cells occupied by set one in black, by set two in light gray, and by both sets in dark
gray. Empty cells are white.
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Fig. 3. An ion-channel-based combinatorial library in 3D subspaces of a 4D Diverse Solutions chemistry space.
Channel openers are shown in black, blockers in dark gray and the rest of the combinatorial library is shown in light
gray. Axes are 3D H-hydrogen suppressed BCUTs based on hydrogen bond donor (A) and acceptor properties (B) and
Gasteiger-Huckel charges (C and D). The off-diagonals of the matrices for A, B, C were inverse distance (1/d). For
D the off-diagonal was 1/d6. For A, B and D. the BCUT was the highest eigenvalue. For C, the BCUT corresponds
to the lowest Eigenvalue. Clockwise from the upper left the XYZ axes, respectively, are ABC, BCD, ABD and ACD.



descriptors (chemistry space axes) seem to cluster and separate the blockers and
openers better than others. Observations of this type (46) led to the development
and implementation of the concept of receptor-relevant subspaces (47) in the
DiverseSolutions software package. Stewart et al. have used DiverseSolutions to
find a receptor-family-relevant chemistry space for nuclear hormone receptors
that distinguished 907 known NHR ligands from other inactive compounds (49).

Distance-based similarity searching around a known active is a well-known
approach that yields lists of nearest-neighbor compounds, which are presumed
to have an increased likelihood of activity against the same target. Pearlman
and Smith implemented a list-based nearest-neighbor-searching algorithm
within Diverse Solutions (45), which can also be used for target-directed
combinatorial library design. Recent versions of DiverseSolutions and of
Pearlman’s Windows-based LibraryDesigner application (50) also offer several
novel library design options of varying appropriateness for target class libraries.
Ideally suited for target class library design is a unique cell-based “fill-in”
library design option. A set of known active ligands from the target class
knowledge database is used to identify “promising cells” in chemistry space
(Fig. 4). The space used may have been derived either from the entire target
class knowledge database of ligands, the virtual library from which the combi-
natorial library will be designed, or from a standard corporate chemistry space.
The reactant-biased, product-based library design algorithm is then used to
design a library, of whatever desired size, which best fills these “promising
cells.” The degree of target focus is controlled by the number of bins per axis
and the number of cell radii from the known ligand used to define the size of
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Fig. 4. Representation of “interesting” or “promising” cells. The list of promising
cells was chosen to include the cell containing the active ligand plus one layer of the
adjacent cells. Additional layers of cells could be added to cover a larger region around
the known active to decrease the possibility of missing a hit in the designed library.



the “promising cell.” The “focused” design approach in DiverseSolutions and
LibraryDesigner uses a set of target ligands to score all the compounds in the
virtual library based on their distance to the actives and then selects a designed
library that optimizes the average virtual activity. An example of using this
method to select GPCR compounds for screening to validate the library design
approach has been reported by Wang and Saunders (51). The algorithm also
permits use of externally determined activity scores such as those from dock-
ing, QSAR models, pharmacophore models, or other sources. Recent versions
of DiverseSolutions and of Pearlman’s Windows-based LibraryDesigner appli-
cation (50) also offer a novel “focused/diverse” library design option, which
yields products that are focused with respect to receptor-relevant axes of the
chemistry space and are diverse with regard to the receptor-irrelevant axes.
Because it is unlikely that an entire target class of receptors will have the same
sets of relevant and irrelevant axes, use of this algorithm should be limited to
individual targets or at best closely related targets.

The “receptor relevance” of BCUT descriptors has inspired several groups to
apply them in conjunction with other methods. Beno and Mason reported the
use of simulated annealing to optimize library design using BCUT chemistry
space and four-point pharmacophores concurrently (33) and the use of chem-
istry spaces in conjunction with property profiles (52). The application of such
composite methods to target class library design is readily apparent. Pirard and
Pickett reported the application of the chemometric method, partial least
squares discriminant analysis, with BCUT descriptors to successfully classify
ATP-site-directed kinase inhibitors active against five different protein kinases
(53). Manallack et al. used BCUTs as input parameters to neural networks that
selected compounds that targeted specific gene families (54). Their training
sets were derived from the MDDR and included three classes: protein kinase
inhibitors, GPCR Class A biogenic amines, and Class A peptide-binding-type
GPCRs. Clearly, the literature involving DiverseSolutions and/or BCUT
descriptions for target class library design is currently limited, but will con-
tinue to grow.

2.4. Structure-Based Methods

The advantages inherent in a structure-based approach to computational
chemistry manifest themselves equally clearly in target class design strategies.
The concept of target class forms a mainstay of the structure-based drug-design
process. A fundamental example of this is the common structural motif princi-
ple comprising the heart of homology modeling methodology (55–57). The tools
of structure-based target class library design share a large degree of overlap with
those applied to library design in general [reviewed extensively elsewhere
(58–60)]. The primary differences in approach are exhibited in the methods used
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to define design constraints. Rather than delineating library space using a single
active site, constraints are created based on the similarities and differences that
become apparent upon class structural motif superposition. As a consequence, a
number of new target class strategies are possible when compared with ligand-
based design, both from the perspective of ligand and protein. Ligand super-
positions can be directly constrained by their binding modes. Key interactions
with conserved active site regions can also be determined, allowing the abstrac-
tion and design of novel ligand binding motifs. Furthermore, regions of struc-
tural variation can be pinpointed to permit the design of selective inhibitors.

Structure-based target-class-design approaches have been applied over a
number of protein classes (15,61–66). It is for the ATP competitive binding
site of the kinase gene family, however, that most work has been published,
and it is this class that will serve as our primary example. Target class structural
conservation, selectivity analyses, and the transferability of structural
constraints between class members is elegantly highlighted in the work of
Naumann and Matter (15). In these studies 26 different crystal structures were
superimposed by their ATP binding pockets based on conserved tertiary struc-
ture (Fig. 5). The authors exploited such superpositions to both map out the
active sites for various kinase targets using GRID (67) and to superpose a
CDK1 purine inhibitor set within the confines of the cyclin dependent kinase 2
(CDK 2) binding site. Principal component analysis of the GRID maps nicely
separated the class by target subtype (CDK/MAP/PKA/SRC), while QSAR
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Fig. 5. Superposition of 26 kinase structures via their conserved structural elements,
with ATP binding site highlighted. Adapted from ref. 61.



field analysis using CoMFA (68) and CoMSIA (69) yielded models with robust
statistical parameters.

The potential power of structure-based class constraints is exemplified by
work undertaken in the field of kinase screening library selection (70). Kinase
structures pose significant problems for VS calculations because of the inherent
flexibility of the ATP binding site, and the structural differences inherent
between inactivated versus activated enzyme (71). Good et al. undertook a series
of searches based on CDK2 using three different tools: GOLD (72), DOCK
(73), and PROMETHEUS (74). A 10,000 compound dataset seeded with
85 active molecules spanning 14 different chemotypes was used as the search
deck. Screens were undertaken using the generic methodology search protocols
of each method. In addition, a DOCK search was created including pharmaco-
phore search constraints based on generic target class interactions of ATP and its
inhibitors, as observed in various kinase crystal structures. Search results are
shown in Fig. 6 with chemotype enrichment employed as the primary measure
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Fig. 6. Chemotype enrichment rates using a variety of structure-based virtual screen-
ing algorithms and constraint settings for CDK2. DOCK search incorporating target
class critical pharmacophore constraints denoted by the * mark. Adapted from ref. 70.



of success. The target class constraints used are highlighted in Fig. 7. The poor
performance of the complex scoring function used in PROMETHEUS is a tes-
tament to the difficulties inherent to kinase structure-based virtual screening.
The enhanced performance of the constrained search provides a practical exam-
ple of the utility of target class information in library selection. Others have
had success applying variants of this approach. A pertinent example is derived
from the work of Furet et al. (75), who undertook de novo scaffold design based
on the ability of a novel molecular core to map out the key binding require-
ments of the CDK 1/2 ATP active sites. The resulting 5-aryl-1H-pyrazole sub-
structure was used to search the corporate collection and a number of novel low
micromolar inhibitors of both CDK 1 and 2 were discovered.

A final example illustrating the unique power of a structure-based approach
to target class design comes from the work of Honma et al. (63,64). Starting
from a novel class of CDK4 inhibitors derived from de novo structure-based
design (63), the authors undertook an extensive sequence analysis of approx
400 kinases. The least conserved regions were determined particularly with
respect to other CDK targets. Targeting these difference residues through mod-
ification of their initial lead (which exhibited essentially no selectivity), libraries
were designed that produced molecules with up to 180-fold selectivity with
respect to CDK2 (Fig. 8).
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Fig. 7. DOCK site point breakdown for the kinase receptor study. Three primary
critical regions were defined: (1) adenine acceptor zone, (2) adenine donor zone,
(3) kinase ATP inhibitor rear hydrophobic pocket binding region. Adapted from ref. 70.
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Fig. 8. CDK4 selective library design process of Honma et al. (64). (A) Align
sequences of 390 kinases. Dark circles denote residues with <40% conservation or sub-
ject to replacement in CDK1/2/6. (B) Darker residues in ATP binding site pinpoint the
least conserved residues highlighted in (A). (C) Map lead structure onto difference
residues. Arrows denote direction and distance to said amino acids. (D) Design library
according to these constraints. Resulting compounds show up to 180-fold selectivity for
CDK4 with respect to CDK2. Adapted from ref. 64.



3. Conclusions

Many of the methodologies for diversity based and for focused library design
are applicable to target class libraries. Those presented in this chapter—3D
pharmacophores, privileged substructures, cell-based designs, and structure-
based designs—are a representative sampling. Whatever design tools are
employed, from 2D property-based profiles and scoring methods (76) to those
described above, the resultant design quality is highly dependent on the knowl-
edge database of ligands or structural data used to develop the design. As these
knowledge databases grow, target class library design examples will undoubt-
edly become more prevalent in the literature. The ultimate contribution of target
class combinatorial library design to drug discovery will be determined.
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Simulated Annealing

An Effective Stochastic Optimization Approach
to Computational Library Design

Weifan Zheng

Abstract

We describe here a stochastic optimization protocol for computational library design based on
the principle of simulated annealing (SA). We also demonstrate via computer simulation studies
that the SA-guided diversity sampling affords higher information content than random sampling
in terms of cluster hit rates. Using a tripeptoid library, we show that the SA guided similarity
focusing provides important information about reagent selection for combinatorial synthesis.
Finally, we report a system that employs the SA protocol for the simultaneous optimization of
multiple properties during library design. We propose that the SA technique is an effective
optimization method for computational library design.

Key Words: Combinatorial chemistry; library design; simulated annealing; diversity analysis;
targeted library design; drug-likeness; multicriterion optimization.

1. Introduction

Combinatorial chemistry for drug discovery has evolved from what was
initially described as a shotgun approach to a technology that often employs
rational computational design. The goal of rational design is to ensure that a
maximum amount of information can be obtained from designed libraries while
a minimum number of compounds are synthesized and tested, and ultimately to
discover novel active compounds in a highly efficient fashion. From a practical
standpoint, computational library design is a process in which subsets of available
reagents are selected for a given scaffold in an experimental synthesis based on
a set of computational criteria in order to achieve the aforementioned goal. These
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criteria are often different for libraries that are designed for different purposes,
which include diverse libraries for general screening, target-focused libraries,
drug-like libraries, and, more recently, gene-family-targeted libraries.

In the context of general screening, computational library design involves
the selection of a subset of compounds that are optimally diverse and repre-
sentative of available classes of compounds, leading to a non-redundant chem-
ical library for biological testing. Methods reported in the literature include
(a) cluster analysis, which first identifies a set of compound clusters followed
by the selection of one or more representative compounds from each cluster
(1–4); (b) partitioning methods, which either place all the compounds into a
low-dimensional space divided into cells or partition all compounds through
median partitioning, and then choose compounds from each partition as repre-
sentatives (5,6); (c) direct sampling, which tries to obtain a subset of optimally
diverse compounds by optimizing a diversity function (7–10). Even though the
general trend in the pharmaceutical industry is moving away from general
screening of pure diverse libraries, the design principle of diversity analysis
remains valid and can be employed in conjunction with other criteria.

In a targeted screening project, however, computational library design
involves the selection of subsets of reagents from an available pool of chemi-
cal structures that afford a focused library with high percentage of compounds
that are predicted to be active against the underlying target. The activity pre-
diction can be based on library similarity to known leads, pharmacophore
models, QSAR models and/or molecular docking in cases where the biological
target structure is known. Many applications in this category have appeared in
the literature in the past several years (11–15).

Owing to drug developability requirements, design criteria such as Lipinski’s
rules of 5 (16), Veber’s “rotatable bond rule” (17), and drug-likeness concept
(18) are increasingly being incorporated into the design process as additional fac-
tors. These factors and ultimately compound solubility, membrane permeability,
and cytochrome P450 liabilities have to be considered in a comprehensive library
design practice. Selected literature methods that address these issues include
HarPick (19), SELECT (20), PICCOLO (21), MoSELECT (22), and others (23).

With the advances in genomics, families of novel targets have emerged as
potential drug targets and gene-family-based research has become a central
theme of discovery research in many pharmaceutical companies (24). Thus,
computational library design has to address the issue of how to optimally select
compounds for related targets in a given gene family. These issues and pro-
posed solutions have been discussed in recent meetings (25).

Although the above-mentioned aspects of computational library design
are multifaceted and complex, they can be tackled systematically using a
comprehensive library design tool that employs the principle of multicriterion
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optimization. These methods include simulated annealing (SA) (26), and
genetic algorithms (GA) (27). This chapter summarizes one of these methods—
a simple yet effective approach from our own work that employs the simulated
annealing as the optimization technique. Also highlighted in this chapter are
the applications of this technique in diverse library design (28), target-focused
library design (12), and drug-like library design (21).

2. Methods

2.1. The Simulated Annealing (SA) Optimization Protocol

The methods of simulated annealing (26), genetic algorithms (27), and taboo
search (29) are three of the most popular stochastic optimization techniques,
inspired by ideas from statistical mechanics, theory of evolutionary biology,
and operations research, respectively. They are applicable to our current prob-
lem and have been used by researchers for computational library design.
Because SA is employed in this chapter, a more-detailed description of the
(generalized) SA is given below.

The idea of SA is to simulate the physical process called annealing, in which
a system is heated to a high temperature, and then is gradually lowered to a
preset temperature value (e.g., room temperature). During this process, the
system samples possible configurations according to Boltzmann distribution.
At equilibrium, low energy states will be mostly populated. The first imple-
mentation of the SA procedure was described by Metropolis et al. (30), fol-
lowed by the development of a generalized mathematical optimization protocol.
The implementation of SA in our project is as follows:

1. Generate a trial solution to the underlying problem. For combinatorial library
design, a random selection of a subset of building blocks is generated.

2. Calculate the value of a fitness function (Fcurr) that characterizes the quality of the
trial solution to the underlying problem (e.g., the diversity or predicted activity of
the combinatorial library built upon the selection of building blocks from step 1).

3. Perturb (i.e., slightly modify) the trial solution to obtain a new solution (e.g., a
part of the selected building blocks are changed to other building blocks in order
to build a new combinatorial library).

4. Calculate the value of the fitness function (Fnew) for the new solution generated in
step 3.

5. For the purpose of minimization, if Fnew ≤ Fcurr, the new solution is accepted and
used to replace the old solution. If Fnew > Fcurr, the new solution is accepted only
if the following Metropolis criterion is satisfied, i.e.,

(1)

where rnd is a random number uniformly distributed between 0 and 1, and T is a
parameter analogous to the temperature in Boltzmann distribution law.
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6. Steps 3–5 are repeated until the termination condition is satisfied. The tempera-
ture scheme and the termination condition used in this work have been adopted
from Sun et al. (31). Every time when a new solution is accepted or when a preset
number of successive trial solutions do not lead to a better result, the temperature
is lowered e.g., by 10%. The calculations are terminated when either the current
temperature of simulations is lowered to the value of T = 10–6 or the ratio between
the current temperature and the temperature corresponding to the best solution
found is equal to 10–6.

2.2. The SA Guided Diversity Sampling

The above-described principle of simulated annealing optimization can be
applied to diverse sampling (28), which is to select a subset of molecules from
an available pool such that the selected subset represents as many classes of
compounds as possible. In the practice of database mining or combinatorial
library design, compounds are first represented by molecular descriptors, such
as molecular connectivity indices (32), and atom pair descriptors (33). Then, a
subset of M molecules is selected from a pool of N molecules. A special diver-
sity function (see below) can be designed to measure the diversity of selected
compounds. Comparison of the diversity values of different subsets of M com-
pounds using the above-described SA technique leads to the most diverse subset
that will be suggested for use in combinatorial synthesis or for biological testing
as in database mining projects.

In order to apply the SA protocol, one of the keys is to design a mathematical
function that adequately measures the diversity of a subset of selected molecules.
Because each molecule is represented by molecular descriptors, geometrically it
is mapped to a point in a multidimensional space. The distance between two
points, such as Euclidean distance, Tanimoto distance, and Mahalanobis distance,
then measures the dissimilarity between any two molecules. Thus, the diversity
function to be designed should be based on all pairwise distances between
molecules in the subset. One of the functions is as follows:

(2)

The summation is over all pairwise distances between the M selected points
(molecules). Power a was set to 1 in all of the experiments reported below;
however, it could be set to any value between 1 and 6 empirically.
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2.3. The SA Guided Focusing of Libraries

The goal of targeted library design is to select building blocks that can be
used to construct libraries with a high content of compounds predicted to be
active against a target. The activity prediction can be based on similarity analy-
sis with respect to lead molecules, pharmacophore matching scores, activities
predicted by QSAR models, or molecular docking scores. The example
described here is based on the similarity principle that is widely employed in
medicinal chemistry. The virtual library compounds (trial solutions) are gen-
erated by a random combination of available building blocks based on the
underlying chemical reaction. Once a trial solution has been generated, the
enumerated compounds are then characterized by molecular descriptors, and
the similarity between a library molecule and the probe (lead) molecule is
measured by the Euclidean distance between them in the descriptor space. With
the similarity measure as the fitness function, the SA protocol is then employed
to maximize the similarity between enumerated virtual molecules and the lead
molecule. Finally, frequency distribution analysis of building blocks found in
the molecules with the highest similarity to the lead molecule is performed,
and the building blocks found more frequently than random expectation are
suggested as candidates for combinatorial synthesis (12).

2.3.1. Building Block Frequency Analysis

The SA-guided sampling of the virtual chemical library produces a set of
compounds with the highest similarities to the lead molecule. The resulting set
is then analyzed in terms of relative frequency of each building block, fi, which
is calculated as:

(3)

where Ni and Nt are the number of occurrences for a building block i and the
total number of building blocks in the top scoring compounds, respectively.
The value of fi is compared with the expected frequency (i.e., if the selection
were random) which is calculated as 1/N (N is the total number of available
building blocks). The building blocks with frequency of occurrence higher than
random expectations are considered as candidates for combinatorial synthesis
of the targeted library.

2.4. The SA Guided Simultaneous Optimization of Multiple Properties

The SA protocol has also been successfully applied to optimize drug-like
properties or ADME parameters while maximizing diversity and/or predicted
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activity of library compounds (21). Two important aspects of this implementa-
tion are the formulation of a fitness function and the perturbation scheme used
to effectively generate the trial solutions during simulated annealing. These are
explained in detail as follows.

2.4.1. Perturbation Method

We consider three aspects of perturbation. (1) The choice of which substi-
tution group (R) on a scaffold to be sampled on a given iteration; (2) the choice
of reagents to be picked from the selected reagent pool from step 1; (3) the
choice of reagents to be ejected from the current trial solution (i.e., the current
reagent selection). The first question is addressed by considering the relative
number of reagents being selected for each R group, as well as the size of the
reagent pool for each R group. The R groups are sampled randomly with prob-
ability determined by the average ratios of the size of a pool Ni to the total
number of reagents in all pools and the number of selected reagents Ki to the
total number of selected reagents. This empirical rule biases the sampling
toward the R groups that need more sampling, while still ensuring that each
R group is sampled reasonably well. The second sampling decision is handled
by a uniform random sampling approach. The reagent pool is randomized at the
start of the optimization, with reagents selected in order. After the pool has
been fully sampled, the sampling begins again from the start of the list. This
sampling method is more efficient than a purely random approach, and
converges faster. Finally, the reagent that is ejected from the chosen R group of
the library is selected purely at random.

2.4.2. Fitness Function

The fitness function can contain terms related to diversity, similarity, devel-
opability, activity, and practicality. Two diversity terms can be encoded: the
first, reagent diversity, describes the degree of self-similarity among the
reagents at each substitution position. The second term, product novelty,
depends on the similarity between the products of the library and an existing
collection of compounds. Developability terms include molecular weight,
lipophilicity, and hydrogen bond donor/acceptor counts. Other terms related pri-
marily to practical issues may include reagent price and product flexibility. The
overall fitness function E(S) of a solution (S) is defined as the weighted sum of
individual penalty scores Ei(S) for all the terms under consideration. That is,

(4)

where Wi is the weight given to the ith term. Each term is described below.
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2.4.3. Reagent Diversity

A simple method is employed to penalize the selected library for excessive
self-similarity. An S-optimality criterion or a measure described in Eq. 2 is
computed for the reagents of each R group based on the Daylight fingerprint
Tanimoto (34) distances among members of that R group. This has the effect of
minimizing the maximum similarity between members of an R group.

2.4.4. Product Novelty

An important goal of many library designs is to augment a screening
collection with compounds that populate previously unexplored regions of
chemical space. In order to avoid the time-consuming pairwise comparison
of library products with hundreds of thousands of compounds at each iteration of
the optimization, we chose to implement a low-dimensional cell-based method.
In this implementation, compounds from the screening collection are repre-
sented in a six-dimensional feature space, mapped onto a grid with 20 divi-
sions on each axis. The cell occupancies are stored in memory. During each
iteration, molecular descriptors are calculated for each new library member, its
location on the grid is determined in an extremely rapid lookup. The average
cell count for the library is used as the penalty score for this term.

2.4.5. Developability Penalties

Lipinski’s “Rule of 5” (16) states that compounds associated with good
developability properties have MW less than 500, logP less than 5, and no
more than 5 donors or 10 acceptors. We took these four terms as our initial set
of developability parameters, in each case taking the term to be minimized as
the fraction of the total number of molecules in the library that fall outside of
the limit for each term. Lipinski’s values for each term are used as defaults, but
all are variables under the control of the user.

2.4.6. Focusing Term

One or more lead molecules may be used as a focusing target. Similarity
metrics include Daylight fingerprint Tanimoto similarity. The penalty score for
each compound in the library is defined as the distance between it and the most
similar lead molecule. The penalty score for the library is the average of the
individual compound penalty scores. QSAR predictions and docking scores
can also be used in this term.
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3. Applications

3.1. The SA-Guided Diversity Sampling—
Hit-Rate-Simulation Experiments

The major goal of this example is to demonstrate the behavior of the
SA-guided diversity sampling protocol, which could be approached in two
different ways. One of them is through retrospective analysis of a chemical
database with known structures and activities, and the other is through analy-
sis of simulated datasets of known distribution. To better separate the issues of
descriptor validation and computational protocol characterization, the latter
approach has been adopted here in the hope that one can obtain a basic under-
standing of the sampling strategy itself without noises introduced by molecular
descriptors when dealing with real datasets. Because simulated datasets are
used to replace real chemical databases, compound selection becomes choosing
a subset of points from a total collection of points. Three aspects of experi-
ments were performed in the original report (10): (a) visualization of the sampled
points in two-dimensional space; (b) quantification of the information content
obtained from the SA-guided sampling in terms of percentage coverage of data
clusters; and (c) computer simulation of hit rates obtained by both the SA-guided
sampling and random sampling. Included here are the results from hit-rate-
simulation experiments obtained by the SA-guided sampling and random sam-
plings. Details of the dataset and experimental design are explained as follows.

3.1.1. Dataset

This simulated dataset is generated as follows. First, nine cluster centers
are defined at different locations in a 2D space with coordinate values within
[–3.0, 3.0]. Second, a random number (between 1 and 100) of points is gen-
erated around each cluster center within a distance of 0.5. Finally, additional
points are generated, which are randomly distributed in the 2D space so that
a total of 1000 points is obtained. This dataset simulates the situation where
clusters of molecules exist in their descriptor space, and the number of mem-
bers for each cluster is different, i.e., some regions are more densely popu-
lated than other regions.

3.1.2. Definition of Active Clusters

C active clusters with size R are defined by randomly placing C non-
overlapping circles of radius R into the 2D space of the simulated dataset.
Points that happened to be within each of the C circles are defined as active
points, which simulate C clusters of active molecules while points outside
the circles are defined inactive. Each cluster with active points is referred to
as an active cluster.
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3.1.3. Definition of an Individual Hit and a Cluster Hit

If a point sampled happened to be an active point, it is counted as an indi-
vidual hit. Thus, the number of active points sampled by a particular method is
defined as the individual hit rate obtained by that method. On the other hand,
in order to characterize the representativeness of a sampling, we define the
concept of a cluster hit as follows. If one or more points are sampled from an
active cluster, we define that this active cluster is sampled and counted as a
cluster hit. Therefore, the number of active clusters sampled by a particular
method is defined as the cluster hit rate obtained by that method.

3.1.4. Simulation Experimental Design

In order to simulate different scenarios in real chemical database mining and
library design, several important factors, which could influence hit rates, are
examined. The variable factors include (1) the geometrical size of each active
cluster (R), (2) the number of active clusters (C) in a dataset, (3) locations of
active clusters in the descriptor space. Thus, the experimental design is as follows.
For each of three geometrical sizes (i.e., R = 0.1, 0.2, and 0.3), C active clusters
are defined for the simulated dataset (where C = 5, 10, 15, . . . , 30), and their
locations in the 2D space are randomly defined. For instance, when R = 0.1, we
first define C = 5 active clusters, then C = 10, 15 active clusters, and so on. For
each case of C, the locations of the active clusters in the space can be different.
To simulate this effect, the process of defining C active clusters is repeated for L
(=100) times using different random seeds, leading to L (=100) different distrib-
utions of active clusters in the 2D space. Then, for each of the L cases, both the
SA-guided sampling and random samplings are applied to sample M points (e.g.,
M = 40), and the individual hit rate and cluster hit rate (see above definition) are
determined for both methods. Therefore, for both the SA-guided sampling and
the random sampling, an average individual hit rate as well as an average cluster
hit rate are obtained from the L (100) individual hit rates and L (100) cluster hit
rates, respectively. The same procedure is repeated when M = 80, 100, and so on.
Finally, the average individual hit rates for both methods are reported at different
M’s when C = 5, 10, 15, . . . , 30 as in Figs. 1A, 2A for R = 0.1 and 0.3, respec-
tively. Similarly, the average cluster hit rates for both methods are also given as
in Figs. 1B, 2B for R = 0.1 and 0.3, respectively.

Each figure displays the average hit rates obtained by the SA-guided sam-
pling and random sampling in cases of different C’s (number of active clus-
ters present in the dataset). For instance, Fig. 1A compares the average
individual hit rates obtained by the SA-guided sampling and random sam-
pling when C = 5, 10, 15, 20, 25, and 30. For each case of C, both the SA
sampling and the random sampling are applied at different M’s (number of
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points sampled, where M = 40, 80, etc.). Thus, the bars corresponding to 5s
and 5r compare the hit rates obtained by the SA sampling and the random
sampling at different M’s when C = 5. Similarly, the bars corresponding to
10s vs 10r compare the hit rates obtained by the SA sampling and the random
sampling at different M’s when C = 10.

When R = 0.1, the percentage of active points (active compounds) in the
dataset was from 0.65% to 3.96%. In all cases of different C’s, the individual
hit rates obtained by the SA-guided sampling are higher than that obtained by
corresponding random sampling. An even better performance of the SA sam-
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Fig. 1. (A) Comparison of individual hits obtained by the SA sampling and random
sampling (cluster size R = 0.1). The comparison was performed when different numbers
of active clusters exist in the data set. (B) Comparison of cluster hits obtained by
the SA sampling and random sampling (cluster size R = 0.1). The comparison was
performed when different numbers of active clusters exist in the data set.



pling over random sampling is observed when cluster hit rates are considered,
which better characterizes the information content obtained by a sampling
method. For all different C’s, the cluster hit rates given by the SA sampling
are no less than 100% higher than that obtained by corresponding random
sampling (Fig. 1B).

When R = 0.2, the percentage of active points (i.e., active compounds) in the
dataset is from 2.56% to 12.6%. When individual hit rates are considered,
the SA sampling performs about the same as or slightly better than random
sampling in all cases of different C’s (data not shown). However, when cluster
hit rates are considered, the SA sampling performs clearly better than corre-
sponding random sampling, especially when the number of active clusters (C)

increased (data not shown).
When R continues to increase to 0.3, the percentage of active points

(i.e., active compounds) in the dataset increased to 5–16.8%. In this case, the
SA sampling performs about the same or even slightly worse than the corre-
sponding random sampling in terms of the individual hit rates (Fig. 2A).
Nevertheless, when cluster hit rates are considered, the SA sampling still
performs the same as or slightly better than random sampling, especially when
the number of active clusters increases (Fig. 2B).

The above observation implies that when the percentage of active com-
pounds in the library or database is low (in the range of 0.65–4%), the SA
sampling performs much better than random sampling. This is encouraging,
because in most of the combinatorial chemical synthesis projects the percent-
age of active compounds is as small as that in this simulated case. However, if
the percentage of active compounds increases, the number of active compounds
obtained by random sampling increases proportionally. This suggests that when
the percentage of active compounds in the library is very high, the SA sampling
(or any other cluster sampling) performs no better than random sampling in
terms of the individual hit rate. There is a common view that the worse per-
formance of cluster sampling strategies is due to non-ideal descriptors. On the
contrary, our simulation indicates that this in fact is the nature of this kind of
strategy regardless of what descriptors are used, because we have used simu-
lated data sets, in which descriptors are ideal. Nevertheless, when cluster hit

rate is considered as the criterion, the SA sampling performs better than or the
same as random sampling in all tested cases, which indicates that information
content obtained by the SA sampling is always better than random sampling.

3.2. The SA Guided Focusing—Designing a Tripeptoid Library

The SA protocol has been applied to the design of a tripeptoid library based
on similarity to lead compounds (12). The experimental work on this library
was described by Zuckermann et al. (35) who have shown that a few members
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of the library had high affinities for α1-adrenergic or µ-opiate receptors. The
results of that work are used as a test case to evaluate the effectiveness of the SA
protocol. When met-enkephalin is used as a lead, the SA protocol suggested
almost all building blocks found in peptoids with opioid activity. When mor-
phine is used as a lead, the SA protocol also suggested several building blocks
that were found in active opioid peptoids. Standard hypothesis testing indicates
that the results of the SA-guided similarity focusing are statistically significant.
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Fig. 2. (A) Comparison of individual hits obtained by the SA sampling and random
sampling (cluster size R = 0.3). The comparison was performed when different numbers
of active clusters exist in the data set. (B) Comparison of cluster hits obtained by
the SA sampling and random sampling (cluster size R = 0.3). The comparison was
performed when different numbers of active clusters exist in the data set.



3.2.1. Building Blocks

Computational methods described in this work are tested using a tripeptoid
combinatorial library described by Zuckermann et al. (35). These authors
described chemical structures of 24 amines used as building blocks for the pep-
toid synthesis. The common Markush structure of tripeptoids is shown in Fig. 3

where R1, R2, and R3 are the alkyl portions of primary amines used as building
blocks. The structures of the building blocks are shown in Fig. 4 and we fol-
lowed the abbreviations used in the original publication.

3.2.2. Active Peptoids

The structures of several active peptoids found by these authors are shown in
Table 1. CHIR2279, CHIR2283, and CHIR2276 are high-affinity ligands for
the α1-adrenergic receptor, whereas CHIR4531, CHIR4534, and CHIR4537
were found to have high affinity for µ-opiate receptor.

3.2.3. Peptide as a Lead Compound

The main objective of this experiment was to demonstrate that a peptide lead
compound could be used in rational design of a non-peptide library. One of the
natural opiates, met-enkephalin, is used as a hypothetical lead compound. The
averaged frequency distribution based on four SA runs is obtained (data not
shown). Based on this result, O3 had the highest frequency, and the frequencies
of A4, D11, D13, D14, D16, D2, D3, D5, and D9 are also above random expec-
tation. Apparently, O3 appeared in all the reported active peptoids with opioid
activity (cf. Table 1). Comparison of the structure of met-enkephalin (Fig. 5)

with O3 indicated that O3 is similar to the side chain of tyrosine, which is the
N-terminal residue of met-enkephalin. Among other building blocks found more
frequently than random expectation, A4, D3, and D13 are present in the reported
opioid peptoids (cf. Table 1). Thus, the SA sampling correctly identified four
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side chains (building blocks) are attached.
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Fig. 4. The building blocks and their abbreviations as described by Zuckermann
et al. (36).



out of five building blocks found in the active peptoids. In addition to these
building blocks, the SA protocol also selected D2, D3, D5, D9, D11, D14, and
D16, which could be tested experimentally.

3.2.4. Morphine as a Lead Compound

This experiment represents a scenario when an organic lead compound is
available. We chose morphine, a known opiate receptor ligand of non-peptide
chemical nature, as a hypothetical lead compound. The averaged frequency
distribution based on all four SA runs is obtained (data not shown). The most
frequent building block was D11. Building blocks D10, D12, D14, and O3
were less frequent, but all above random expectation.

Comparison between the structures of D11 and morphine makes it obvious
that D11 is similar to a substructure of morphine. Among other building blocks
found more frequently than random expectation, D12 appears in CHIR4531,
and O3 is found in all reported active peptoids (Table 1). Thus, in this test,
we correctly identified two out of five building blocks found in the active
opioid peptoids. It is interesting that with morphine as a lead, we identified
D12 (found in CHIR4531) that we missed when met-enkephalin was used as a
probe. Thus, with two lead molecules of non-peptoid nature, we could identify
all five building blocks found experimentally in active opioid peptoids. The
statistical significance of all these results has been demonstrated (12).

3.2.5. The SA Guided Similarity Focusing
vs Exhaustive Experimental Evaluation

The design of a peptoid library using non-peptoid leads such as met-
enkephalin and morphine represents an important practical instance of a rational
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Table 1

Structures of Peptoids with α1-Adrenergic
and µ-Opiate Activity (as Reported in ref. 36)

Compound ID Structure Ki (nM)

CHIR2279 O3-D10-A2 5a

CHIR2283 O3-D11-A2 140a

CHIR2276 O3-D10-A1 310a

CHIR4531 A4-D12-O3 6b

CHIR4534 A4-D3-O3 46b

CHIR4537 A4-D13-O3 31b

aData for α1-adrenergic receptor binding.
bData for µ-opiate receptor binding.



library design. The use of met-enkephalin and morphine as leads could have
been attempted, in principle, prior to the experimental synthesis and biological
testing of the peptoid library developed by Zuckermann et al. Our results indi-
cate that the SA-guided similarity focusing proposed 12 building blocks on a
rational basis (when a composite probe was used), which included all five build-
ing blocks found in the three reported active opioid peptoids. Simple evaluation
shows that if all combinations of building blocks were explored in a true sense
of combinatorial chemical synthesis, as many as 243 = 13,824 compounds would
have to be synthesized and tested. On the other hand, if the experiments were
limited to using only 12 building blocks suggested by the SA similarity focus-
ing, only 123 = 1728 compounds would have to be synthesized. Our results
show that the same active compounds would be a part of this smaller library
and therefore they would be identified. Thus, if the suggestions made by the
SA-guided similarity focusing, using non-peptoid leads, were accepted prior to
the synthesis and testing, the total number of compounds subjected to experi-
mental screening would be reduced by almost an order of magnitude.

3.3. The SA Guided Simultaneous Optimization of ADME Properties

A published synthetic scheme (36) of a four component Ugi reaction (Fig. 6)

has been used as an example to demonstrate the use of the SA optimization
protocol for the simultaneous optimization of multiple properties. Because two
of the four components are fixed in the scheme, only two diversity sites
remain for optimization. These two sites come from primary amines (R1NH2)
and aldehydes (R2CHO), respectively. We have collected from the ACD
(Available Chemical Directory) structures of primary amines and aldehydes
available from ALDRICH and LANCASTER. Compounds with reactive or
unstable structural patterns are removed. As a result, 779 primary amines and
246 aldehydes are considered.
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3.3.1. Design of An 864-member Ugi Library

An 864-member library is being designed with 24 primary amines (R1) and
36 aldehydes (R2). The default ranges for developability parameters are set
according to Lipinski. The weights have been selected based on the ranges of
values observed in most cases. The program records all the accepted solutions
during the SA process. These solutions and their associated penalty scores are
presented in a spreadsheet. For the 864-member Ugi library, a spreadsheet show-
ing the best three solutions and the initial random solution are given in Table 2.
One can see that molecular weight and clogP penalties went from 70% and 39%
for the initial solution down to 1.9% and 0.9% for the best solution. Hydrogen
bond donor and acceptor counts penalties went from 0.4% and 28% down to
0.0% and 10.0%, respectively. Reagent diversity (SDiv) penalty also went down
from 73 to 2.1. Because we gave a very small weight to hole-filling (Hfil) and
zero weight to mass spectral redundancy (MS) in this experiment, their penalty
scores actually went up. This indicates that we can emphasize those terms that
we care about most by giving larger weights to them and sacrifice those that we
do not care by giving smaller weights. This example also indicates that we can
reduce the penalty for multiple terms simultaneously.

One can use this program to compare two different library “shapes” and find
out which design may be better. For instance, a second 864-member Ugi library
was designed using
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Fig. 6. A four-component Ugi reaction.

Table 2

Spreadsheet Showing the Best Three Solutions and the Initial Random
Solution

Solutions SDiv Novelty MW HBD HBA clogP MS

Best 12.1 334 11.91 0.0 10.0 10.9 0.34
2nd best 12.1 353 11.85 0.0 10.0 10.9 0.34
3rd Best 12.1 359 11.85 0.0 10.0 10.9 0.34

. . .
Initial 73.0 126 7011, 0.4 281. 391. 0.08



36 primary amines and 24 aldehydes. Compared with the 24-by-36 library,
it has a better diversity (1.9 for 36-by-24 vs 2.1 for 24-by-36), a better hole-
filling (254 vs 334), a similar clogP score (0.69 vs 0.93) and a better H-bond
acceptor score (8.0 vs 10.0). It is, however, worse on MW (8.3 vs 1.9).

One can bias the library toward a developability criterion. For instance, when
a larger weight was given to clogP when designing a 36-by-24 Ugi library, a
solution with 0.0% penalty on clogP was obtained, as opposed to 0.69 in the
previous case. This is not a dramatic change due to the nature of this particular
library, but it can make a huge difference in other situations. This solution is also
better on MW (2.6 vs 8.3), better on H-bond acceptor penalty (3.8 vs 8.0). As
expected, the diversity of the library (2.28 vs 1.92) was sacrificed to achieve
the above goals.

4. Conclusions

In this chapter, we have presented a stochastic optimization protocol for com-
putational library design based on the principle of simulated annealing (26). We
demonstrated via computer simulation studies that the SA-guided diversity
sampling affords higher information content than random sampling in terms of
cluster hit rates. Using a tripeptoid library, we have shown that the SA guided
similarity focusing could provide important information about reagent selection
for combinatorial synthesis. Our analysis indicates that a much smaller library
could be synthesized while still yielding the same set of active compounds if our
design were adopted prior to the synthesis. Finally, we have reported a system
that employs the SA protocol for the simultaneous optimization of multiple
properties during library design. We conclude that the SA technique is an effec-
tive optimization method for computational library design.
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Abstract

We have developed and tested a genetic algorithm (GA) for pattern recognition, which identi-
fies molecular descriptors that optimize the separation of the activity classes of olfactory stimulants
in a plot of the two or three largest principal components of the data. Because principal compo-
nents maximize variance, the bulk of the information encoded by these descriptors is about dif-
ferences between olfactory classes in the dataset. In addition, the GA focuses on those classes and
or samples that are difficult to classify as it trains using a form of boosting to modify the fitness
landscape. Boosting minimizes the problem of convergence to a local optimum, because the
fitness function of the GA is changing as the population is evolving toward a solution. Over time,
compounds that consistently classify correctly are not as heavily weighted in the analysis as
compounds that are difficult to classify. The pattern recognition GA learns its optimal parameters
in a manner similar to a neural network. The algorithm integrates aspects of both strong and weak
learning to yield a “smart” one-pass procedure for feature selection and classification.

Key Words: Structure–activity relationship studies; genetic algorithms; pattern recognition;
olfaction; musks; classification; molecular descriptors.

1. Introduction

There is an enormous demand within the fragrance industry for methodology
that will allow for the development of new compounds with specialized olfactory
properties. In a traditional framework, the introduction of a new odorant is a
lengthy, laborious, and costly discovery and development process. We propose to
streamline this process by taking advantage of existing olfactory databases avail-
able through the open scientific literature as input for a new structure/activity
correlation methodology in order to develop fundamental relationships between
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chemical structure and the olfactory properties of molecules. The first step in
this so-called rational approach to odorant design is to characterize each molecule
in a training set by using an appropriate set of descriptors capable of represent-
ing key intermolecular interaction mechanisms. To accomplish this task, we will
use an enhanced version of Breneman’s Transferable Atom Equivalent (TAE)
descriptor methodology to create a large set of electron-density-derived shape/
property-encoded surface translator (PEST), wavelet coefficient (WCD), and TAE
histogram descriptors (1). These descriptors will then be used to create improved
qualitative structure activity relationship models that characterize and predict the
behavior of olfactory stimulants.

Existing QSAR methodologies have met with mixed success. Numerous
groups have demonstrated the effectiveness of QSAR within homogeneous sets
of molecules (2), but traditional QSAR methodologies are much less effective
when applied to datasets containing a great deal of structural variation. Much of
this difficulty can be traced to the type of molecular property descriptors used to
represent the problem. Commonly used fragment-based descriptors relying on
2D topology of molecules are not highly correlated with most biological
responses. In contrast to previous attempts at SAR, our use (3) of shape-aware
electron-density-based molecular property descriptors has removed many of the
limitations brought about by the use of descriptors based on substructure frag-
ments, molecular connectivity indices, or other whole molecule descriptors.

Another reason for the mixed success of past QSAR efforts can be traced to the
nature of the underlying modeling problem, which is often quite complex. To meet
these challenges, a genetic algorithm for pattern-recognition analysis has been
developed (4,5) that selects descriptors that create class separation in a plot of the
two largest principal components (6) of the data while simultaneously searching
for features that increase the clustering of the data. The efficacy of this method-
ology has been evaluated using a structurally diverse database consisting of 331
macrocyclic and nitroaromatic compounds (192 musks and 139 nonmusks).

2. Materials

Compounds used in the database were obtained from literature reports of
chemical structure and odor quality (7–11). In Table 1, a list of the compounds
comprising the database is given. The macrocyclic and nitroaromatic musks
are of strong, medium, weak, or unspecified odor intensity; the nonmusks are
odorless or have an odor other than musk. Information about odor quality and
intensity is contained in the activity label associated with each compound. It
should be emphasized that a musk compound labeled as weak, medium, or
strong refers only to the change in its odor threshold, not to any change in its
odor quality. Structural classes present in the dataset are shown in Fig. 1.
Natural musks, whose sources include both rare animal and plant species, are
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macrocycles, whereas the first synthetic musks prepared were nitrated deriva-
tives of benzene.

Two-dimensional representations of the compounds were generated by draw-
ing each compound on a graphics terminal using Chembase (Molecular Design
Limited), which converted the graphical representation of the structures into
molecular connection tables. A three-dimensional molecular model was also
generated for each compound in the database using a molecular mechanics
model building routine that employed the CHARMM force field contained in
the modeling program Quanta (Molecular Simulations). The PEST algorithm
(12) was then used to generate wavelet, histogram, and hybrid shape/property
descriptors from the connection tables and the three-dimensional models.
Molecular descriptors were computed individually for each structural group of
musks, allowing for easy separation and modeling of the structural classes.

3. Methods

3.1. Electron-Density-Derived Descriptors

To effectively characterize the potential olfactory properties of any mole-
cule, it is necessary to use an appropriate set of molecular descriptors. While

(text continues on page 411)
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Fig. 1. Two very strong musks and two nonmusks representing the two major struc-
tural classes of compounds found in the data set. Reproduced with permission from
the American Chemical Society (B. K. Lavine et al. (2003), Journal of Chemical

Information and Computer Sciences 43, 1890–1905.)



Table 1

Compounds Comprising the Musk Databasea

Index Label Compound Name

1 MSTR 8-Cyclohexadecanone
2 MSTR 2(1H) Benzocyclododecenone,3,4,5,6,7,8,9,10,11,12,13,14-

dodecahydro
3 MSTR Cyclotetradecone, 4 methyl
4 MWEA 2(1H) Benzocyclododecenone, tetradecahydro-
5 MMED Cyclopentadecanol
6 MSTR Cyclopentadecanone, 5-methyl
7 MSTR 4-Cyclopentadecen-1-one
8 MSTR 2-Cyclopentadecen-1-one, 3-methyl
9 MSTR 4-Cyclopentadecen-1-one, (Z)-
10 MMED 17-oxabicyclo [14.1.0] heptadecane
11 MSTR 5-Cyclohexadecen-1-one
12 MMED Thiacyclopentadecane
13 MMED Oxacyclotridecan-2-one
14 MMED Oxacyclotridecan-2-one, 14-methyl-
15 MSTR Oxacyclotridecan-2-one, 15-methyl-
16 MSTR Oxacyclotridec-6-en-2-one, (Z)-
17 MSTR Oxacyclotridecan-2-one, 16-methyl-
18 MSTR 1,5-Dioxacyclopentadecan-2-one
19 MMED Oxacyclopentadecane-2, 15-Dione
20 MSTR Cyclopentadecanone, 2-hydroxy-
21 MMED 1,5-Dioxacyclopentadecane-6, 15-Dione
22 MSTR Oxacyclohexadec-11-en-2-one
23 MSTR 1,3-Dioxacycloheptadec-10-en-2-one
24 MSTR 1,4-Dioxacyclohexadecane-5, 16-dione
25 MOTH 2-Cyclotetradecen-1-one
26 MMUS 3-Cyclotetradecen-1-one
27 MOTH 1-(1-cyclododecen-1-yl)-1-acetyl-1-cyclododecene
28 MOTH 1-Butanone, 1-(1-cyclododecen-1-yl)-1-butyryl-1-cyclododecene
29 MMUS 1-Cyclododecene-1-methanol, .alpha. -methyl-
30 MMUS Cyclododecanemethanol, alpha. -methyl-
31 MSTR Cycloheptadecanone
32 MMUS 9-Cycloheptadecen-1-one, (Z)
33 MSTR Cyclopentadecanone
34 MWEA Cyclooctadecanone
35 MSTR Cyclohexadecanone
36 MSTR Cyclotetradecanone
37 MMUS 1,5-Dioxacyclopentadecan-2,4-dione
38 MMUS 1,4-Dioxacyclotetradecan-2, 3-dione
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Table 1 (continued)

Index Label Compound Name

39 MMUS 1,3-Dioxacyclopentadecan-2-one
40 MMUS Oxacyclotridecan-2, 13-dione
41 MMUS Azacycloheptadecane
42 MSTR Oxacycloheptadecan-2-one
43 MMUS Oxacycloheptadec-8-en-2-one
44 MSTR Cyclcopentadecanone, 3-methyl-
45 MWEA Cyclopentadecanone, 2-methyl-
46 MMUS Cyclopentadecanone, 4-methyl-
47 MSTR Oxacyclohexadecan-2-one
48 MMUS 1,3-Dioxacycloheptadecan-2-one
49 MSTR Oxacyclopentadecan-2-one
50 MMUS 1,3-Dioxacyclohexadecan-2-one
51 MMUS Oxacyclotetradecan-2-one
52 MMUS 1,4-Dioxacyclopentadecan-2, 3-dione
53 MMUS 1H-Cyclopentacyclododecan-1-one, tetradecahydro
54 MMUS 2(1H) Benzocyclododecenone 4,5,6,7,8,9,10,11,12-dihydro
55 MOTH Cyclododecapyrimidine, 5, 6, 7, 8, 9,10, 11, 12,13,

14-Decahdyro-N
56 MOTH Cyclododecan
57 MOTH Bicyclo [10.1.0] tridecane, 1-methoxy
58 MMUS Oxacycloletadec-9-en-2-one
59 MMUS Cyclohexadecanolid
60 MMUS Ethanone, 1-(2, 5, 5-trimethylcycloheptyl)-
61 MMUS Oxacyclohexadecane-2, 13, dione
62 MMUS Oxacyclohexadecane-2, 13, dione, 16, 16, dimethyl
63 MMUS 5-Cyclopentadecen-1-one (Z) and (E)
64 MMUS Cyclotetradecanon
65 MWEA Oxacyclopentadecane
66 MWEA Oxacyclohexadecane
67 MMUS Thiacyclotetradecane
68 MMUS Thiacycloheptadecane
69 MMUS Azacyclotetradecane
70 MMUS Azacyclotetradecane, 1-methyl-
71 MMUS Azacyclopentadecane
72 MMUS Azacyclopentadecane, 1-methyl-
73 MMUS Azacyclohexadecane
74 MMUS Azacyclohexadecane, 1-methyl-
75 MMUS Azacycloheptadecane, 1-methyl-
76 MMUS Azacyclooctadecane
77 MMUS Azacyclooctadecane, 1-methyl-

(continued)
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Table 1 (continued)

Index Label Compound Name

78 MMUS Cyclotridecanone
79 MSTR Cyclohexadecanone, 3-methyl
80 MMUS Oxacyclohexadecan-6-one
81 MMUS 1, 3 Dioxacyclotetradecan-2-one
82 MMUS 1, 3 Dioxacycloheptadecane
83 MWEA Oxacyclooctadecan-2-one
84 MMUS Cyclopentadecom-1, 2, 3-trione
85 MMED 1,4-Dioxacycloheptadecan-5-one
86 MMED 1,5-Dioxacycloheptadecan-6-one
87 MMUS 1,4-Dioxacyclohexadecane-2, 3-dione
88 MMUS 1,4-Dioxacyclotetradecane-5, 14-dione
89 MMUS 1,4-Dioxacyclopentadecane-5, 15-dione
90 MMUS 1,5-Cyclopentadecanedione
91 MWEA 2H-Benzocyclotridecen-2-one, hexadecahydro
92 MWEA Cyclononadecanone
93 MMED 1,7-Dioxacycloheptadecan-2-one
94 MWEA 1-Oxa-5-thiacyclohexadecan-2-one
95 MMUS 5-Cyclotetradecen-1-one, (Z)-
96 MMUS 1,4-Dioxacycloheptadecane-5, 17-dione
97 MMUS Pyridin
98 MMUS 16-Azabicyclo [10.3.1] hexadeca- 1(16),12, 14, triene, 3-methyl-

,(.+-.)-
99 MSTR 1,8-Dioxacylcycloheptadecan-9-one
100 MSTR 1,7-Dioxacycloheptadecan-8-one
101 MMED 1,6-Dioxacycloheptadecan-7-one
102 MWEA 1-Oxa-6-thiacycloheptadecan-17-one
103 MWEA 1-Oxa-7-thiacycloheptadecan-18-one
104 MWEA 1-Oxa-5-thiacycloheptadecan-16-one
105 MMUS 1,5-Dioxacyclohexadecan-6-one
106 NOTH Cyclododecanone
107 NOTH Bicyclo [7.2.0] undec-s-en-2-ol, 2,6,10,10-tetramethyl
108 NOTH Bicyclo [7.2.0] undec-5-ene-2-Acetaldehyde, 6,10,10-trimethyl
109 NOTH Cyclododecan-1, 3,dioxole, 3a alpha, 4,5,6,7,8,9,10,11,12,13,13a

beta-dodecahydro-2-methyl
110 NOTH Cyclododeca-1,2 dioxane, 5, 6, 7, 8, 9, 10, 11,12,13,14-

decahydro
111 NOTH Cyclododeca [b] furan, tetradecahydro
112 NOTH Cyclododecane, 1-methoxy-2 methyl
113 NOTH 5-cyclododecene-1-methoxy methoxy
114 NOTH Ketone, methyl, 2,6,10-trimethyl-1 cyclododecen-1yl
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Table 1 (continued)

Index Label Compound Name

115 NOTH Cyclododecan[c] Furan, 1,3,3a, 4,5,6,7,8,9,10,11,13a-
dodecahydro

116 NOTH Cyclododecyl-1, 5, 9-trimethy, 10-acetyl, 1,8-diene
117 NOTH Cyclodocecyl-1-ene-1,5,9-trimethyl-5,6-epoxide
118 NOTH 3-Cyclooctene-1-methanol, 7-hydroxy, diformate
119 NOTH Cyclooctane (methoxy methoxy)
120 NOTH Cyclooct [e] isobenzofuran, tetradecahydro-3a-methyl
121 NOTH 6-Azulenol, 2, 3, 3A, 4,5,6,7,8-octahydro-1 methyl-4 methylene-

7-(1-methylethyl)
122 NOTH 6(1H)-Azulenone, 2,3,3A, 7,8,8A,hexahydro-3A-methyl-1-

(1methylethyl)-
123 NOTH 4-Azulenemethanol, decahydro-8-methyl-2-(1-methylethenyl)-

acetate
124 NOTH Cyclononanone
125 NFAI 1,3-Dioxolan-2-one
126 NFAI 1,3-Dioxan-2-one
127 NOTH 1,3-Dioxonan-2-one
128 NOTH 1,3-Dioxecan-2-one
129 NOTH 1,3-Dioxacyloundecan-2-one
130 NOTH 1,3-Dioxacyclotridecan-2-one
131 NOTH 1,3-Dioxepane
132 NOTH 1,3-Dioxocane
133 NOTH 1,3-Dioxonane
134 NOTH 1,3-Dioxacyclododecane
135 NOTH 1,3-Dioxacyclotridecane
136 NOTH Oxacycloundecan-2-one
137 OLES 2,5-Furandione, dihydro
138 OLES 2H-Pyran-2, 6 (3H)-dione, dihydro
139 NFAI 2, 7-Oxepandedione
140 NOTH 2, 10-Oxecanedione
141 NOTH Oxacycloundecan-2, 11-dione
142 NOTH Oxacyclododecane-2, 12-dione
143 OLES Cyclopentadecan-1, 7-dione
144 OLES Cyclopentadecan-1, 8-dione
145 NOTH Cyclodecanone
146 NOTH Cycloundecanone
147 NOTH Cyclododeane (1,1-dimethylethoxy)
148 NOTH Cyclododecane, (methoxy methyl)-
149 NOTH Cyclododecane, (ethoxymethyl)-

(continued)
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Table 1 (continued)

Index Label Compound Name

150 NOTH Cyclododecane, [(1-methylethoxy) methyl]-
151 NOTH Cyclododecane, [2-propenyoxy) methyl]-
152 NOTH Cyclopentanone
153 NOTH Cyclohexanone
154 NOTH Cycloheptanone
155 NOTH Cyclooctanone
156 OLES Cycloeicosanone
157 OLES Cycloheneicosanone
158 NONM 2-cyclopentadecen-1-one
159 NONM Oxacyclotridecan-2-one, 13-methyl
160 NONM 1,3 dioxacyclooctadec-2-one
161 NONM Oxacyclotetradecane-2, 14-dione
162 NONM 1,4-Cyclopentadecanedione
163 NONM 1,6-Cyclopentadecanedione
164 NONM 1H-Indene, 2,3-dihydro-1, 1, 2,4,6-pentamethyl-5, 7-dintro
165 NONM Benzene, 1,3,5-trinitro
166 NONM Benzene, 2-methyl-1, 3,5-trinitro
167 NONM Benzene, 1,3,5-trimethyl-2, 4,6-trinitro
168 NONM Benzene, 2,4,dimethyl, 1,3,5-trinitro
169 NONM Benzene, 1,3-Bis (1,1-dimethylethyl)-2,4-dinitro
170 NONM Benzene, 2-methoxy-1, 3-Bis (1-methylethyl)-5-nitro
171 NONM Benzene, 2-(1,1-dimethylethyl)-1,3,5-trinitro
172 NONM Benzene, 1,5-Bis (1,1-dimethylethyl)-3, methyl-2, 4-dinitro
173 NONM Benzene, 2-Methoxy-4-methyl-1-(4-methylpentyl)-3,5-dinitro
174 NONM Benzene, 1-(1,1-dimethylethyl)-2-methoxy-4 methyl-3-nitro
175 NONM Benzene, 1,4-Bis (1,1-dimethylethyl)-2-methoxy-3-nitro
176 NONM Benzene, 1,3-Bis (1,1-dimethylethyl)-2-methoxy-4-methyl-

5-nitro
177 NONM Benzaldehyde, 6-(1,1-dimethylethyl)-2-methoxy-3-nitro
178 NONM Benzene, 1-(1,1-dimethylethyl)-2methoxy-3, 4,dimethyl-5-nitro
179 NONM Benzene, 1-(1,1-dimethylethyl)-2,3-dimethoxy-4-nitro
180 NONM Benzoic acid, 2-(1,1-dimethylethyl)-4,6-dimethyl-3, 5-dinitro
181 NONM Benzene, 2 butyl-4-methyl-1, 3,5-trinitro
182 NONM Benzene, 2 methyl-4 (3-methylbutyl)-1,3,5-trinitro
183 NONM Benzaldehyde, 2, 6 - Bis (1,1-dimethylethyl)-3-methoxy-5-nitro
184 NONM Benzene, 1-bromo-4 butyl-2-methyl-3, 5-dinitro
185 NONM Benzamine, 4-(1,1-dimethylethyl)-2,6-dimethyl, 3-5, dinitro
186 NONM Benzene, 1-(1,1-dimethylethyl)-4-methoxy-3-methyl-2,

5,6-trinitro
187 NONM Benzene, 1,3-dibromo-4- (1,1-dimethylethyl)-2,6-dimethyl,

5-nitro
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Table 1 (continued)

Index Label Compound Name

188 NONM Benzaldehyde, 4-(1,1-dimethylethyl)-3-nitro
189 NONM Benzaldehyde, 4-(1,1-dimethylethyl)-3,5-dinitro
190 NONM Benzene, 2-(1,1-dimethylethyl)-4,5 dimethyl-1, 3-dinitro
191 NONM Benzoic acid, 4-(1,1-dimethylethyl)-2methyl 3,5-dinitro
192 NONM Benzene, 1(1,1-dimethylethyl)-3,4-dimethyl-6- (1methylethyl)-

2,5 dinitro
193 NONM Benzene, 1(1,1-dimethylethyl)-4 methoxy-3, 5-dimethyl-2-nitro
194 NONM Benzene, 2 methoxy-1, 3 dimethyl-4, 5 dinitro
195 NONM Benzene, 1(1,1-dimethylethyl)-3,5-dimethyl-2, 4-dinitro-

6[Phenylmethyl]sulfonyl
196 NONM Benzamine, 2(1,1-dimethylethyl)-4,6-dimethyl-3, 5-dinitro
197 NONM Benzene, 1(1,1-dimethylethyl)-3 methoxy-2, 4-dinitro
198 NONM Methanone, [2-(1,1-dimethylethyl)-4,6-dimethyl-3,

5-dinitrophenyl] Phenyl-
199 NONM Benzene, 1-(1,1-dimethylethyl)-3,5-dimethyl-2, 6-dinitro-

4 [Phenylmethyl] sulfonyl
200 NONM Benzene, 2-ethyl-5-isooctyl-4-methoxy-1, 3-dinitro
201 NONM Benzene, 1-isoheptyl-2-methoxy-4-methyl-3, 5-dinitro
202 NONM Benzene, 1-isooctyl-2-methoxy-4-methyl-3, 5-dinitro
203 NONM Ethanone, 1- [3-(1,1-dimethylethyl)-2-methoxy-5-nitrophenyl
204 NOTH Benzene, 1,3-dibromo-2-isopropyl-5-methoxy-4-nitro
205 OLES Benzene, 1, 3-BIS- (1,1-dimethylethyl)-5-nitro
206 OLES Benzaldehyde, 5 (1,1-dimethylethyl)-2-methoxy-3-nitro
207 OLES Benzene, 1, 5-BIS- (1,1-dimethylethyl)-2 methoxy-4 methyl 

3-nitro
208 OLES Ethanone, 1- [3-(1,1-dimethylethyl)-4-methoxy-5-nitrophenyl
209 OLES Benzaldehyde, 2 (1,1-dimethylethyl)-4-methoxy-5-nitro
210 OLES Benzene, 1, 4-BIS- (1,1-dimethylethyl)-2 methoxy-5-nitro
211 OLES Benzene, 1-(1, 1-dimethylethyl)-2, 5-dimethoxy-4-nitro
212 OLES Benzene, 1-(1, 1-dimethylethyl)-2-methoxy-4 methyl-5-nitro
213 NOTH Benzaldehyde, 5- (1,1-dimethylethyl)-2-methyl-3-nitro
214 OLES Benzaldehyde, 2- (1,1-dimethylethyl)-4,5,6-trimethyl-3-nitro
215 OLES Benzene, 5-(1, 1-dimethylethyl)-2-methoxy-1, 3-dinitro
216 OLES Benzene, 1-(1, 1-dimethylethyl)-4-methoxy-2-methyl 3-5-dinitro
217 OLES Benzene, 2-bromo-5- (1, 1-dimethylethyl)-4-methoxy-1,

3-dinitro
218 OLES Benzene, 2-butoxy-1- (1, 1-dimethylethyl)-4-methyl-3, 5-dinitro
219 OLES Benzene, 2-methoxy-4 methyl-1- (1-methylpropyl)-3,5-dinitro
220 OLES Benzene, 2-methoxy-4 methyl-1- (2-methylpropyl)-3,5-dinitro
221 OLES Benzene, 2-(1,1-dimethylethyl)-4-methoxy-5-methyl-1, 3-dinitro

(continued)
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Table 1 (continued)

Index Label Compound Name

222 OLES Benzene, 1-(1,1-dimethylethyl)-5-methoxy-2, 4-dintro
223 OLES Benzaldehyde, 2-(1,1-dimethylethyl)-4-methoxy-3, 5-dinitro
224 OLES Phenol, 4-(1,1dimethylethyl)-2,6-diethyl-3, 5-dinitro
225 OLES Benzene, 1-(1,1-dimethylethyl)-4-methoxy-3, 5-dimethyl-2,

6-dinitro
226 OLES Benzene, 5-(1,1-dimethylethyl)-2-methyl-1, 3-dintro
227 OLES Benzene, 2,5-Bis- (1,1-dimethylethyl)-1,3-dinitro
228 OLES Benzene, 5-(1,1-dimethylpropyl)-2-methyl-1, 3-dintro
229 OLES Benzene, 1-(1,1-dimethylethyl)-3,5-diethyl-2, 4,6-trinitro
230 OLES Benzofuran, 2, 3, -dihydro-3, 3,6-trimethyl-5, 7-dinitro
231 OLES Benzene, 1, 4-Bis- (1,1-dimethylethyl)-2-methoxy-3, 5-dinitro
232 OLES Benzenemethanol, 4 - (1,1-dimethylethyl)-2, 6-dimethyl -3,

5-dinitro
233 OLES 1H-Indene, 6-(1,1-dimethylethyl)-2, 3 dihydro-4, 5,7-trinitro
234 OLES Benzaldehyde, 2, 4-Bis- (1,1-dimethylethyl)-5-methoxy-3-nitro
235 NONM Benzene, 2-(1,1-dimethylethyl)-4-methoxy-1, 3, 5-trinitro
236 NONM Benzene, 2-methoxy-1- (2-methylpropyl)-3,5 dinitro-

4-(trifluoromethyl)
237 NONM Benzene, 1-(1,1-dimethylbutyl)-2-methoxy-4-methyl-3-5-dinitro
238 NONM Benzene, 1-(1,1-dimethylpentyl)-2-methoxy-4-methyl-3-5-dinitro
239 NONM Benzene, 2-methoxy-1, 5-Bis (1methylethyl)-3-nitro
240 NONM Benzene, 1-(1,1-dimethylpentyl)-2-methoxy-4, 5-dimethyl-

3-nitro
241 NONM Benzenemethanol, 4 - (1,1-dimethylethyl)-2, 6-dimethyl -3,

5-dinitro-, acetate (ester)
242 NONM Benzene, 1-(1,1-dimethylethyl)-3, 4, 5-trimethyl-2-nitro
243 NONM Benzene, 1-(1,1-dimethylethyl)-2, 3, 4, 5-tetramethyl-6-nitro
244 NONM 1H-Indene, 2, 3 -dihydro-1, 1,4,6-tetramethyl 5,7-dinitro
245 NONM 1H-Indene, 6-ethyl-2, 3 dihydro-1, 1-dimethyl 5,7-dinitro
246 MMUS Benzene, 1-bromo-4 (1,1-dimethylethyl)-2,6-dimethyl-3,

5-dinitro
247 MSTR Benzene, 1-azido-4 (1,1-dimethylethyl)-2,6-dimethyl-3, 5-dinitro
248 MSTR Ethanone, 1-[2(1,1-dimethylethyl)-4,6-dimethyl-3, 5-

dinitrophenyl]
249 MMUS Benzaldehyde, 2-(1,1-dimethylethyl)-4,6-dimethyl-3, 5-dinitro
250 MMUS Benzonitrile, 4-(1,1-dimethylethyl)-2, 6-dimethyl-3, 5-dinitro
251 MMUS Benzene, 1-(1, 1-dimethylethyl)-2-fluoro-3, 5-dimethyl-2,

6-dinitro
252 MMUS Benzene, 1-(1, 1-dimethylethyl)-4-fluoro-3, 5-dimethyl-2,

6-dinitro
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Table 1 (continued)

Index Label Compound Name

253 MMUS Ethanone, 1-(4-methoxy-2-methyl -3, 5-dinitrophenyl)
254 MMUS Ethanone, 1-[4(1,1-dimethylethyl)-2,3,6-trimethyl-5-nitrophenyl]
255 MSTR Benzene, 1-(1,1-dimethylethyl)-3,5-dimethyl-2, 4,6-trinitro
256 MMUS Benzene, 1-bromo-3- (1,1-dimethylethyl)-5-methyl-2, 4,

6-trinitro
257 MMUS Benzene, 2-(1,1-dimethylethyl)-4-methyl-1, 3,5-trinitro
258 MMUS Benzene, 1-chloro-3- (1,1-dimethylethyl)-5-methyl-2, 4,

6-trinitro
259 MWEA Benzene, 1, 3-Bis (1,1-dimethylethyl)-5-methyl-2, 4, 6-trinitro
260 MMUS Benzene, 3-(1,1-dimethylethyl)-1-fluoro-5-methyl-2, 4, 6-trinitro
261 MWEA Benzene, 2-hexyl-4-methyl-1, 3, 5- trinitro
262 MMUS Benzene, 2-methyl-4- (1-methylethyl)-1, 3, 5-trinitro
263 MSTR Benzene, 1-(1,1-dimethylethyl)-2-ethoxy-3, 5-dinitro
264 MSTR Benzene, 1-(1,1-dimethylethyl)-2-ethoxy-4 ethyl 3, 5-dinitro
265 MSTR Benzene, 1-(1,1-dimethylpropyl)-4 ethyl-2-methoxy- 3, 5-dinitro
266 MSTR Benzene, 1, 3-Bis (1,1-dimethylethyl)-4-methoxy-6-methyl-2,

5-dinitro
267 MSTR 1H-Indene, 2-ethyl, 2, 3 -dihydro-1, 1,3, 3, 5-pentamethyl 4,

6-dinitro
268 MSTR Silane, (3, 5-dimethyl-2, 4, 6-trinitrophenyl) trimethyl-
269 MMUS Benzene, 1, 3-Bis (1,1-dimethylethyl)-2-methoxy-5-nitro
270 MMUS Benzene, 1-(1,1-dimethylethyl)-2-methoxy-3-nitro
271 MMUS Benzene, 2-methoxy-4-methyl-1, 3,5-trinitro
272 MMUS Benzaldehyde, 3-(1,1-dimethylethyl)-2-methoxy-5-nitro
273 MMUS Benzene, 2-bromo-4- (1,1-dimethylethyl)-1,3, 5-trinitro
274 MMUS Benzene, 1-(1,1-dimethylethyl)-2, 4-dimethoxy-5, 6-dimethyl-

3-nitro
275 MMUS Benzene, 2-methyl-4- (2-methylpropyl)-1,3,5-trinitro
276 MMUS Benzene, 5-(1,1-dimethylethyl)-2-ethyl-1, 3-dinitro-
277 MMUS Ethanone, 1-(2-butyl-3-methyl-4, 6-dinitrophenyl)-
278 MMUS Benzene, 1-(1,1-dimethylethyl)-2-methoxy-3, 5-dimethyl-4,

6-dinitro
279 MMUS Benzene, 2-(1,1-dimethylpropyl)-4-methyl-3- (1-methylethyl)-

1,5-dinitro
280 MMUS Benzene, 1-(1,1-dimethylethyl)-3-methyl-2, 4-dinitro
281 MMUS Benzoyl chloride, 6-(1,1-dimethylethyl)-3-methyl-2, 4-dinitro-
282 MMUS Benzene, 1, 3-dibromo-2- (1,1-dimethylethyl)-5-methoxy-4-nitro
283 MMUS Benzonitrile, 2-(1,1-dimethylethyl)-4, 5-dimethyl-3-nitro-
284 MMUS Benzene, 1-(1,1-dimethylethyl)-3-methoxy-5-methyl-2, 4,

6-trinitro

(continued)
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Table 1 (continued)

Index Label Compound Name

285 MMUS Benzene, 2-(1,1-dimethylethyl)-4-methyl-3- (1-methylethyl) 1,
5-dinitro

286 MMUS Benzene, 1-(1, 1-dimethylpropyl)-2, 4-dimethoxy-3, 5-dinitro-
287 MWEA Benzene, 2, 4-Bis- (1,1-dimethylethyl)-1-nitro
288 MSTR Ethanone, 1-[4-(1,1-dimethylpropyl)-2,6-dimethyl-3,

5-dinitrophenyl]
289 MSTR Benzene, 1-(1,1-dimethylpropyl)-3, 4, 5-trimethyl-2,6-dinitro-
290 MMUS Benzene, 1-(1,1-dimethylethyl)-2-methoxy-3,5-dinitro-
291 MMUS Benzene, 4-(1, 1-dimethylethyl)-6-methyl-1, 3-dinitro
292 MSTR Benzene, 6-(1,1-dimethylethyl)-3-ethyl-1-methoxy-2, 4-dinitro
293 MWEA Benzene, 6-(1,1-dimethylethyl)-1-methoxy-3- (1-methylethyl)-

2-4-dinitro-
294 MSTR Benzene, 6-(1,1-dimethylethyl)-1-ethoxy-3-methyl-2, 4-dinitro-
295 MWEA Benzene, 6-(1,1-dimethylethyl)-3-methyl-1- (1-methyl ethoxy)-2,

4-dinitro-
296 MMUS Benzaldehyde, 4-(1,1-dimethylethyl)-2,6-dimethyl-3, 5-dinitro-
297 MMED Benzoic acid, 2-(1,1-dimethylethyl)-4,6-dimethyl-3, 5-dinitro-

methyl ester
298 MWEA Benzene, 5-(1,1-dimethylpropyl)-2-ethyl-1, 3-dinitro-
299 MWEA Benzene, 2-ethyl-1, 3-dinitro-
300 MSTR Benzene, 2-(1,1-dimethylpropyl)-4,6-dimethyl-1, 3, 5-trinitro-
301 MSTR 1H-Indene, 3-ethyl, 2, 3 -dihydro-1, 1,3, 5-tetramethyl 4,

6-dinitro
302 MMUS Naphthalene, 1,2,3,4- tetrahydro-1,1,4,4-tetramethyl-

6-(1methylethyl)-5,7-dinitro
303 MMUS Naphthalene, 6-tert-butyl-1,2,3,4- tetrahydro-1,1,4,

4-tetramethyl-5,7-dinitro
304 MMUS Naphthalene,1,2,3,4-tetrahydro-7-isopropyl-1,1,2,4,

4-pentamethyl-6,8-dinitro
305 MMUS Naphthalene,1,2,3,4-tetrahydro 1,1,4-trimethyl-6, 8-dinitro
306 MWEA 1-propanone,1-[2-(1,1-dimethylethyl)-4,6-dimethyl-3,

5-dinitrophenyl]-
307 MMUS Benzene,1,3-dibromo-5-(1,1-dimethylethyl)-2-methoxy-

6-methyl-2-nitro
308 MSTR 1H-Indene, 2, 3 -dihydro-1, 1,3, 3, 5-pentamethyl 4,6-dinitro
309 MSTR Benzene,2-(1,1-dimethylethyl)-4,5,6-trimethyl-1,3-dinitro-
310 MSTR Ethanone, 1-[4-(1,1-dimethylethyl)-2,6-dimethyl-3,

5-dinitrophenyl]-
311 MMUS Benzene, 1-(1,1-dimethylethyl)-2-methoxy-4-methyl-3,5-dinitro-
312 MMUS Ethanone, 1-[6-(1,1-dimethylethyl)-3-ethyl-2,4-dinitrophenyl]-



many types of descriptors exist in the literature, the present work emphasizes
the use of electron-density-derived descriptors. The underlying methodology
relies on the hypothesis that a causative relationship exists between observed
odor properties and the distribution of certain molecular electronic properties as
sampled on molecular van der Waals surfaces. An additional hypothesis of
PEST shape/property hybrid descriptor validation is that the spatial arrange-
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Table 1 (continued)

Index Label Compound Name

313 MMUS Benzene, 1-bromo-6-(1,1-dimethylethyl)-3-methoxy-2,4-dinitro-
314 MMUS Benzaldehyde, 5-(1,1-dimethylethyl)-4-methoxy-3-nitro-
315 MMUS Benzaldehyde, 5-(1,1-dimethylethyl)-4-ethoxy-3-nitro-
316 MWEA Benzene,4,6-Bis- (1,1-dimethylethyl)-1-methoxy-2-nitro
317 MSTR Benzene,6-(1,1-dimethylethyl)-1,3-dimethoxy-2,4-dinitro
318 MSTR Benzene,6-(1,1-dimethylpropyl)-1-methoxy-3-methyl-2,

4-dinitro-
319 MMUS Benzonitrile,2-(1,1-dimethylethyl)-4,6-dimethyl-3,5-dinitro-
320 MMUS Benzene,1-bromo-2-(1,1-dimethylethyl)-4,6-dimethyl-3,5-dinitro
321 MWEA Benzoyl chloride, 2-(1,1-dimethylethyl)-4,6-dimethyl-3,

5-dinitro-
322 MWEA Benzoyl chloride, 4-(1,1-dimethylethyl)-2,6-dimethyl-3,

5-dinitro-
323 MWEA Benzoic acid, 4-(1,1-dimethylethyl)-2,6-dimethyl-3,5-dinitro,-

methylester
324 MSTR Benzene,2-(1,1-dimethylethyl)-4-ethyl-6-methyl-1,3,5-trinitro
325 MMUS 1H-Indene, 2, 3 -dihydro-1, 1,2, 3, 3, 5-hexamethyl 4,6-dinitro
326 MMUS 1H-Indene, 5-ethyl- 2, 3-dihydro-1, 1, 3, 3 -tetramethyl 4,

6-dinitro
327 MMUS 1H-Inden-5-ol, 2-ethyl- 2, 3-dihydro-1, 1, 3, 3 -tetramethyl 4,

6-dinitro
328 MMUS 1H-Indene, 5-ethyl- 2, 3-dihydro-1, 1, 2, 3, 3 -pentamethyl 4,

6-dinitro
329 MMUS 1H-Indene, 3-ethyl- 2, 3-dihydro-1, 1, 2, 3, 3 -pentamethyl 4,

6-dinitro
330 MWEA Benzene, 1, 5-Bis- (1,1-dimethylethyl)-3-methyl-2-nitro-
331 NONM Benzenesulfonic acid, 4-butyl-2-methyl-3, 5-dinitro

aMSTR, strong musk; MMED, medium musk; MWEA, weak musk; MMUS, musk of
unspecified odor strength; MOTH, musk that has a secondary odor note that is not musk; OLES,
odorless; NOTH, specified odor other than musk; NONM, nonmusk. Table 1 is reproduced with
permission from the American Chemical Society (B. K. Lavine et al. (2003), Journal of Chem-

ical Information and Computer Sciences, 43, 1890–1905.)



ment of surface electronic properties contains pertinent chemical information.
Both of these hypotheses have been previously validated (13) in studies involv-
ing biological and nonbiological molecular behavior.

A library of integrated atomic basins as defined by AIM theory (14) is used
to rapidly construct representations of molecular electron density distributions
and van der Waals electronic surface properties. Ten electronic surface proper-
ties obtained from these reconstructions have been identified as containing
useful information. The distribution of these electronic properties on molecular
surfaces may be characterized in several ways. One way involves the recording
of the distribution of these properties as surface histograms that quantify the
molecular surface area with specific ranges of each property value. In addition
to these histogram descriptors, extrema, average values, and standard devia-
tions of the property distributions (in some cases with separate σ values for
positive and negative portions of the range) were included in the descriptor
set. Surface property distributions may also be characterized by the use of dis-
crete wavelet transforms. Wavelet coefficient descriptors (WCDs) produced
through these reconstructions are also additive at the atomic level and convey
more chemical property information as a result of the data compression meth-
ods used to generate them. Only eight scale and eight detail coefficients are
able to represent each molecular surface property distribution with a high
degree of fidelity. The lower set of scalar coefficients approximate the shape of
the property distribution, whereas values for from the detail set may be associ-
ated with deviations from the scalar shape.

The surface property distributions can also be subjected to Zauhar “Shape
Signature” ray tracing approach (15) to generate shape descriptors. A ray is
initialized with a random location and direction within the molecular surface
and reflected throughout inside the electron density isosurface until the mol-
ecular surface is adequately sampled. Molecular shape information is obtained
by recording the ray path information including segment lengths, reflection
angles, and property values at each point of incidence. Path information
(segment length and point of incidence values) can be summarized into 2D
histograms to obtain a surface shape profile. For a single electronic property,
a 2D histogram having the distribution of distance (x axis) versus the associ-
ated property value (y axis) can give a characteristic distribution (z axis) based
on the overall shape and property value of the molecule. Such a 2D-histogram
can be created for every surface property. Each bin of the two-dimensional
histogram becomes a hybrid/shape property descriptor.

3.2. Pattern-Recognition Analysis

For pattern-recognition analysis, each compound was initially represented
by 896 computer-generated molecular descriptors. Before a descriptor could
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be entered into the study, it was checked to see if it had the same value for
every compound in the dataset. Descriptors were eliminated from the study if
they were invariant. Prior to pattern-recognition analysis, the descriptors were
autoscaled to zero mean and unit standard deviation to alleviate any problems
arising from differences in scaling.

The musk database was divided into a training set of 312 compounds and a
prediction set of 19 compounds (see Table 2). Compounds in the prediction set
were randomly chosen. Discriminating relationships uncovered in the training
set could be validated using the compounds from the prediction set.

A genetic algorithm (GA) for pattern-recognition analysis was used to iden-
tify molecular descriptors from which discriminating relationships could be
found. The pattern-recognition GA selected descriptors that increase clustering
while simultaneously searching for descriptors that optimize the separation of
the classes (musk versus nonmusk) in a plot of the two or three largest princi-
pal components of the data. Because principal components maximize variance,
the bulk of the information encoded by these features will be about differences
between classes in the dataset. The idea is demonstrated in Fig. 2, which shows
a plot of the two largest principal components of a dataset prior to feature selec-
tion. The dataset consisted of 30 compounds distributed between three classes
(weak, medium, and strong odor activity). Each compound is characterized by
10 molecular descriptors. However, only four of these measurements contain
information about the QSAR. When a principal component map of the data is
developed using only these four measurements, sample clustering on the basis of
class is evident.

There are many advantages in using this approach to feature selection. First,
chance classification is not a serious problem because the bulk of the variance
or information content of the feature subset selected is about the classification
problem of interest. Second, features that contain discriminatory information
about a particular classification problem are usually correlated, which is why
feature selection methods using principal component analysis or other variance-
based methods are generally preferred. Third, the principal component plot
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Table 2

Musk Dataset

Training Set (Index Numbers/Table 1): 1–12, 14–30, 32–61, 63–74, 77, 78, 80-88,
90–149, 151–162, 164, 166–175, 178–193, 195–220, 222–232, 234–256, 258–287,
289–307, 309–322, 324–331
Prediction Set (Index Numbers/Table 1): 13, 31, 62, 75, 76, 79, 89, 150, 163, 165,
176, 177, 194, 221, 233, 257, 288, 308, 323



Fig. 2. A plot of the two largest principal components developed from all of the
features in the dataset does not show class separation. When principal components are
developed from the features that contain information about the classes, sample clus-
tering on the basis of class is evident in a principal component plot of the data.



functions as an embedded information filter. Feature sets are selected based on
their principal component plots. A good principal component plot can only be
generated using features that maximize group differences. Hence, principal
component analysis limits our search to these types of feature subsets, signifi-
cantly reducing the size of the search space.

To perform this search, it was necessary to use a genetic algorithm (16–18),
which employs a survival of the fittest approach. Genetic algorithms exploit
knowledge contained in a population of solutions to generate new and better
solutions while simultaneously using random choice as a tool to guide a highly
exploitive search of the data. Genetic algorithms do not make any assumptions
about the geometry of the response surface beyond the fitness of a potential
solution to the optimization problem. Discontinuities or singularities, which
often rule out the use of derivative-based methods, do not pose a problem for
genetic algorithms because many points in different regions of the search space
are simultaneously investigated while searching for the best solution. There-
fore, results are more robust in terms of the starting location than so-called
hill-climbing techniques. The genetic algorithm’s search of the solution space
is efficient, and the computational environment offered by a genetic algorithm
can be readily adjusted to match a particular application. Genetic algorithms are
best suited to problems whose underlying optimization function is unknown,
poorly understood, exceedingly complex, or error prone, or some combination
thereof such as feature selection.

A block diagram of our pattern recognition GA is shown in Fig. 3. Selected
feature subsets are coded as binary strings called chromosomes. Each chromo-
some describes a unique set of features. A particular feature is present in a
chromosome or binary string if the corresponding bit in the string is set to 1.
The length of each chromosome is equal to the number of features in the data
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Fig. 3. Block diagram of the pattern-recognition GA.



set. The number of chromosomes in the initial population is φ, which is usually
set at 50 or 100. The chromosomes or binary strings comprising the initial pop-
ulation (the population at generation 0) are generated at random to minimize
potential bias.

The fitness function of the pattern recognition GA scores the principal compo-
nent plots and thereby identifies a set of features that optimize the separation of the
classes in a plot of the two or three largest principal components of the data. To
facilitate the tracking and scoring of the principal component plots, class and
sample weights, which are an integral part of the fitness function, are computed:

(1)

(2)

CW(c) is the weight of class c (with c varying from 1 to the total number of
classes in the data set). SWc(s) is the weight of sample s in class c. The class
weights sum to 100, and the sample weights for the objects comprising a par-
ticular class sum to a value equal to the weight of the class in question.

Each principal component plot generated for each feature subset after it has
been extracted from its chromosome is scored using the K-nearest-neighbor
classification algorithm (19). For a given data point, Euclidean distances are
computed between it and every other point in the principal component plot.
These distances are arranged from smallest to largest. A poll is taken of the
point’s Kc nearest neighbors. For the most rigorous classification, Kc equals the
number of samples in the class to which the point belongs. Thus, Kc usually has
a different value for each class. The number of Kc nearest neighbors with the
same class label as the sample point in question, the so-called sample hit count,
SHC(s), is computed as [0 ≤ SHC(s) ≤ Kc] for each sample. It is then a simple
matter to score a principal component plot (see Eq. 3). First, the contribution
to the overall fitness by each sample in class 1 is computed, with the scores of
the samples comprising the class summed to yield the contribution by this class
to the overall fitness. This same calculation is repeated for classes 2, 3, etc.,
with the scores from each class summed to yield the overall fitness, F (d).

(3)

To understand scoring, consider a dataset with two classes, which have been
assigned equal weights. Class 1 has 10 samples, and class 2 has 20 samples. For
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uniformly distributed sample weights, class 1 samples will have a weight of 5 and
class 2 samples will have a weight of 2.5, since each class has a weight of 50 and
the sample weights in each class are uniformly distributed. Suppose a sample in
class 1 has, as its nearest neighbors, seven class 1 samples in a principal compo-
nent plot developed from a particular feature subset. Hence, SHC(s)/Kc = 7/10,
and the contribution of the sample to the fitness function for the particular feature
subset equals 0.7 × 5 or 3.5. Multiplying SHC/Kc by SW(s) for each sample and
summing up the corresponding product for the 30 samples in the dataset yields
the value of the fitness function for this particular feature subset.

Selection, crossover, and mutation operators are applied to the chromosomes.
Fit strings are retained and selected for breeding, a process called selection,
which is the first step toward population reorganization. The fit feature subsets
are then broken up, swapped, and recombined, thus creating new feature sub-
sets, which are introduced into the population of potential solutions. This
process is called crossover. In this study, the selection and crossover operators
are implemented by ordering the population of strings, i.e., potential solutions,
from best to worst, while simultaneously generating a copy of the same popu-
lation and randomizing the order of the strings in this copy with respect to their
fitness. A fraction of the population is then selected as per the selection pres-
sure, which is set at 0.5. The top half of the ordered population is mated with
strings from the top half of the random population, guaranteeing the best 50%
are selected for reproduction, while every string in the randomized copy has a
uniform chance of being selected. This is due to the randomized selection cri-
terion imposed on strings from this population. If a purely biased selection
criterion were used to select strings, only a small region of the search space
would be explored. Within a few generations, the population would consist of
only copies of the best strings in the initial population.

For each pair of strings selected for mating, two new strings are generated
using three-point crossover. A mutation operator is then applied to the new
strings. The mutation probability of the operator is usually set at 0.01, so 1% of
the feature subsets are selected at random for mutation. A chromosome marked
for mutation has a single random bit flipped, which allows the GA to explore
other regions of the parameter space. The resulting population of strings, both
the parents and children, are sorted by fitness, with the top φ strings retained for
the next generation. Because the selection criterion used for reproduction
exhibits bias for the higher-ranking strings, the new population is expected to
perform better on average than its predecessor. The reproductive operators used,
however, also ensure a significant degree of diversity in the population, because
the crossover points of each chromosome pair are selected at random.

The fitness function of the GA is able to focus on those samples and classes
that are difficult to classify by boosting their weights over successive genera-
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tions. Boosting the weights is referred to as adjusting the internal parameters in
the block diagram of the genetic algorithm shown in the previous section. In
order to boost, it is necessary to compute both the sample-hit rate (SHR), which
is the mean value of SHC/Kc over all feature subsets produced in a particular
generation (see Eq. 4), and the class-hit rate (CHR), which is the mean sample
hit rate of all samples in a class (see Eq. 5):

(4)

(5)

In Eq. 4, φ is the number of chromosomes in the population, and AVG in
Eq. 5 refers to the average or mean value. During each generation, class and
sample weights are adjusted by a perceptron (see Eqs. 6 and 7) with the
momentum, P, set by the user (g + 1 refers to the current generation, whereas
g is the previous generation). Classes with a lower class hit rate and samples
with a lower sample hit rate are boosted more heavily than those classes or
samples that score well:

(6)

(7)

The changes in the class weights are monitored throughout the run. If the
average change in the class weights is greater than some tolerance, the genetic
algorithm is said to be learning its optimal class weights. Once this tolerance has
been reached, the class weights become fixed, and the sample weights in each
class become uniformly distributed according to their class weight. This initiates
the second stage. The momentum, which controls the rate at which the sample
weights are changed, is initially assigned a value of 0.8 while the genetic algo-
rithm is learning the class weights, but the momentum is adjusted to 0.4 once the
class weights become fixed. These values have been chosen in part because they
facilitate learning by the genetic algorithm but do not cause a particular sample
or class to dominate the calculation, which would result in the other samples or
classes not contributing to the scoring by the fitness function.

Boosting is crucial for the successful operation of the pattern-recognition
GA because it modifies the fitness landscape by adjusting the values of the
class and sample weights. This helps to minimize the problem of convergence
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to a local optimum. Hence, the fitness function of the GA is changing as the
population is evolving toward a solution using information from the population
to guide these changes.

During each generation, class and sample weights are updated using the
class and sample hit rates from the previous generation. Evaluation, reproduc-
tion, and boosting of potential solutions are repeated until a specified number
of generations are executed or a feasible solution is found.

4. Joint Study—Nitroaromatic and Macrocyclic Musks

The first step in this study was to apply principal component analysis to the
data. Each principal component is a linear combination of the original molec-
ular descriptors. Using this procedure is analogous to finding a new coordinate
system that is better at conveying information present in the data than axes
defined by the original measurement variables. The coordinate system is linked
to variance. Often, only two or three principal components are necessary to
explain all the information present in a dataset if there are a large number of
interrelated measurement variables. Using principal component analysis, dimen-
sionality reduction, classification of samples, and identification of clusters in
high-dimensional data are possible.

Figure 4 shows a principal component plot of the 871 molecular descriptors
and 312 compounds. The 1’s are the macrocylic nonmusks, 2’s are the aro-
matic nitro nonmusks, 3’s are the macrocylic musks, and the 4’s are aromatic
nitro musks. It is evident from this plot that most of the information captured
by the two largest principal components is about chemical structure, not odor
quality because the macrocycles are well separated from the nitroaromatics in
the first principal component. To identify molecular descriptors correlated with
musk odor quality, it was necessary to use the pattern-recognition GA, which
identified features by sampling key feature subsets, scoring their principal
component plots, and tracking classes and/or samples that were most difficult
to classify. The boosting routine used this information to steer the population to
an optimal solution. After 100 generations, the pattern-recognition GA identi-
fied 15 molecular descriptors whose principal component plot (see Fig. 5)
showed clustering of the compounds on the basis of odor quality.

A prediction set of 19 compounds (see Table 2) was used to assess the pre-
dictive ability of the 15 molecular descriptors identified by the pattern recog-
nition GA. We chose to map the 19 compounds directly onto the principal
component plot defined by the 312 compounds and 15 descriptors. Figure 5

shows the prediction set samples projected onto the principal component map.
Each projected compound lies in a region of the map with compounds that
bare the same class label. Evidently, the pattern-recognition GA can identify
molecular descriptors that are correlated to musk odor quality.
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Molecular descriptors that were identified by the pattern-recognition GA are
listed in Table 3. Most of the descriptors identified by the pattern-recognition
GA convey information about intermolecular interactions, which suggests their
importance in defining musk odor quality. DGNH6 represents the rate of change
of the G kinetic energy density normal to and away from the surface of the mol-
ecule. DKNW6, DKNW7, and DKNW16 are wavelet descriptors that describe
the same basic values. All three descriptors are correlated to weak bonding inter-
actions and probably describe some facet of the interaction between the musk
and the receptor. PIPAVGP, PIPW15, and PIPB04 are descriptors that convey
information about the local ionization potential of the molecule. BNPW18 and
BNPB31 are so-called bare nuclear potential descriptors that probably describe
interactions involving polar and hydrogen bonding. EPB03 and EPB43 are shape
descriptors derived from ray traces of the molecule’s electrostatic surface poten-
tial. GW15 and KW15, which are wavelet descriptors derived from the G and K
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Fig. 4. A plot of the two largest principal components of the 312 compounds and
the 871 molecular descriptors comprising the training set. 1 = macrocyclic nonmusk,
2 = aromatic nitro nonmusks, 3 = macrocyclic musks, and 4 = aromatic nitro musks.
The plane defined by the two largest principal components accounts for 39% of the
total cumulative variance.



kinetic energy reconstructions normal to and away from the surface of the mol-
ecule, describe hydrogen-bonding interactions. LAPLB24 is a shape descriptor
derived from the second derivative of the electronic energy distribution with 2
meaning the shorter length rays are represented and 4 meaning that intermedi-
ate property values are represented. FUKB11 is also a shape descriptor derived
from the Fukai radical reactivity index.

Figure 5 suggests that nitrated and nitro-free musks have common struc-
tural features that can be used to differentiate them from nonmusks. We consider
this to be a significant result. Fragrance chemists have long sought to find the
overlap between nitrated and nitro-free musks in terms of the structural fea-
tures that a compound must possess in order to evoke a musk odor. Further-
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Fig. 5. A plot of the two largest principal components of the training set developed
from the 312 compounds and 15 molecular descriptors identified by the pattern-
recognition GA. The plane defined by the two largest principal components accounts for
35% of the total cumulative variance. Circles are the musks; inverted triangles are the
nonmusks; M = musks from the prediction set projected onto the principal component
plot; N = nonmusks from the prediction set projected onto the principal component plot.



more, we were able to separate aromatic nitro musks from nonmusks. This is
also a significant result since the SAR of aromatic nitro musks is not well
understood because of the complex substitution pattern and the varied poly-
functional character of the nitro group. One can therefore conclude that musk
odor activity of aromatic nitro musks can be accurately modeled by the electron
density derived descriptors used in this study.
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Table 3

Final Set of Descriptors for the Musks

DGNH6 Descriptor describes the rate of change of the G kinetic energy density
normal to and away from the surface of the molecule.

DKNW6 Wavelet descriptors that describe the same basic value as DGNH6.
DKNW7 Wavelet descriptors that describe the same basic value as DGNH6.
DKNW16 Wavelet descriptors that describe the same basic value as DGNH6.
PIPAVGP Descriptor that conveys information about the local ionization potential

of the molecule.
PIPW15 Descriptor that conveys information about the local ionization potential

of the molecule.
PIPB04 Descriptor that conveys information about the local ionization potential

of the molecule.
BNPW18 A so-called bare nuclear potential descriptors that probably describe

interactions involving polar and hydrogen bonding.
BNPB31 A so-called bare nuclear potential descriptor that probably describe

interactions involving polar and hydrogen bonding.
EPB03 Shape descriptor derived from ray traces of the molecule’s electrostatic

surface potential.
EPB43 Shape descriptor derived from ray traces of the molecule’s electrostatic

surface potential.
GW15 Wavelet descriptors derived from G kinetic energy reconstructions normal

to and away from the surface of the molecule, describe hydrogen-
bonding interactions.

KW15 Wavelet descriptor derived from K kinetic energy reconstructions normal
to and away from the surface of the molecule, describe hydrogen-
bonding interactions.

LAPLB24 Shape descriptor derived from the second derivative of the electronic
energy distribution with 2 meaning the shorter length rays are
represented and 4 meaning that intermediate property values are
represented.

FUKB11 Shape descriptor derived from the Fukai radical reactivity index.



5. Notes

1. Descriptors based on experimental data were not used in this study. It would be
very difficult to obtain these types of data from the literature for a large set of
compounds. Furthermore, it would not be possible to use the SAR developed in
this study as a screening tool to identify new musks because the compounds
would have to be synthesized in order to obtain the necessary experimental data.

2. There are a number of parameters that affect the performance of the pattern-
recognition GA including the choice of crossover and mutation rate and the
configuration of the initial population. Our experience with the pattern-recognition
GA has shown that three-point crossover works. However, the number of fea-
tures in each feature subset of the initial population is a critical parameter. If the
feature sets are initially sparse, the probability of including features, which are
neither good nor bad, is low since the principal component based fitness func-
tion does not provide additional points for adding them. Conversely, the proba-
bility of removing these features from less sparse feature subsets is also low
because there is no advantage in deleting them. For datasets with a large number
of good features, it is probably best not to employ sparse feature subsets in the
initial population. Otherwise, it may take thousands of generations to ensure
the inclusion of all good features in the solution.

3. To ensure removal of features, which are neither good nor bad, the corresponding
loading plot that is generated with each principal component plot can be examined
by the pattern-recognition GA. If the loadings for a particular feature are near
zero for both principal components, the feature is a likely candidate for removal
since its contribution to the principal component plot is negligible. This culling
can be implemented every 10 generations to check for features, which are neither
good nor bad. During the generation when culling is implemented, crossover
would not be performed on the strings. Our experience with this culling algo-
rithm, which allows the user to specify the critical threshold value for the loadings
and the generations where culling occurs, indicates that correctly configuring the
initial population is a better course of action to ensure that uninformative features
are not present in chromosomes that are retained for crossover.

4. Varying the composition of the initial population or the mutation rate can prove
beneficial in optimizing a solution but this fact should not be viewed negatively as
suggested by some researchers because it allows the user to vary the search of the
solution space ensuring a more careful analysis of the data. Given the small
number of iterations required for a solution (usually less than 100), the advantages
of using these two GA parameters as search variables outweighs any disadvantage
that might be incurred due to increased complexity.

5. A drawback of any genetic algorithm is that one cannot control the rate of con-
vergence, but convergence is not what we are seeking. A genetic algorithm can
evade local optima, but this does not mean that convergence necessitates an opti-
mal solution. Convergence as a benchmark for the success of a GA would suggest
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that any genetic algorithm provides a deficient solution. However, the quality of
the best solution found—and how quickly and reproducibly it is found—is the
guide being used to determine the success of our method. The ease, speed, and
reproducibility of our pattern-recognition GA have been demonstrated on a vari-
ety of datasets. We attribute the success of the pattern-recognition GA to the large
number of preferred solutions that exist in the data as a result of the high degree
of collinearity among the measurement variables.
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How to Describe Chirality
and Conformational Flexibility

Gordon M. Crippen

Abstract

Given atomic coordinates for a particular conformation of a molecule and some property
value assigned to each atom, one can easily calculate a chirality function that distinguishes
enantiomers, is zero for an achiral molecule, and is a continuous function of the coordinates and
properties. This is useful as a quantitative measure of chirality for molecular modeling and
structure–activity relations.

Key Words: Principal axes; symmetry; asymmetry; enantiomers; chirality; QSAR.

1. Introduction

Very loosely speaking, a chiral object is something that is not identical to its
mirror image. Many different treatments (1,2) over many years has produced an
enormous literature on the subject. Depending on the design criteria, different
approaches for detecting, measuring, enumerating, or classifying chirality are
better suited than others to particular applications.

Suppose several compounds inhibit a given enzyme to varying degrees, as
determined by experiment. It is not uncommon for such effects to be stereo-
specific, making it important to differentiate between enantiomers for simple
chiral molecules. In the case of conformationally flexible molecules, at least
part of the ligand will be fixed upon binding to a specific conformation that
depends on interactions between the ligand and the enzyme, as well as the
intra-ligand and ligand–solvent energetics. Thus, in order to correlate molecu-
lar structure with binding affinity, as in a quantitative structure–activity study
(QSAR), one must describe the chirality of the ligand for the particular
enzyme-bound conformation (3). On the other hand, this chirality description
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may need to view molecular structure in terms of broader similarity than are
commonly used in standard treatments of chirality. As an example of such
bioisosterism (5), a ring nitrogen can sometimes be replaced by a carbon with
no loss of activity, whereas the standard Cahn–Ingold–Prelog (CIP) rules (4)

treat the two atoms as always distinct. It may well be that binding affinity cor-
relates with a particular arrangement in space of ligand hydrogen bond donor
groups, and this arrangement must have a particular chirality in the enzyme-
bound conformation. In such a case, all hydrogen bond donating groups would
be treated as equivalent, and all other atoms would be ignored. For QSAR
applications, it is preferable to have a quantitative measure of chirality, rather
than discrete R vs S vs achiral. For example, a slightly left-handed arrange-
ment of some atomic property may be preferred by the enzyme, but an achiral
or slightly right-handed arrangement may be moderately acceptable, while a
decidedly right-handed distribution is rejected.

For our purposes, a well-suited chirality measure must have four features:

1. It must be independent of rigid translation and (proper) rotation of the given
atomic coordinates, although it may depend on conformation.

2. The values for two mirror images should have opposite sign but equal magnitude.
This implies that the value for achiral molecules should be zero.

3. The value should depend not only on coordinates but also on some sort of atomic
properties that may represent a relevant way to distinguish atoms or groups of
atoms. The intent is to avoid arbitrary rules about which atoms are equivalent to
which ones, when are two atoms adequately distinguishable, and, if so, which has
the higher priority.

4. Otherwise the measure should be a continuous function of the given atomic coor-
dinates and atomic property values, and it need not be independent of them.

As already mentioned, there are several other treatments of chirality, each
with its proponents ready to defend it “to the death.” These are not wrong or bad
in some absolute sense, but rather they are not well suited to the sort of appli-
cations outlined above. For instance, the CIP rules are used to assign an absolute
chirality designation to every asymmetric center in a molecule or to determine
the center is in fact not asymmetric. This is well suited to enumerating stereoiso-
mers that occur in biological molecules and may be synthesized and separated
in the laboratory. The assignments are discrete and do not depend on confor-
mational changes that may readily occur under normal experimental conditions.
Hence, pseudorotations of cyclohexyl rings are disregarded, but it is assumed
that there is no active racemase enzyme present. The rules clearly distinguish
between (R)-CHDFCl and CH2FCl, even though their properties may be essen-
tially equivalent for most applications. In other words, the CIP approach does
not satisfy properties 3 and 4 above. More recent methods may produce a con-
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tinuous range of values with variation in conformation (6), but they still depend
on rules to order the four substituents of an asymmetric carbon.

Another long line of investigations is said to have started from Kitaigorodskii’s
suggestion that the normalized maximal overlap volume between a molecule and
its mirror image could serve as a measure of chirality (7). The general principle
employed is that some molecular similarity measure is applied between a partic-
ular conformation of a molecule and its mirror image. The similarity measure D
may be a continuous function of conformation and atomic properties, and it may
even be a metric in the geometric sense, but at least for any two molecules A
and B, D(A, B) = D(B, A) ≥ 0, and D(A, B) = 0 if and only if A = B. This distin-
guishes chiral from achiral, but it fails to discriminate between a chiral molecule
and its enantiomer, property 2 above. The molecular similarity measure used in
some such approaches is simply the maximal overlap volume of the electron
clouds of the two molecules (8–11), which may not reflect important variations
in atomic or group properties, such as hydrogen bond donor capacity, pKa of a
group, or atomic polarizability (property 3). Even so, molecular similarity mea-
sures of chirality in terms of steric volume overlap or electrostatic potential agree-
ment have been shown to be useful in QSAR (12).

As part of a general scheme for measuring symmetry properties of mole-
cules represented as point atoms, Avnir and coworkers define a quantitative
measure of chirality as the mean squared spatial distance between the original
points and the closest achiral configuration of these same points (13,14). This
distinguishes chiral from achiral molecules, but once again does not differenti-
ate between two enantiomers (property 2). While the idea of the nearest achi-
ral configuration is certainly interesting, their algorithm for computing it is
rather complicated. This chirality measure is quantitative with respect to geom-
etry of the molecule, but it is qualitative in its treatment of atom labels. Thus,
one of the complications in their algorithm is deciding which is the best one-
to-one correspondence between several identically labeled atoms in the two
different configurations.

The approach of Kuz’min et al. (15) is similar in that the molecule is
treated as point atoms having qualitatively distinguishable or indistinguish-
able labels, and the quantitative degree of chirality is measured as the
weighted sum of squared distances between corresponding points in the mol-
ecule and its optimally superimposed mirror image. The geometric part of the
problem is neatly handled by exploiting the symmetry properties of the
inertial tensor, but there remains the combinatorial optimization of the atom
correspondence in the case of some indistinguishable labels such that the value
of the chirality measure is minimized. Their level of dissymmetry measure is
zero for achiral molecules and positive for chiral ones, so once again, enan-
tiomers are not distinguished (property 2). While atom labels are used quali-
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tatively to set up the optimal correspondence between a molecule and its
mirror image, they are used quantitatively as positive weights in their measure,
so the same chiral molecule might have different values when different atom
properties are used as the weights, thus satisfying property 4 in part.

Starting with the semiempirical approach of Kauzmann et al. (16), Ruch and
Schönhofer developed a theory of chirality functions (17,18). These amount to
polynomials over a set of variables that correspond to the identity of sub-
stituents at various substitution positions on a particular achiral parent mole-
cule. The values of the variables can be adjusted so that the polynomial
evaluates to a good fit to the experimentally measured molar rotations of a
homologous series of compounds (2). Thus, properties 1 and 2 are satisfied, but
the variables are qualitatively distinct for the “same” substituent at different
positions or “different” substituents at the same positions, violating property 3.
Furthermore, there is a different polynomial for each symmetry class of base
molecule. Thus, chirality functions are not continuous functions of atom prop-
erties and conformation (property 4).

2. Methods

Kuz’min et al. (15) pointed out a standard result of classical mechanics: If a
configuration of particles has a plane of symmetry, then this plane is perpen-
dicular to a principal axis (19). A principal axis is defined to be an eigenvector
of the inertial tensor. Furthermore, if the configuration of particles possesses
any axis of symmetry, then this axis is also a principal axis, and the plane
perpendicular to this axis is a principal plane corresponding to a degenerate
principal moment of inertia (19).

Suppose we are given Cartesian coordinates ai and mass mi for each atom i.
To convert the coordinates to principal axes frame of reference, first translate to
center-of-mass coordinates

(1)

where the superscript T indicates matrix transpose. Then

(2)

is the inertial tensor. This matrix has three positive eigenvalues that are not
necessarily all distinct, and corresponding to each is an eigenvector, but these
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are not uniquely determined in the degenerate case. However, the eigenvectors
can always be ordered by eigenvalue, chosen to be orthonormal and forming a
right-handed coordinate system. Let R be the 3 × 3 matrix whose columns are
these ordered eigenvectors. Then the principal axis coordinates of each atom are
just (xi, yi, zi)T = Rci.

Our chirality measure is defined in terms of the principal axes coordinates by

(3)

in accord with the desired properties. If the eigenvalues are degenerate, χ = 0
straight away (property 2) regardless of initial coordinates (property 1), and
properties 3 and 4 are trivial. In the nondegenerate case the principal axes coor-
dinates are uniquely defined up to 180° flips about the three axes, and these
have no effect on the value (property 1). A reflection through the xy, xz, or yz

planes will reverse the sign of one of the coordinates of all atoms, thus revers-
ing the sign of χ (property 2). A nonplanar but achiral molecule may have some
atoms located on such planes, producing zero terms; otherwise, there will be
pairs of corresponding atoms across one or more of these planes such that the
pair of terms in Eq. 3 cancels. The measure relies on coordinates and the mis,
rather than on distinguishability and priority rules (property 3), and it depends
continuously on them via Eqs. 1 and 2 (property 4). This is philosophically in
line with the idea that the degree of chirality of a molecule is not an absolute
concept, but depends on the atomic property of interest (20).

The essence of the matter is Eq. 3, but a convenient scaled version is

(4)

where the eigenvalues have been ordered 0 < λ1 ≤ λ2 ≤ λ3. If any two eigen-
values are nearly equal, then automatically χscaled ≈ 0; uniformly scaling the
coordinates and/or the masses by some constant has no effect on χscaled; and
otherwise the magnitudes are on the order of 1–100 for chiral molecules.
Moreau (21) used the same basic idea as Eq. 3 but came to a variant on Eq. 4

that corresponds more closely to the standard idea of chiral centers by weight-
ing the atoms according to how close they are to a chosen central atom. In that
way, one can compare the chirality in the neighborhoods of two different
asymmetric carbon atoms in one molecule, for example.
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The calculations in the next section were performed using the above methods
implemented in MOE molecular modeling software (22).

3. Results

Let us first examine a few special cases that cover most common point
groups. A linear molecule, such as HCN (point group C∞v) or acetylene (D∞h),
will lie along one principal axis, say the z axis, so that the first eigenvalue of
the inertial tensor vanishes and the other is doubly degenerate; alternatively,
by the second case in Eq. 3 xi = yi = 0 for all i, and thus χ = 0.

Consider planar molecules, such as 1,2-dichlorobenzene (C2v), glyoxal (Fig. 1,
structure 6; point group C2h), orthoboric acid [B(OH)3; structure 7; point group
C3h), naphthalene (D2h), or benzene (D6h). Such a molecule will have all its atoms
in one principal axes plane, say the yz plane, so that xi = 0 for all i.

Nonplanar but highly symmetric molecules, such as CH4 and adamantane
(Td) or the octahedral SF6 (Oh), produce one triply degenerate eigenvalue and
hence χ = 0. Trigonal pyramidal NH3 (C3v) has one doubly degenerate eigen-
value corresponding to eigenvectors orthogonal to the C3 symmetry axis, and
hence χ = 0.

Consider allene isomers (Fig. 1, structure 1). Allene itself (R1=R2=R3=R4=H)
belongs to the D2d point group, and the S4 axis is indicated by an arrow in the
figure. Weighting the atom positions by their atomic masses, the eigenvalues of
I are 3.5, 55.9, and 55.9 Dalton-Å2. The first eigenvector coincides with the
S4 axis, and the two eigenvectors associated with the doubly degenerate eigen-
value span the plane of the two orthogonal C2 axes of symmetry. Any linear
combination of eigenvectors of a degenerate eigenvalue is still an eigenvector,
so the two C2 axes of symmetry are also eigenvectors, but they may not happen
to be exactly the eigenvectors found when diagonalizing the inertial tensor.
In any case, Eq. 3 results in χ = 0. For fluoroallene (R1=F; point group Cs), the
center of mass shifts somewhat from the central carbon toward the fluorine
atom, the eigenvalues are no longer degenerate, and the first principal axis is no
longer along the three carbon atoms, but lies slightly tilted in the F–C=C plane.
Nonetheless, the mass distribution has a reflection symmetry plane (the plane
of F–C–R2) perpendicular to one of the other principal axes, and χ = 0. The
simplest chiral derivative, R1=R3=F and R2=R4=H, has χ = –11.2; its enan-
tiomer, R1=R4=F and R2=R3=H, has χ = +11.2.

As an example of the C2v point group, basketane (Fig. 1, structure 2) results
in nondegenerate eigenvalues, but the indicated C2 symmetry axis is an eigen-
vector, and χ = 0. For the D3h point group, consider cyclopropane, structure 3,
all R=H. The indicated C3 axis is the eigenvector corresponding to the largest
eigenvalue, and the other eigenvalue is twofold degenerate, so χ = 0. When
R2=Cl, there is no degeneracy, but still χ = 0. Of course R1=R2=Cl also has
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χ = 0, but R1=F and R2=Cl yields χ = 1.67. The more interesting enantiomeric
pair of dichlorocyclopropanes, R1=R5=Cl vs R4=R2=Cl, have χ = ±0.15, respec-
tively. Cyclobutane (D4h) behaves like cyclopropane, producing χ = 0 due to a
doubly degenerate eigenvalue.

The Td point group behaves as expected and offers no special problems. Of
course, χ = 0 for CH4, CH3Cl, and CH2ClBr. For an asymmetric center (point
group C1), χ is a quantitative measure of how chiral is the distribution of the
property in question, taken to be simply atomic mass in all these examples.
Thus, χ is –0.0052 for (R)-CHDClBr, +0.0052 for (S)-CHDClBr, +0.041 for
(R)-CHFClBr, and –0.041 for (S)-CHFClBr. In terms of other chirality
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approaches, this is equivalent to saying that D is nearly the same as H, but (the
masses of) F and H are more clearly distinguishable (relative to the total mass
of the molecule). In general, the sign of χ is not the same for all R or S con-
figuration molecules, because CIP rules have their own precedent ordering, and
this has no special relation to the calculated value of χ, using whatever atomic
property values. Adamantane, structure 4, behaves just like methane and has
one triply degenerate eigenvalue, yielding χ = 0. Substituting R1=F results in
one nondegenerate eigenvalue with its corresponding eigenvector being the C3

symmetry axis through R1, and a doubly degenerate eigenvalue, so χ = 0. When
R1=F and R2=Cl, χ = 0, even though the symmetry has been disrupted both
by the mass changes and by the longer halogen–carbon bond lengths. The
enantiomers R1=F, R2=Cl, R3=Br, R4=H vs R1=F, R2=Cl, R3=H, R4=Br have
χ = ±3.7, respectively.

Ethane in its low-energy, precisely staggered conformation (D3d) has a
doubly degenerate eigenvalue and therefore χ = 0. In a higher-energy confor-
mation between staggered and eclipsed (D3), the degeneracy remains, correctly
giving χ = 0. A high-energy D2 conformation of ethene twisted somewhat out
of plane, but not 90°, has nondegenerate eigenvalues and χ ≠ 0. The ethane
derivative CHFClCHFCl in a staggered conformation with corresponding sub-
stituents on the two carbons trans to each other (Ci) has three nondegenerate
eigenvalues, and the origin of the principal axes is at the inversion center
between the two carbon atoms. The sum in Eq. 3 evaluates to zero, in accord
with Ci being achiral. Hydrogen peroxide, one of the few C2 molecules, has
nondegenerate eigenvalues and correctly gives χ ≠ 0.

On the other hand, a minimal energy structure of tris-(2,6-dichlorophenyl)
methane (structure 8) belongs to the chiral point group C3 because the aromatic
rings are skewed relative to the C3 axis, like the blades of a fan. One principal
axis coincides with the C3 symmetry axis, and we can call it the z axis. Then
the x and y axes correspond to a doubly degenerate eigenvalue, so χ = 0.
Because of the symmetry, the atoms and the terms of Eq. 3 are grouped into
triples having the same values of mi, zi, and r = (x i

2 + y i
2)1/2. Converting to

cylindrical coordinates, each term mixiyizi has the form mir
2 cosθsinθ. Each

threefold symmetrical triple sums to zero because

cos(θ)sin(θ) + cos(θ + 2π/3) sin(θ + 2π/3) + cos(θ + 4π/3)sin(θ + 4π/3) = 0 (5)

for any arbitrary phase angle θ between the first atom and the degenerate xy axes.
In general, chiral molecules having Cn symmetry erroneously gives χ = 0 when
n > 2 because Eq. 3 mistakes such symmetry for σ. Such molecules are so rare
that they are unlikely to cause problems in practical QSAR applications.

As a very simple example of a conformationally flexible chiral molecule,
consider structure 5, (R)-fluorochloroacetaldehyde. Because χ clearly has a
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geometric component, it comes as no surprise that it varies as a function of
conformation (Fig. 2). This is the behavior of the whole molecule, but, of
course, if we calculated χ only using the CHFCl–C atoms, χ would be constant
and nonzero. Thus, at about dihedral angle φ=80°, corresponding to nearly
eclipsed hydrogens, the mass distribution is momentarily achiral, and χ = 0.
The most chiral distribution occurs when the O and Cl atoms are eclipsed at
φ=0°. The (S) isomer gives exactly the same trace with reversed sign, of course,
so one might say that the (R) isomer has predominantly or an averaged χ < 0,
while the (S) has predominantly χ > 0. This sort of behavior is generally seen in
conformationally flexible but chiral molecules. For example, certain energeti-
cally reasonable conformations of (R)-glyceraldehyde have values of +5.5 and
–9.5, and there are conformations between where χ = 0. This is unsettling for
people schooled in the idea that molecular chirality in every sense must be
independent of conformation, yet it is a perfectly natural consequence of this
particular approach. The given atomic property can be distributed in space over
the molecule as a whole as sometimes a right-handed distribution, sometimes
left-handed, and even symmetrically in a lower-dimensional subspace of all
conformations. One can imagine a situation where a binding site on some pro-
tein recognizes a certain right-handed distribution of charge, say, and rejects the
mirror image distribution. Then an important factor for binding would be the
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Fig. 2. Variation in χ for (R)-fluorochloroacetaldehyde (structure 5) as a function
of φ, the O=C–C–Cl dihedral angle.



ability of a flexible molecule to assume some conformation with a right-handed
charge distribution, regardless of whether the flexible molecule as a whole
would be assigned R or S absolute configuration. On the other hand, χ remains
constant and nonzero, independent of conformation, when only the asymmetric
carbon and its immediate neighbors are included in the calculation. This is,
after all, the equivalent of applying the CIP rules to this simple example.

In the example of structure 5, we get χ = 0 when the hydrogens are approx-
imately eclipsed. The aldehyde oxygen atom is tipped slightly toward the
fluorine so that overall there is a mirror symmetric mass distribution. The sum
in Eq. 3 adds up to zero, but there is not really a pairing of canceling terms
corresponding to equivalent atoms related by one mirror reflection. We will
call this a balanced but not achiral configuration. The algorithm for distin-
guishing between a truly achiral molecule and a balanced conformation of a
chiral molecule is as follows. Equation 3 judges atoms to be equivalent or
nonequivalent by their atomic masses, mi. Other atomic properties could equally
well be chosen, such as partial charge or polarizability. Consider using mi

p for
different powers p. If there are n different values of the atom property, then
the n equations χ(p) = 0 for p = 1, . . . , n are linearly independent and can be
satisfied only for a truly symmetric molecule where atoms are either on the
plane of symmetry or are paired with equivalent, mirror symmetrically related
atoms. Thus, in the (R)-fluorochloroacetaldehyde (nearly) balanced con-
formation, χ(1) = –003, but χ(2) = –31.8 and χ(3) = –535. Likewise in the
(R)-glyceraldehyde example, one conformation having χ(1) = 0 has χ(2) = –11.25
and χ(3) = –188.13, thus demonstrating that the conformation is balanced but
chiral. On the other hand, consider the achiral molecule difluoroacetaldehyde in
the hydrogen eclipsed conformation, so that H–C–CHO are all coplanar,
and the two fluorine atoms are above and below the mirror symmetry plane.
Calculating χ in a computer program is always subject to numerical roundoff
errors, but χ(1) = –0.00035, χ(2) = –0.0024, and χ(3) = –0.029 can be taken to
be essentially zero, showing that this is not a balanced conformation, but a genu-
inely achiral one. Incidentally, the CPU time required for these calculations is
negligible by today’s standards, even if carried out for two or three different
property sets. The inertial tensor to be diagonalized is always a 3 × 3 matrix,
and the rest of the calculations scale linearly with the number of atoms.

4. Conclusions

Equations 1–4 constitute an algorithm for determining from atomic coordi-
nates and some property assigned to the atoms whether the molecule is achiral,
and, if not, quantitatively how chiral. Compared to other methods, it is fast and
simple because it avoids finding the globally optimal superposition of two
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enantiomers and assigning the optimal pairwise atom correspondence between
them. In the case of relatively rare point groups, chiral molecules are incor-
rectly assigned χ = 0, but otherwise even balanced configurations are correctly
recognized as genuinely chiral. Achiral molecules always produce χ = 0.
It corresponds to conventional standards of chirality in that enantiomers have
χ values of equal magnitude but opposite sign. It could be used on fragments
of a molecule including an individual asymmetric center and its substituents,
but, when applied to a whole molecule, it does not capture ideas like diastere-
omers. Instead, it contributes a new viewpoint to the general issue of chirality
that is particularly well suited to certain modeling applications where the
spatial distribution of some atomic property must be quantitatively described. In
particular, we have been using it in QSAR applications (23). Conceptually, it
quantitates the equivalence of atoms, instead of relying on arbitrary rules about
what atoms or groups are deemed equivalent.

The general idea of a standard positioning and distinguishing atoms by some
assigned property has some interesting applications beyond chirality. Consider
a conformational search that generates many conformations in local energy
minima. If two of these differ by a 180° flip of an unsubstituted phenyl ring,
then most search programs would consider them different because the atoms
are all viewed as uniquely labelled in the computer’s internal representation.
However, both would map to equivalent principal axes positions where atoms
of one structure are superimposed on atoms of the other having identical prop-
erties, such as mass or partial charge. This can really simplify the detection of
equivalent conformations in an elegant way.
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Novel Scoring Methods in Virtual Ligand Screening

Daniel Pick

Abstract

Several different approaches have been proposed in the last decade to assess the binding
affinity of a virtual small molecule ligand to a target protein, particularly with respect to screen-
ing large compound databases. Here we review the methods that have been proposed, and discuss
techniques for optimizing scoring functions that have been applied in industrial settings.

Key Words: Scoring functions; virtual ligand screening; computational drug discovery.

1. Introduction

In the last decade advances in computational chemistry have made it possible
to virtually screen millions of small molecule compounds against high resolution
protein structures in three dimensions (3D). This technique, known as “docking,”
achieved an early success in identifying haloperidol as a ligand conforming to
the active binding site of HIV protease (1). In early docking algorithms, both the
receptor and the ligand were treated as rigid bodies; as the science developed,
ligand conformational flexibility was taken into account so that both a large
number of ligands and a large number of conformations of each ligand could be
examined.

The sequencing of the human genome, together with advances in combi-
natorial chemistry, have led to explosive growth in both the number of poten-
tial protein targets and the size of corporate small molecule databases.
Pharmaceutical and biotech companies, eager to fill drug development pipe-
lines, have supported efforts to build improved docking software. The promise
of virtual ligand screening has created a booming market for docking
software development groups, both academic and commercial. At least
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10 different organizations offer docking packages today, all claiming superior
accuracy and/or performance. A wide variety of techniques have been imple-
mented in docking engines, including force-field computational grids, dis-
tance geometry techniques, internal coordinate mechanics solvers, Monte
Carlo–based simulated annealing, and genetic algorithms. Most assume that
a high-resolution structure of the protein target is available.

The output of all docking programs is a score that measures, in some sense,
the complementarity between the receptor and a specific ligand conformation.
The quest for a quickly computable, accurate scoring function has been an
active area of research for much of the decade. The weakness of many scoring
functions has been that, in many cases, they have performed no better than
random selection in ranking the fit of ligand conformations to a particular
target. This chapter reviews the considerations in designing a scoring function,
the published efforts to engineer such functions, the accuracy and performance
of the functions published in the literature, and efforts to develop better func-
tions to improve the quality and accuracy of the small molecule hits obtained.

2. Scoring Function Design

The first question that scoring function designers must address is the quan-
tities they are seeking to compute. Some scoring functions have been designed
to approximate the change in the Gibbs free energy ∆Gbind between the bound
and the unbound states of the receptor–ligand complex. Others have been
designed to minimize the root-mean-square deviation (RMSD) of a virtual
ligand pose, compared to the ligand pose found in crystallographic experiments
on known crystal complexes.

All scoring functions have sought to address several issues:

• Accuracy. Accuracy has been measured in a number of ways, but an accurate
scoring function attempts to minimize the difference between the calculated ∆Gbind

and the experimentally determined figure, or the RMSD between the virtual and
the experimental poses, or both.

• Speed. Given the growth in the size of corporate and research chemical databases,
a scoring function must be computable in less than 2 min of CPU time to be useful.

• Enrichment. In some ways, enrichment is another form of accuracy. Given a data-
base of a large number of decoy small molecules seeded with a few known
binders to a specific target, a good scoring function should locate the known
binders quickly, and rank them ahead of the decoys. Enrichment studies typically
measure the percentage of the database scanned to retrieve a percentage of the
known binders.

• Predictive capacity. Given that a scoring function that works well on a specific
training set of complexes, a good scoring function should identify chemically
interesting hits for novel receptors not included in the training set.
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The most accurate method for predicting binding free energy for a wide
variety of complexes has been the free energy perturbation (FEP) method, first
developed by Zwanzig in 1954 (2), and implemented in the AMBER and
CHARMm software packages. Unfortunately, as Koehler et al. (3) note, its
high computational expense limits its application in drug design. This expense
is due to the lengthy sampling time needed to ensure that the conformational
space is adequately sampled. For virtual ligand screening, the goal has been an
automated procedure that would screen thousands of compounds efficiently.
All VLS scoring functions, therefore, have sought to balance the tradeoff
between calculating a physically meaningful quantity accurately, and calculat-
ing such a quantity in a reasonable amount of CPU time.

3. Force Field Approximations

The earliest designers of scoring functions recognized two fundamental con-
tributions to receptor–ligand complementarity: shape and electrostatics. To
account for 3D shape complementarity, they calculated some form of contact or
van der Waals score, and to account for electrostatic interactions, they calcu-
lated some form of electrostatic potential score. In 1992 Kuntz and coworkers
(4) combined these scores in DOCK 3.0 to compute a grid-based AMBER
force-field approximation. They attempted to rank the ligand orientations by
molecular mechanics interaction score, whose form was

In this formula, m and n are the number of ligand and receptor atoms, respec-
tively; r is the interatomic distance between atoms i and j; the q’s are the
point charges on the atom, and A and B are adjustable van der Waals repul-
sion and attraction parameters, and D is the dielectric function. They assumed
that this scoring function could account for hydrogen bond energies in the
electrostatic term.

This score displays several features that define a model for future scoring
functions:

1. It is computed pairwise over the receptor and ligand atoms. For the contact term
the authors enabled the user to specify part or all of the receptor atoms; users
could introduce a distance cutoff in the calculation.

2. Aij and Bij are introduced as adjustable repulsion and attraction parameters.
3. The score is computed as the sum of separable contact and electrostatic terms.

This feature has been questioned by later authors such as Tame (5), who point out
that this additivity is assumed without comment or justification.
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The success of DOCKscore was measured by its designers as its ability to
minimize the RMSD of the virtual pose against the crystallographic orientation
for four well-determined complexes, including dihydrofolate reductase
(DHFR)/methotrexate. The test set was chosen to demonstrate different aspects
of complementarity, including salt bridge formation, hydrogen bonding, and
hydrophobic interactions.

In 1995 Gehlhaar et al. (6) published PLP score, a minimal scoring function,
which included a steric term and a hydrogen bonding term, but no electrostatic
term. Like the DOCKscore designers, their goal was to minimize the RMSD of
the virtual ligand pose from the crystallographic orientation, but they were also
interested in designing a scoring function that would be rapidly computable.
PLPscore was also designed to enable flexible docking of ligands, that is, to
perform a full conformational and positional search within a rigid binding site.

In PLPscore, both the steric and hydrogen bonding terms are calculated from
a piecewise linear potential function (see Fig. 1), instead of a smooth 6-12
Lennard-Jones potential energy function. The difference between the two terms
is simply in the parameter values chosen for each term.

In contrast to the two adjustable parameters in DOCKscore, the piecewise
linear function contains six. In addition, PLPscore is calculated pairwise over
all protein and ligand heavy atoms. Every protein–ligand pair of atoms is
assigned an interaction type, either steric or hydrogen bond, according to
whether each atom is a hydrogen bond donor, acceptor, donor–acceptor, or non-
polar. Like DOCKscore, PLPscore was tested on DHFR/methotrexate. In 100
docking runs, 91 solutions were within 1.5 Ä RMSD of the crystal structure. It
was also tested on a complex of HIV-1 protease and AG-1343, an Agouron
propietary potential drug against AIDS.
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4. Empirical Functions

Beginning in the mid-1990s, a new class of scoring functions was published
which sought to compute ∆Gbind from a sum of separable contributions, whose
coefficients were determined by either multiple linear regression or partial least
squares fitting on a large training set of receptor–ligand complexes. The design-
ers of these scoring functions, including Böhm (7) and Eldridge and coworkers
(8), sought to predict ∆Gbind, instead of simply minimizing the RMSD of the
ligand pose. They also sought to be less dependent on force field approxima-
tions, which would often be slow and unreliable when comparing ligands with
different chemistries.

A typical empirical scoring function has the form

where the number of terms on the right hand side of the equation, and the con-
tributions calculated, vary from function to function. In Böhm’s function, 4 terms
are used; in ChemScore by Eldridge et al., 5 terms are used; in VALIDATE (9),
12 terms are used. The terms attempt to quantify separable and distinct physical
contributions to the binding affinity that are not significantly correlated, as the
coefficients are calculated by regression techniques. Empirical scoring function
designers measure the success of the scoring function by comparing the predicted
to the experimentally found binding affinity.

The strength of empirical scoring function is that they are trained on a large
number of receptor–ligand complexes taken from the PDB. For example, the
training set of ChemScore included 17 aspartic proteases, 15 serine proteases,
15 metalloproteases, 16 sugar-binding proteins, and 19 other complexes. These
classes were chosen to make the scoring function perform well on a variety of
potential targets of interest to drug designers.

Because these scoring functions are constructed empirically, they are sensi-
tive to the complexes represented in their training sets. To use them effectively,
computational chemists must train them on complexes similar to those of their
drug design projects, and continually update them as new complexes are solved.
Although they are rapidly computable, empirical functions’ sensitivity to the
data in their training set makes them unsuitable for VLS projects, where the
function is likely to encounter both novel ligands and novel ligand orientations.

5. Knowledge-Based Functions

By 1997 the weaknesses in the empirical approach had been noted in the
CASP competition of docking methods (10). At the end of the decade Muegge
and Martin (11) in the US, Gohlke et al. (12) in Germany, and Mitchell and
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coworkers (13) in the UK independently introduced PMFScore, DrugScore,
and BLEEP—three knowledge-based scoring functions. These functions
returned to the concept of relying on an energy force potential to compute a
score, which they compute from distance-dependent potentials of protein–ligand
atom pairs. These potentials are built, following Sippl’s derivation (14), of an
inverse Boltzmann relation between the energy of the complex and the rela-
tive frequencies of the atom pairs.

In these functions structural information from a large number of complexes
was extracted from the PDB and used to construct pairwise atom potentials or
preferences. These interaction potentials are constructed by typing both the
protein and ligand atoms, and then constructing a potential for each type of
interaction. In DrugScore 17 types are used for both protein and ligand atoms;
in PMFScore, 16 protein atom types and 34 ligand atom types are defined.
This gives rise to a large number of potential curves. The score for a specific
protein–ligand complex is then computed by identifying the interactions that
occur in the complex within a specified distance cutoff. The score is then com-
puted by summing the interaction potentials for the complex.

Statistical potential designers assume each individual complex resides at the
global minimum of its free energy, and that the distribution of complex mole-
cules in solution obeys Boltzmann’s law. They extend these assumptions to an
entire database of complexes, each of which may or may not be in its own
global energy minimum. The extension of these assumptions has been
criticized by Thomas and Dill (15), among others, as not reflecting the true
underlying energies. Nevertheless, PMFScore achieved a standard deviation of
1.8 log K units from observed binding affinities on 77 complexes, and
DrugScore ranked the best virtual pose less than 2 Å RMSD from the experi-
mentally found pose in 73% of 91 complexes.

6. Consensus Approaches

By the beginning of the millennium, many different academic and commer-
cial docking packages had appeared on the market, and each used a different
method for scoring virtual ligand poses. Given so many different approaches,
all claiming superior performance, how did a computational chemist select the
appropriate method for screening virtual ligands against a particular target?
Three different studies suggested that rather than selecting one individual
method, a consensus approach reduced the number of false positives identified
by individual scoring functions.

In the first study, Charifson and coworkers (16) performed virtual ligand
screening on p38 MAP kinase, IMPDH, and HIV protease. For each of these
targets, they chose 400 or more test compounds in three activity ranges, and
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seeded a database of 10,000 random commercial compounds that passed cer-
tain filters with these test compounds. They then docked and scored all the
compounds with a dozen different scoring functions, both individually and in
combinations of two or three. They found that ChemScore, DOCKScore, and
PLPScore performed well across all three targets and activity ranges, but in
addition found that when they took the intersection of the lists produced by
each function, they obtained a significant reduction in the number of false
positive compounds.

Subsequently, Bissantz et al. (17) performed virtual screening on thymidine
kinase and estrogen receptor α with three different docking packages and seven
different scoring functions. In their study they constructed a 1000 compound
library containing 990 random compounds and 10 ligands known to bind. They
found that while some scoring functions performed well in ranking ligands
against thymidine kinase, they did poorly in ranking ligands against the estro-
gen receptor. However, they confirmed the Charifson group’s results in that
they found that consensus scoring outperformed single scoring regardless of
the target or the docking tool. They also suggested a two-step protocol for vir-
tual ligand screening: screening a reduced dataset with a few known ligands to
find the optimal docking/scoring combination, and then applying the combina-
tion found to screening of the entire database.

In 2001 Stahl and Rarey (18) published a detailed analysis of four scoring
functions for virtual ligand screening, including PLPScore, DrugScore, and
PMFScore. They screened a database of more than 7500 compounds on a group
of seven targets, including the estrogen receptor and p38 MAP kinase. Like
the Bissantz group, they showed that each of the individual scoring functions
performed well screening virtual ligands for some targets, but performed poorly
on others. They also showed that consensus scoring was a more robust
approach than single scoring.

7. Future Developments

As massively parallel distributed computing becomes more widely available,
academic and corporate researchers will be able to perform large-scale virtual
ligand screening experiments in a matter of hours. The requirements for such
experiments are a parallel processing docking software package and sufficient
computational resources. In such a computational environment, the balance
between accuracy and speed in scoring function design will increasingly tilt
toward accuracy, although experimenters are likely to enlarge the size of the
chemical space they are willing to study through VLS experiments. Scoring
functions that depend on adjustable parameters and that have given good results
for specific classes of receptors will be tuned to those classes in accelerated

Virtual Ligand Screening 445



drug discovery programs. Consensus scoring of large numbers of compounds
assessed with several different scoring functions will likely produce a better
pool of virtual drug leads faster.
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Prediction of Drug-Like Molecular Properties

Modeling Cytochrome P450 Interactions
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Abstract

Preventing drug–drug interactions and reducing drug-related mortalities dictate cleaner and cost-
lier medicines. The cost to bring a new drug to market has increased dramatically over the last
10 years, with post-discovery activities (preclinical and clinical) costs representing the majority of
the spend. With the ever-increasing scrutiny that new drug candidates undergo in the post-discovery
assessment phases, there is increasing pressure on discovery to deliver higher-quality drug candidates.
Given that compound attrition in the early clinical stages can often be attributed to metabolic
liabilities, it has been of great interest lately to implement predictive measures of metabolic stability/
liability in the drug design stage of discovery. The solution to this issue is wrapped in understand-
ing the basic of the cytochrome P450 (CYP) enzymes functions and structures. Recently, experi-
mental information on the structure of a variety of cytochrome P450 enzymes, major contributors
to phase I metabolism, has become readily available. This, coupled with the availability of exper-
imental information on substrate specificities, has lead to the development of numerous computa-
tional models (macromolecular, pharmacophore, and structure–activity) for the rationalization and
prediction of CYP liabilities. A comprehensive review of these models is presented in this chapter.

Key Words: CYP P450; cytochrome P450; docking; structure-based drug discovery; pharma-
cophore; QSAR; homology models; databases; computational models; ADME/T.

1. Introduction

The pharmaceutical industry is currently faced with pressures heretofore
unimagined. The driving forces for change in the industry may be attributed to
increases in generic competition due to legislative changes (e.g., Waxman–Hatch
Act of 1984) and changes in the healthcare industry, in general. With a major-
ity of the population electing healthcare coverage through managed care
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rather than fee-for-service providers, and the mission of managed health care
providers to provide quality healthcare on a managed budget, the number of
individuals switching to generic forms of drugs post-patent coverage has
increased dramatically (1).

With an average time of 10–15 yr to discover and fully develop a new com-
pound at an cost estimated to be in excess of 800 million dollars (2), pharma-
ceutical companies are employing various strategies in order extract all of the
possible revenues from their investments. Revenues yielded from a newly
patented drug must recover the costs associated with research and develop-
ment, marketing, previous failures, and the pursuit of new research and make a
profit. The decreases in return on investment (ROI) on first in class new chem-
ical entities (NCEs) is driving the industry, as a whole, to seek solutions to
minimize the time compounds spend in discovery by expediting or anticipating
failures in the preclinical or clinical stages.

In the post-discovery stages, investigational new drugs fail primarily due to
deficiencies in absorption, metabolism, toxicity, or efficacy. As a result, phar-
maceutical companies are aggressively pursuing strategies to increase the
preclinical attrition rate. Primary among these strategies is the implementation
of computational techniques (i.e., in silico screening) with a goal to incorporate
“drug-like” features into molecules as early in the process as possible and to
minimize the presence of those properties with potential to be liabilities in post-
discovery in vitro and in vivo assessments (3).

With respect to the identification of potential metabolic liabilities, the
cytochrome P450 (hereafter referred to as CYP) enzyme superfamily is con-
sidered to be a major contributor to the high attrition rate in drug development
process that exists in the pharmaceutical industry given that they play a major
role in phase I metabolism of pharmaceutical, and other exogenous, chemical
compounds. Therefore, a thorough understanding of CYPs from the structural
points of view would enhance our appreciation of their functions, and ulti-
mately would provide the opportunity for delivering better and more effective
medicine sooner to the patients.

Table 1, taken from Lewis et al. (4), gives a good overview about typical
substrates, inhibitors, inducers, and the most significant properties or substrate
classes for each isozyme.

2. Structure-Based Design

2.1. Homology Models of Cytochrome P450 Enzymes

2.1.1. Introduction

The ideal strategy in drug development from the ADME perspective is the
design of medicine with desired metabolic profiles, such as enzyme specificity
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and half-life, and/or inhibitory potency. Cytochrome P450 plays a major role in
phase I metabolism of drugs, therefore, understanding the structural basis of the
enzyme-substrate/inhibitor interactions for CYPs is an essential part of the drug
discovery process. While direct determination of the structure for the pro-
tein–ligand complex is ideal, crystallizing membrane-bound proteins is known
to be difficult. Drug-metabolizing human CYPs are embedded in the mem-
brane of the endoplasmic reticulum, thus are called microsomal CYPs. Bacte-
rial CYPs are soluble cytosolic proteins and high-resolution crystal structures
are available for a number of isoenzymes, CYP101, 102, 107, 108, 111, 119,
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Table 1

Overview of Different P450 Isozymes, Their Inhibitors and Inducers (4)

Substrate Typical Carcinogens
CYP classes substrates Inhibitors Inducers activated

1A1 Planar polyaromatic Benzo[a]pyrene 1-Ethynyl TCDD, Many PAHs
hydrocarbons pyrene PAHs
(PAHs)

1A2 Planar poly Caffeine Furafulline TCDD, Many heterocyclic
(hetero)-aromatic PAHs amines
amines and amides

2A Small to medium Coumarin Metyrapone Poorly Aflatoxin B1,
molecular weight induced NNK, Coumarin
ketones

2B Non-planar Phenobarbital Secobarbital Phenobarbital Tienilic acid
lipophilic molecules
usually with 
V-shaped geometries

2C Non-planar Tolbutamide Sulfaphenazole Poorly NNK
molecules induced
usually with
hydrogen bond
potential

2E Small molecular p-Nitrophenol Disulfiram Ethanol Many haloalkenes
weight compounds and haloalkanes
of diverse structures nitrosamines,

benzenes
3A Large molecular Erythromycin Gestodene Synthetic Aflatoxin B1,

weight compounds steroids senecionine
of diverse structures

4A Long-chain Lauric acid 10-Undecynoic Clofibrate Inducers are 
carboxylic acids acid usually

peroxisome
proliferators



121, 152, and 175 (5). There is only one crystal structure available for mam-
malian enzyme, rabbit CYP2C5, in the public domain to date (6). To obtain
crystals suitable for an X-ray diffraction study, it was necessary to cleave the
N-terminal membrane-anchor region and mutate several residues in order to
make the protein more soluble. When direct structural determination methods
are not readily applicable, homology modeling is an alternative way to esti-
mate protein structure. In addition to visually appreciating the protein–ligand
interactions, structural models of the protein are also useful for rationalizing the
shifts in substrate selectivity, substrate preference, and/or catalytic activity due
to amino acid substitutions. For instance, metabolic deficiency associated with
genetic polymorphism or selectivity/preference within a subfamily (e.g.,
CYP2C) can be best studied with homology-based approach.

Since the first bacterial enzyme, CYP101, was crystallized in 1985 (7,8),
structural models of human CYPs have continuously been developed and uti-
lized to rationalize the enzyme-substrate/inhibitor interactions. Table 2 summa-
rizes the modeling studies for major drug-metabolizing CYPs. Instead of
describing the details of each previously reported model, this section will discuss
the strategies of homology modeling specifically applied to CYPs, following
the standard steps, (1) template selection, (2) sequence alignment, (3) 3D coor-
dinate assignment, (4) structural refinement, and (5) model validation.

2.1.2. Template Selection

Homologous proteins of the CYP superfamily with known structure serve as
the templates for homology modeling. The sequence similarities and/or identi-
ties between the template and target proteins should be as high as possible.
Several search methods such as FASTA (40) or BLAST (41) are available to
retrieve template homologs from the PDB (Protein Data Bank) (42).

Table 3 lists CYP isoenzymes that have been used as templates for model-
ing human CYPs, including CYP101, 102, 107A1, 108, 55A1, and 2C3/5, and
the major human drug-metabolizing enzymes, namely, CYP1A2, 2B6, 2C9,
2D6, and 3A4. The sequence identities in the table were calculated by an auto-
mated multiple sequence alignment program (43). When the sequence identity
between the target (human CYP) and the template, except for the CYP2 family,
is less than 30%, it is very difficult to align sequences. It is generally thought
that the models are not accurate with sequence identity of less than 25%
because the alignment is so poor (44). Therefore, improving the sequence align-
ment is critical to the development of reliable models. Using multiple tem-
plates is the most appropriate approach when there are several crystal structures
of homologues available.

The CYP superfamily is a typical example where the three-dimensional
structure is conserved to a much greater extent than the sequence. Figure 1
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shows three crystal structures—CYP102 (PDB code: 1JPZ) (45), CYP107A1
(1JIP) (46), and CYP2C5 (1DT6) (6)—structurally aligned (47). The 3D struc-
ture, particularly the core, is well conserved, whereas the sequence identity is
not greater than 15% for any pair of the three structures. The overall fold of
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Table 2

Summary of CYP Homology Models

Target Template Author (reference) Year

CYP 3A4 CYP 101 Ferenczy and Morris (9) 1989
2D6 101 Koymans et al. (10) 1993
2B1 101 Szklarz et al. (11) 1994
2A1,4,5,6 102 Lewis and Lake (12) 1995
2D6 101,102,108 de Groot et al. (13) 1996
2D6 101,102,108 Modi et al. (14)

2E1 102 Tan et al. (15) 1997
2B4 101,102,107A1,108 Chang et al. (16)

1A2 102 Lozano et al. (17)

3A4 101,102,107A1,108 Szklarz and Halpert (18)

2B1 101,102,108 Dai et al. (19) 1998
1A2 Dai et al. (20)

1A2,6, 2B6, 2C9,19, 2D6, 102 Lewis (21) 1999
2E1, 3A4

4A1,4,11 102 Lewis and Lake (22)

2C9 101,102,107A1,108 Payne et al. (23)

2C18,19 101,102,107A1,108 Payne et al. (24)

1A2, 2D6, 3A4 101,102,107A1,108 De Rienzo et al. (25) 2000
2C9 2C5 Afzelius et al. (26) 2001
2C8,9,18,19 2C5 Ridderstrom et al. (27)

2B6 2C5 Bathelt et al. (28) 2002
2D6 2C5 Bapiro et al. (29)

2A6, 2B6, 2C8,9,19, 2D6, 2C5 Lewis (30)

2E1
2B4 2C5 Sechenykh et al. (31)

1A1 2C5 Szklarz and Paulsen (32)

2B6 2C5 Wang and Halpert (33)

2C5 101,102,107A1,108, Kirton et al. (34)

55A1
2D6 101,102,107A1,108, Kirton et al. (35)

2C5
2D2,6 2C5 Venhorst et al. (36) 2003
2E1 2C5 Lewis et al. (37)

2A6 Lewis et al. (38)

2B6, 2C8,9,19, 2D6 Lewis (39)



CYP consists of 13 alpha helices (A, B, B′, and C–L) and five beta-sheets. The
C-terminal half is alpha-helix-rich, and the N-terminal half is beta-sheet-rich.
The heme group is placed between them. The region surrounding the heme
group, helices I and L and heme-binding Cys, is highly conserved (48,49). A
number of sequence analyses and the structure of the mammalian enzyme
(CYP2C5) support that these structural elements are present in human CYPs as
well (6,50–53). In addition, microsomal CYPs have the N-terminal membrane-
anchor region and an insertion in the F-G loop, though the CYP2C5 structure
is missing both regions. It has been suggested that the F-G loop is also inter-
acting with the membrane (48). With the overall fold being well defined, con-
structing valid models is quite feasible, if the target sequence is correctly
aligned to the template.

Template selections are certainly limited by the availability of the crystal
structure. The first crystal structure was solved for CYP101 (54), and the active
site of CYP3A4 (9), CYP2D6 (10), and CYP2B1 (11) were modeled using
the single template of CYP101. Until the structure of CYP2C5 was solved,
selections had been among the cytosolic CYPs that are genetically very distant
from the human-microsomal CYPs. The primary choice was CYP102, as it was
the only class II enzyme (same functional class as microsomal CYPs) with
known structure, and usually the one with highest sequence similarity to the
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Table 3

Sequence Identity (%) Among Isoenzymes Commonly 
Used as Template Structures for Homology Modeling 
and Major Human CYPs Calculated by Clustal W (43)

CYP 101 102 107A 108 55A1
(cam) (BM-3) (eryF) (terp) (Nor) 2C3/5

101 100%
102 10 100
107A1 17 12 100
108 24 15 21 100
55A1 19 8 29 25 100
2C3/5 13 15 15 14 8 100
1A2 11 14 9 13 14 28
2B6 6 13 13 12 11 48
2C9 14 14 14 14 9 74
2D6 13 14 13 10 14 39
3A4 12 22 16 12 14 19

Pairs in Figure 1 are in bold.



target. The CYP102 structure was used as the single template to model CYP1A
(17,21), CYP2A (12), 2B (21), 2C (21), 2D (21), 2E (15,21), 3A (21), and 4A
(22). Owing to the low confidence in the sequence alignment, using multiple
templates was the most common strategy employed in these studies. The struc-
tures of CYP101, 102, and 108 (13,14,20), and 107A1 were often included as
well (16,18,24,25). Kirton and coworkers experimentally constructed homology
models of CYP2C5 using a single template of CYP102 and the multiple tem-
plates of CYP101, 102, 107A1, 108, and 55A1. The models were then com-
pared with the crystal structure of CYP2C5. The results indicated that using a
single template created a structure too similar to the template, whereas using
multiple templates generated a more accurate structure (34). The benefits of
using multiple templates were evident when modeling had to rely on the
homologs with low sequence identity. This study also demonstrated that a rea-
sonable homology model could be built when sequence alignment was carefully
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Fig. 1. Crystal structures of CYP2C5 (gray), CYP102, and CYP107A1 are over-
lapped. The PDB codes are 1dt6, 1jpz, and 1jip, respectively.



optimized. The RMSD between all the Cα atoms in the best model and those
in the 2C5 crystal structure was 4.7 Å. This was, in fact, “the best expected”
homology model with such low sequence identity according to the statistics
from CASP3 (Critical Assessment of Techniques for Protein Structure Predic-
tion) meeting (55). Since the structure of CYP2C5 was solved (6), the model-
ing efforts have been mainly focused on the CYP2 family using a single
template of CYP2C5 (26–28,30,33,36,38,39). Although it is clear that CYP2C5
is the closest homolog to the human CYPs, using multiple templates can still be
beneficial to modeling certain isoenzymes, particularly those with relatively
low sequence identity with CYP2C5, e.g., CYP3A4. For modeling CYP2D6
(40% identity with 2C5), using a multiple templates (CYP101, 102, 107A1,
108, and 2C5) yielded a better structure in terms of mainchain stereochemistry
and amino acid environment, compared to the model based only on CYP2C5
structure (35). Interestingly, the 2C5-single-template model was better than the
four-bacterial-template model with respect to the same structural criteria, thus
indicating the limitation of homology modeling based on low sequence identi-
ties (approx 15% for CYP2D6/bacterial template). The model was improved by
adding the bacterial sequences probably because that there were regions where
using one of the bacterial CYPs as template was more appropriate.

2.1.3. Sequence Alignment

Before attempting to align the target sequence, the alignment among the
template sequences must first be optimized. Because the sequence identities
among the template homologs are most likely to be quite low, the sequences
should be aligned based on structural elements. Automated sequence alignment
methods that optimize sequence overlaps misplaced some of the structurally
conserved regions when applied to CYP101, 102, and 108 sequences (53).
Structural alignment routines are available in various molecular modeling soft-
ware packages, such as INSIGHT II and QUANTA (Accelrys, San Diego, CA).
The web-based program Dali (56) performs multiple structural alignments of
the submitted protein with its homologs found in PDB. The HOMSTRAD data-
base (47) stores aligned homologs, including 12 crystal structures of CYPs.
Once the alignment among the template sequences is optimized, the target
sequence is aligned against the template. The alignment of the template should
be fixed and treated as a profile. One can start with an automated alignment,
but manual adjustment with additional information is absolutely necessary. The
estimated secondary structure for the target sequence is most appropriate for
the manual adjustment. Several methods such as PSIPRED (57) and PHD (58)

are available for secondary structure prediction from the amino acid sequence.
The sequence alignment is manually adjusted by placing the corresponding ele-
ment (α-helices and β-sheets) with the template structures.
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There are three highly conserved regions throughout the CYP superfamily that
can be used to guide the sequence alignment: (1) (A/G)Gx(D/E)T in helix I; ter-
minal Thr forms enzyme’s oxygen binding pocket (54); (2) a charge pair of ExxR
in helix K (no substitution is tolerated); and (3) FxxGxxxCxG in helix L; forms
the heme binding loop with Cys coordinating as the fifth ligand of the heme (5).
In addition, PGP in the N-terminal is highly conserved in mammalian CYPs, as
well as W (H is often found in bacterial CYPs)xxxR in helix C. To further
improve the alignment, multiple sequences of CYPs from the family or subfam-
ily to which the target CYP belongs can be included into the multiple sequence
alignment (16). Highlighting the conserved regions becomes less ambiguous with
multiple sequences as seen in the modeling study of CYP2 family (12,27,30).
Six substrate-recognition sites (SRS), referred as SRS1–SRS6, were proposed
by sequence alignment of 10 CYP2 family enzymes with CYP101 (50), and this
definition is widely used to determine the active site.

Experimental data, such as site-directed mutation (59,60) and/or photo-
labeling (61), can be incorporated into the sequence alignment process. Amino
acid residues whose mutations significantly alter the enzyme activity are more
likely to be within one of the substrate recognition sites. In a photolabeling
experiment, the ligand is a photoaffinity probe that labels its nearby residue,
thus identifying the amino acid residue located within the ligand-binding site.
Mutation data have to be examined carefully because residues outside of the
active site can still affect the enzyme’s activity indirectly. In general, a muta-
genesis study cannot differentiate direct and indirect interactions.

2.1.4. Assigning Coordinates

Once the sequence alignment is optimized, the 3D coordinates are assigned to
the target sequence. The structure of the target can be constructed based on the
weighted average of the templates (11,18), regions from one of the homologs
that are most similar to the target (13,23,62), or based on spatial restraints (63)

derived from the alignment (14,25,34). The methods to be used vary among the
modeling software packages. Dai and coworkers constructed homology models
of CYP1A2 using QUANTA and LOOK (Molecular Application Group, Palo
Alto, CA) and concluded that the difference was not critical (20). The quality of
the model relies most heavily on the sequence alignment used.

Experimental data imposing topological constraints can be incorporated in this
step. For example, the paramagnetic relaxation effect by the heme-iron on the
nuclear magnetic resonance (NMR) spectrum of the substrate provided distance
constraints between the iron and substrate protons for modeling CYP2D6/
codeine complex (14). Antonovic and coworkers designed photoaffinity probes
that coordinated with the heme-iron on one side and labeled the nearby residue
in the binding site on the other side, to identify amino acid residues within a
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certain distance (limited by the probe length) from the heme-iron (64). Several
other NMR studies (65–68) and photolabeling studies (61,69,70) have investi-
gated the topological features in the active sites of various CYPs.

Assigning the coordinates to the conserved region is relatively straight-
forward; however, there are known “problem regions” in the CYP structure. The
N-terminal membrane-anchor is absent in the bacterial CYPs (and removed from
2C5), however, this region is unlikely to participate in the interaction with the
substrate/inhibitor so the structure is not so critical. The B′ region is very diverse
in amino acid sequence as well as in length (53) among all isoenzymes. In bac-
terial CYPs, the F-G loop has high B-factors compared to the rest of the struc-
ture, indicating that this region is inherently flexible. Mammalian CYPs have
an insertion in F-G loop, although not resolved in the 2C5 crystal. This extended
F-G loop is thought to interact with the membrane and guide hydrophobic sub-
strates into the binding site (48). In modeling CYP2B6, the F-G loop was
restored, based on the CYP102 structure, to complete the CYP2C5 structure
(28) to be used as the template. For regions where no template atoms exist,
adopting an extended conformation or searching in a fragment database for
loops in other proteins, are the common approaches. To avoid insertions of such
loops, unnecessary gaps must be eliminated in the sequence alignment step.

2.1.5. Refinement

The initial structure is then energy minimized. A molecular dynamics simu-
lation is often performed in order to sample larger conformational space and to
assess the stability of the resultant models. Several studies have suggested that
the addition of water molecules into the binding site is necessary in order to
preserve the structure of the active site (11,45,62,71). The structure of the bind-
ing site could be distorted by false interactions among residues surrounding
the binding pocket. Water molecules often stabilize the local regions by hydro-
gen bonding to the protein backbone. Water can be incorporated into the system
by soaking the protein (11,62,71) and allowing the water molecules penetrate
into the binding site in the course of molecular dynamics simulation. Although
this approach allows the system to equilibrate, it is computationally demanding.
Gorokhov and coworkers reported that four water molecules were detected in
the interior of substrate-free CYP2A4 at the end of the 3 ns simulation in solu-
tion (71). Alternatively, water molecules can be added into the binding site in
a way that the local hydrogen bonding and steric interaction are optimized (72).

2.1.6. Model Validation

The resultant model is subjected to validation, in purely structural and bio-
logical aspects. For stereochemical quality, PROCHECK (73), PROVE (74),
and WhatIf (75) are among the widely used programs. Programs such as Errat
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(76) or Verify3D (77) can examine the side chain environment of the models.
This process determines if the structural properties of the computer-generated
model are consistent with naturally occurring proteins, i.e., well-defined
crystal structures.

In order to evaluate models in the biological context, known substrates may
be docked into the modeled binding site. Interactions with the active site, such
as number of hydrogen bonds, electrostatic interaction, and hydrophobic inter-
action, are compared with the observed substrate specificity and stereoselec-
tivity. If the model is valid, its binding site should be able to accommodate the
known substrates in the correct orientation, and the interaction energy with a
range of substrates should correlate the binding affinities. The dockings can be
guided by the crystal structures of CYP–substrate complexes (45,46,54,78) or
by placing the reaction site [known or predicted (79)] in proximity to the cat-
alytic heme-iron center. Most homology models, if not all, have been presented
with the known substrate(s) docked into the active site to demonstrate that they
can rationalize the experimental data. Although it is known that conformational
changes often occur upon substrate binding (45,80), it is usually not considered
in the docking studies. This implies that the model is not necessarily disproved
even if a known substrate does not fit into the binding site.

The effects of amino acid mutation on the substrate selectivity, preferences,
and/or catalytic activity can be also used for testing the models. Mutants
Ile477Ala, Ile480Ala, and Leu209Ala of CYP2B6 (11) and Leu362Ile and
Leu362Ala of CYP2C9 (26) were predicted to impact the substrate binding by
the homology models. These mutants were constructed and tested to confirm
the validity of the models (26,60). Valid models of the polymorphic CYPs,
CYP2D6 and CYP2C19, are expected to rationalize the metabolic deficiencies
caused by the certain alleles.

Finally, direct determinations of substrate orientation and distances between
certain atoms by NMR or photolabeling experiments (14,64) provide invaluable
information, and incorporating these measurements greatly improves the accu-
racy of the homology models.

2.2. Docking

In this section, we will examine docking methods as tools to probe the rela-
tion between structures and functions of the CYPs.

Alexlord and Brodie et al. were the first to distinguish the cytochrome P450
enzyme system in endoplasmic reticulum (81,82). Subsequently, Garfinkel and
Klingenberg identified CYP450 after realizing that the cytochrome P450–CO com-
plex had a maximum absorption at 450 nm (83,84). Since the early days of P450
discovery, several crystal structures of P450 have been solved (54,80,86–91), but
the first crystal structure dates back to 1985 (bacterial P450cam, CYP101) (7,8).
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Despite the availability of various spectroscopic techniques in determining
CYP structures (92–112), X-ray crystallography is considered to be the most
reliable and realistic approach in depicting the 3D structure of any protein or
enzyme system, and the CYP systems are no exception to this point of view.
The X-ray structure can be thought of as a static snapshot of a very fluid
system. That is, X-ray is our only way to provide the visual insight into cap-
turing structures at the atomic level. The function of individual CYPs high-
lights the importance of their structures.; however, elucidating the structures
for CYPs has been very challenging across the species, particularly for the
mammalian enzyme. This difficulty in structural determination arises from
the low solubility of the CYPs. CYP101-P450cam was the first structure to be
determined, which led to solving several bacterial CYP structures. A major
milestone was achieved with the crystallization of mammalian CYP2C5 (80). In
summary, solved crystal structures are publicly available for the bacterial
(CYP101-P450cam, CYP102-P450BM3, CYP108-P450eryF), fungal (CYP55-
P450nor), and rabbit (CYP2C5) isofoms (85,80,86–88,91,113). Recently, Astex
Technology determined the 3D crystal structure of two human CYPs, namely,
CYP3A4 (October 2002) and CYP2C9 (December 2001) (114).

Molecular recognition is the language of the cellular and the biochemical
world (115). The molecular recognition process typically involves binding of a
ligand into a protein receptor. This event ultimately relies on the properties of
the participants. In other words, “it takes two to Tango”: the two partners define
the interacting functional groups on the ligand and the receptors. The very spe-
cific interactions that define the recognition process can be viewed either as
electronic or steric interactions (116). Knowing the 3D structure of the target
protein at the atomic level of detail is critical for structure-based drug design
(SBDD). The SBDD approach provides a means for the design of a new mol-
ecule (de novo design, see the cross-methods portion of this review) or for the
ability to search for bioactive compounds electronically (virtual screening). In
order to utilize the available crystal structures for drug design, computational
tools, namely docking, have been developed for generating the orientation of a
drug (ligand) to its protein with a known 3D structure. The most fundamental
docking algorithms treat molecules as rigid bodies and only explore the trans-
lational and rotational space of the molecules with respect to the binding
domain of the receptor (117). Simplifications are made by most docking pro-
grams in keeping the receptor molecule rigid and only allowing the conforma-
tional space of the ligand molecule to be realized (115–122).

Therefore, the structures of CYPs along with all the existing homology
models of the corresponding templates (please refer to the homology section in
this chapter) provide the very basic information for examining CYPs from the
docking point of view. Several heroic attempts have been made to use the struc-

460 Jalaie et al.



tural information, by using docking techniques, to predict the binding of various
molecules (inhibitors and substrates) in the CYPs active site (32). Lewis et al.
extracted a pharmacophore based on docking of a series of substrates to a
homology model of CYP2A (123). The specificity of various CYPs (1A2, 1A1,
2B6, 3A4) based on docking into the homology models constructed based on the
bacterial structure of CYP102 (124) was also explored. Additional docking stud-
ies have been performed by Lewis et al. by using homology models of several
CYP isoforms in conjugation with NMR paramagnetic shift measurements
(125). It is, however, the docking procedure described by Lewis et al. and others
(20,126–129) that is very unclear and biased to a predetermined binding orien-
tation of molecules of interest. Szklarz et al. used the combination of manual
docking and MD methods to explore the homology model of human CYP1A1
(18,32). Additionally, Szklarz and co-workers applied the same docking method
to a homology construct of CYP3A4 and identified key residues in the active
site that would not have been recognized without the docking investigation (18).
It was concluded that docking the substrate into the active site of the CYP1A1
model revealed several important residues that could be potential sites for further
verification by site-directed mutagenesis. They further claimed that the binding
constants of several substrates agreed with the experimental values (18,130).
Bathelt et al. used similar approach in determining the regioselectivity of
CYP2B6 based on a limited number of residues at the binding pocket (28).
Docking a series of progesterone derivatives into the homology model of
CYP2B1 has also illustrated the regioselectivity of CYP2B1 vs CYP2C5. Ear-
lier docking studies using a CYP2B1 model provided explanations on regio-
and stereospecificty of steroid hydroxylation (11,60). Moreover, the docking of
alkoxycoumarins into the active site of a CYP2B1 model validated the role of
several residues studied by mutagenesis in substrate dealkylation (131).

The mammalian crystal structure has proven to be very useful in docking
studies. Spatzenegger and co-workers demonstrated that the differences in
inhibitory functions between CYP2B4 and CYP2B5 are caused by both the
inhibitor–residue contacts and residue–residue interactions (132). In another
situation, docking of 14 azole antifungal inhibitors indicated a similar binding
mode toward CYP51, and the major interactions between the active site
residues and the inhibitors were correctly identified (133). Jones and his col-
leagues found the docking results of a terfenadine into the homology model of
CYP2D6 (Modi et al.) substantiated the behavior of terfenadine as an inhibitor
of CYP2D6 (14,134).

De Voss et al. pioneered docking studies on bacterial CYP101 and its
mutant. In this investigation of 16 potential substrates for CYP101, 15 (94%)
compounds were predicted in accordance with the experimental data. The
results are based on a modification to DOCK’s (135) parameters to allow for
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2.9 Å minimum contact distance: a minimum degree of freedom of motion is
required for substrate positioning and function (136,137). Zhang et al., however,
used DOCK for determining potential ligands and substrates for the P450cam
enzyme. In this study, the DOCK program was used to screen a library of
20,000 compounds from which initially 16 (and additional 10) candidates were
selected. In order to have the highest predictivity for this set, it was recom-
mended to use a minimum contact distance of 2.7 Å between the substrate and
the active site atoms. Using this approach, it was possible to distinguish sub-
strates from non-substrates (136). CYPs 1A2, 2D6, and 3A4 were explored
through rigid and flexible docking by DOCK, and special insight was pro-
vided for substrate specificity of each isoform (25). Kollman’s group also
used DOCK in metabolic studies involving CYP3A4 (138). They investigated
the regiospecificites of sirolimus and everolimus using docking in combination
with molecular dynamics (MD) and quantum mechanics (QM) calculations,
and the qualitative results were in agreement to the experiments (138).

Since the early days of the structure-based approaches to CYP modeling, a
combination of pharmacophore and 3D structures have been implemented by
using docking models (17,139). Wang and Halpert (33) identified the comple-
mentarily of the pharmacophore, constructed from a set of CYP2B6 substrates,
to the homology model of CYP2B6 based on the docking results. Thus, the lack
of structural information was well complemented by the presence of the pharma-
cophore model. A similar docking investigation was performed on the homology
models of the CYP2Cs, and the outcome indicated an agreement between the
docking and the pharmacophore model in rationalizing the structure-based selec-
tivity (27). Anandatheerthavarada et al. performed docking to demonstrate that
adrenodoxin and CYP P450 reductase (CPR) binds in a non-overlapping fashion
to the same domain of P4540MT2 with different orientations, but CPR and
bacterial flavodoxin compete for the same binding pocket (140).

Other groups have used the docking approaches as a way of aligning mole-
cules for creating 3D-QSAR models for specific CYPs (26,141). For example,
Afzelius et al. used GOLD (142,143) as a docking tool to select an appropriate
alignment for a set of 29 of ligands bound to the 2C9 homology model (based
on the 2C5 template) (26). CYP2C8 has also been examined by GOLD (144).
The docking of amodiaquine into the active site of several CYP2C isoform
models confirmed the experimental evidence of the specificity of 2C8 toward
the metabolism of amodiaquine (144). Docking approaches to 3D-QSAR could
be a viable method to augment homology models (144). Masimirebwa and col-
leagues used GOLD (142,143) to generate several conformations for further
3D-QSAR modeling using ALMOND (145) and GOLPE (146). The resultant
models expressed reasonable statistics (q2 = 0.58 and q2 = 0.73) (126,147,148).
See the QSAR section of this chapter for a more-detailed discussion.
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Kirton reveals the Glu216 in CYP2D6 to be a major player in binding of
basic substrates and Asp301 participates in positioning of the B′-C loop (35).
Park and Harris used AutoDock2.1’s potential function along with the
Larmarkian genetic algorithm available in AutoDock3.0 for docking a series of
substrates (120,149). They suggested that energy-based docking could be used
as a screening tool for the initial determination of the site of metabolism in
CYP2E1. When the initial docking orientations were refined with MD simu-
lations, reasonable complexes in agreement with experiments were found
(149). Williams et al. were successful in verifying the contact residues around
progesterone by docking progesterone into the active site of 2C5 using
AutoDock (6,59). As docking and homology techniques advance, the deter-
mination of specific residue functions in the active site will become more
accurate. A very interesting study was performed by Keresu to initially vali-
date FlexX and CScore for several available crystal structures of P450cam.
The best combination of scores was reported to be docking with FlexX and
scoring with the PMF/GOLD scoring functions. When this set up was exer-
cised in a virtual screening experiment involving CYP3A4, the success rate
in correctly classifying compounds was 344 out of 345 compounds (150).
However, Keresu’s docking and scoring approach to CYPs is innovating in
embracing structure-based virtual screening methods against CYPs.

Most docking efforts in the literature have been complementary to other
methods with respect to understanding or rationalizing the behavior of certain
substrates or inhibitors of cytochrome P450s (Table 4). Indeed, there have been
several success stories and instances where a docking approach played an
instrumental role in explaining the metabolic behavior of a certain CYP. It is,
however, very premature to rely solely on docking techniques for understand-
ing and predicting the interactions of unknown chemicals to any of the CYP
isoforms. It is fair to mention that the limitations of docking technology, the
shortcoming in structural information, and the errors associated with homology
models make docking approaches to metabolism less reliable. As more mam-
malian, and specifically human, CYP structures become available, docking
approaches will find their ways into the mainstream computational tactics for
answering metabolism questions in the context of drug discovery.

3. Ligand-Based Design

3.1. Pharmacophore Models for CYPs

3.1.1. Introduction

Although little structural information is available for the CYP enzymes, the
amount of experimental data on the substrates and inhibitors is growing rapidly.
As a result, ligand-based analyses, quantitative structure-activity relationship
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Table 4

A Collection of Docking Efforts Reported in the Literature

Human homology
Docking method Template X-ray model Group/year

AutoDock (123) 2C5 (3LVdH) — Williams et al. 2000 (6)

AutoDock3.0/MD 2C5 (3LVdH) and 2E1 Park and Harris 2003 (149)

Bacterial P450
AutoDock P450-BM3 Pharmacophore and Lozano and Lopez et al.

3D model of 1A2 1997 and 2000 (17,139,

148)

DOCK3.0 CYP101 bacterial L244 mutant De Voss et al. 1995 and
1997 (136,137)

DOCK3.5 P450cam bacterial — Zhang et al. 1997, 1998
(136,151)

DOCK3.5 P450 terp, P450 eryF, 1A2, 2D6, 3A4 De Rienzo et al. 2000
P450 cam, P450 BM3 (25)

DOCK4.01 P450 Bacterial 3A4 reported by Kohn et al. 2001 (138)

Szklarz et al. (32,

134)

FlexX/Cscore P450cam (1akd, 1phd, — Keresu 2001 (150)

(125,163) 1phe, 1phf, 1phg, 2cpp,
4cpp, 5cpp, 6cpp, 7cpp,
8cpp)

GOLD (124) 2C5 2C9 Afzelius et al. 2001 (26)

GOLD 2C5 2C8, 2C9, 2C18, Ridderstrom et al. 2001
2C19 (27)

GOLD 2C5 2C9 Masimirebwa et al. 2002
(147)

GOLD 2C5 and P450 terp, 2D6 Kirton et al. 2002 (35)

P450 eryF, P450 cam,
P450 BM3

GOLD 2C5 2C8 Li et al. 2002 (144)

InsightII/docking 2C5 2B4, 2B5, 2B1 Spatzengger et al. 2000
(132)

InsightII/Affinity 2C5 2B6 Wang and Halpert 2001
(33)

InsightII/MD 2C5 2B1 Kumar et al. 2003 (153)

Manual docking 2C5 (1dt6) 1A1 Szklarz et al. 2002 
/MD (18,32) and others (20)

Manual docking P450 Bacterial 3A4 Szklarz et al. 1997 
/MD (18,32)

Manual docking P450cam 2B1, 3A4 Szklarz et al. 1998 (130)

/MD and others (19,154)

Manual docking P450cam 2B1 Szklarz et al. 1994, 1995
(11,60,155)
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(QSAR), and pharmacophore modeling have been widely used to find structural
features capable of explaining various interactions with CYPs, e.g., binding,
inhibition, and CYP selectivity. In general terms, pharmacophore models rep-
resent the three-dimensional arrangement of the functional groups and/or fea-
tures of the ligand that are recognized by the receptor. Pharmacophores can be
constructed without knowledge of the binding site, assuming that the ligands
share a common mechanism for the biological activity (i.e., binding to the same
site in the same mode). The pharmacophore approach has been applied to CYP
inducers as well as substrates/inhibitors. This section summarizes the pharma-
cophore models currently available for the major human drug-metabolizing
enzymes, CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, and 3A.

3.1.2. CYP1A2

The substrates for CYP1A family were characterized as lipophilic planar
poly- or heteroaromatic molecules possessing a large area-to-depth ratio
(156,157). A theoretical model was proposed by studying the caffeine
N-demethylation by CYP1A2 and inhibition of this metabolic reaction by other
xanthine derivatives (158). The minima of molecular electrostatic potential
(MEP) distribution formed a triangular pattern in the xanthine plane, and the
site of metabolism was located at a distance of approx 3 Å from the MEP min-
imum. This result suggested that three hydrogen bond donor sites exist within
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Table 4 (continued)

Human homology
Docking method Template X-ray model Group/year

Manual docking P4502C17, BM3 and P450MT2, Fln, Anandatheerthavarada et
others (148) CPR al. 2001 (140)

Manual docking 2C5 and CYP BM3 2B6 Bathelt et al. 2002 (28)

/MD

Manual P450s (BM3, cam, terp, CYP51 Haitao et al. 2000 (133)

docking/MD and eryF) (P45014DM)
Manual docking CYP102 bacterial 1A2, 1A1, 2B1, Lewis et al. 1995 (124)

3A4
Manual docking P450cam 2B1 Kobayashi et al. 1998

(131)

Manual docking P450terp, P450cam, 2D6 Jones et al. 1998 (134)

P450BM3 (140)

Manual docking 102 2A6 human Lewis et al. 1999 (123)

Manual docking 102(1fag) 1A2, 2A6, 2B6, Lewis et al. 1999 (125)

/NMR 2C9, 2D6, 2E1,
3A4



the active site of CYP1A2. The first pharmacophore model was generated by a
study of inhibitory potency of caffeine N-demethylation for a series of
quinolone antibacterial agents (159). The keto group, the carboxylate group,
and the core nitrogen at position 1 were suggested to be important for binding
to the active site of CYP1A2. For all competitive inhibitors, the MEP distribu-
tion over these regions was very similar to that of caffeine. A QSAR analysis
of the inhibition of the caffeine N-demethylation for flavonoids led to the con-
clusion that the volume to surface area ratio was the most significant factor
(160), consistent with the previously defined planar characteristics. This study
also reported a negative correlation between the number of free hydroxyl
groups and the decrease of inhibitory potency by glycosylation of the free
hydroxyls. Docking of 13 CYP1A2 substrates, both specific and nonspecific,
into a homology model characterized the substrates as generally neutral with a
molecular volume less than 200 Å3, and a total interaction energy greater than
–40 kcal/mol (25).

3.1.3. CYP2A6

CYP2A6 is responsible for the majority of coumarin 7-hydroxylase and
nicotine C-oxidase activity in hepatic tissue. Substrate selectivity of 2A6 and
2A5 (mouse enzyme) was studied using 23 lactone-containing compounds
(161). The properties near the lactone moiety and the size of the substitution in
the 7-position of coumarin were shown to be important for inhibition of
coumarin 7-hydroxylation catalyzed by CYP2A6 and 2A5. CYP2A5 can
accommodate larger substitution on the coumarin ring system than CYP2A6. A
homology model of CYP2A6 was generated based on the CYP102 crystal
structure and 12 structurally diverse substrates were docked into the modeled
active site (123). The overlay of the docked substrates suggested the following
features as the CYP2A6 selectivity template: (1) hydrogen bond acceptors
located at around 6.8 and 5.0 Å from the preferred site of metabolism (poten-
tial donor residue: Thr212, Gln104 and Asn295), (2) aromatic ring of which its
center located at about 4 Å from the oxidation site; and (3) the two hydrogen
bond acceptor sites 2.5 Å apart from each other. These features characterize the
inhibitors pilocarpine and 8-methoxypsoralen as well.

3.1.4. CYP2B6

CYP2B6 is known to metabolize several clinically important drugs, such as
benzphetamine, cinnarizine, bupropion, verapamil and lidocaine. It is unclear,
however, if CYP2B6 is the primary enzyme to metabolize those drugs. Lewis
and coworkers presented a substrate template by superimposing 12 substrates
that were docked into the binding site of the homology model of CYP2B6
(162). Visual inspections of the overlaid ligands led to these general character-
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istics of CYP2B6 substrate: (1) medium-sized non-planar molecules with some
displaying V-shaped geometries; (2) relatively hydrophobic character and
usually possessing an aromatic ring; (3) hydrogen bond acceptor group close to
the site of metabolism; and (4) a basic nitrogen atom close to the site of metab-
olism in some cases.

A 3D pharmacophore model was developed using Catalyst (Accelrys,
San Diego, CA) for 21 substrates (163). It comprised three hydrophobes and
one hydrogen bond acceptor region. The three hydrophobic regions are located
at 5.3, 3.1, and 4.6 Å from the hydrogen bond acceptor, and have intermediate
angles of 72.8° and 67.6°. Along with the Catalyst model, a PLS analysis of
MS-WHIM descriptors, global descriptors of molecular surface properties, was
reported. In this model, size, positive electrostatic potential, hydrogen bonding
acceptor capacity, and hydrophobicity were the important factors, consistent
with the Catalyst model. Both approaches yielded statistically valid models.

A homology model of CYP2B6 based on the CYP2C5 crystal structure was
combined with the pharmacophore approach in a recent study (33). Pharma-
cophore models were re-derived using Catalyst for the same set of compounds
used in the earlier study (163). The substrates were overlaid by their reaction
sites in this study. The resultant eight hypotheses were clustered into two
groups corresponding to the structurally distinct compounds of the two lowest
Km, bezyloxyresorufin and 7-ethoxy-4-trifluoromethyl-coumarin (7-EFC). As
Catalyst attempts to map all functions in a hypothesis to one of the two most
active molecules, it generated two kinds of pharmacophores primary based on
bezyloxyresorufin (1.3 µM) and 7-EFC (1.7 µM). Both models consisted of
two hydrophobes and one hydrogen bond acceptor. Benzyloxyresorufin and
7-EFC were then docked into the binding site and the pharmacophores were
found to complement the active site. Their locations slightly differed within
the binding site indicating that two binding modes might exist. No hydrogen
bonding from the docked substrate to the protein could be formed, suggesting
a possible water bridging.

3.1.5. CYP2C9

This is the most highly expressed member of the CYP2C subfamily in
hepatic tissues. It is a polymorphic enzyme, and is involved in the metabolism
of a number of anti-inflammatory drugs.

By comparing activities of 10 tienilic acid derivatives, it was concluded that
the presence of a negative charge on the substrate at physiological pH is very
important not only for the catalytic activity but also for recognition of the
enzyme (164). This is supported by the fact that many of the CYP2C9 sub-
strates are indeed negatively charged at pH 7.4 (pKa below 7). Although there
are neutral compounds that bind to the enzyme quite tightly, the anions gener-
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ally bind even tighter (165,166). A pharmacophore model was developed for
three tienilic acid analogs and additional substrates. The crystal structures,
when available, or energy-minimized structures of the 12 substrates were
overlaid by their hydroxylation sites. Two rigid compounds, phenytoin and
(S)-warfarin were used as the templates. This substrate superposition was
supported by an NMR study measuring distances between the heme-iron and
the substrate protons (66). The model featured (1) anionic heteroatom (A–) at a
distance of approx 4 Å from a hypothetical cationic site (C+) of the protein,
(2) distance between the hydroxylation site (Hy) and the anionic site (A–) is
7.8 ± 1.6 Å, and (3) angle of 82 ± 15° between A–Hy and A–C+ (164). This
pharmacophore model was able to include a strong inhibitor of CYP2C9,
sulfaphenazole (167). The anionic site (A–) of this molecule was the SO2N–

group, and the aniline nitrogen interacts with heme-iron resulting a strong
binding. The N-phenyl group of sulfaphenazole was well located in the
hydrophobic region of their previous model (164). Therefore, the hydrophobic
feature was added to the model.

Instead of the cation–anion interaction, hydrogen bonding was used to
develop a pharmacophore model of CYP2C9 (168). Eight substrates and an
inhibitor, sulfaphenazole, were overlaid by their hydroxylation sites using
phenytoin as the template. The resultant pharmacophore consisted of the
hydroxylation site (Hy), hydrogen bond donor heteroatom (D) located at a
distance of 6.7 ± 1.0 Å, and the angle between Hy-D and the hydrogen bond of
133 ± 21°, implying a larger binding site.

Jones and coworkers studied the structure–activity relationship of CYP2C9
using 27 coumarin ring–containing compounds with inhibitory potency of
(S)-warfarin 7-hydroxylation (169). A hypothetical active site was constructed
based on the crystal structure of CYP101 and the alignment of the coumarin
compounds. The predicted protein–ligand interaction included two electrostatic
interactions arising from anionic sites of the substrate, a steric interaction
involving I helix, and an aromatic binding (π-stacking). An analysis of the com-
bined pharmacophore-homology model for CYP2C9 identified Phe110 and
Phe114 as potential π-stacking site. Introducing mutations of Phe110Leu,
Phe110Tyr, Val113Leu, and Phe114Leu, they proved that Val113 and Phe114
were indeed in the hydrophobic interaction site (170). The pharmacophore was
further refined with additional 14 compounds (171). From the resultant com-
bined model, Arg105 was predicted to be the anionic interaction site and the car-
boxyl oxygen at the C-2 position of coumarin was likely to interact with Asp293.
A mutation study indicated, however, that Arg105 was not important for the
enzyme activity (172). Instead, mutations of Arg97Ala and Arg108Ala showed
significantly lower activity with diclofenac compared to the wild-type enzyme.
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3D pharmacophore models for competitive inhibitors of CYP2C9 were
built using Catalyst (173). Three different metabolic reactions, diclofenac
4′-hydroxylation, (S)-warfarin 7-hydroxylation, and tolbutamide 4-hydroxylation,
were considered. The general characteristics of the three models were similar
with distances between a hydrogen bond acceptor and a second hydrogen bond
acceptor/donor being 3.4–5.7 Å and the hydrophobic feature was positioned
3–5.8 Å from the hydrogen bond acceptor. The models were consistent with the
previous study (171).

A homology model of CYP2C9 based on the crystal structure of CYP2C5
was used to derive the structure–activity relationship for 21 structurally diverse,
competitive inhibitors (26). The compounds were docked into the binding site
in order to generate initial conformers to be analyzed. The docked protein–
ligand complexes identified a number of residues within the substrate recogni-
tion site (SRS) 1, 2, 4, 5, and 6 (50) including Val113 and Phe114, the sites
previously proposed by others (170,171). Two of the predicted interaction sites,
Leu102 and Leu362, were confirmed by mutation studies (27,172). The active
site of the CYP2C9 homology model was also used to represent the envelope
of the substrate/inhibitor. Such “inverse pharmacophore” generated with the
GRID interaction field was able to accommodate diclofenac docked into
the active site (27). Another study described the use of alignment independent
molecular descriptors from GRIND (174) for a pharmacophore model genera-
tion (175). The GRIND descriptors represent important GRID-interactions as a
function of the distance instead of the actual positions. The resultant model is
not as visually interpretable as the standard pharmacophore models, but it
comprises the spatial arrangement of the potential interaction regions.

Another combined model was developed for 16 substrates (176). In this
study, the pharmacophore model and the CYP2C5-based homology model were
developed independently. Sixteen substrates were overlaid based on the oxida-
tion site, hydrogen bond donor/acceptor, and hydrophobic/aromatic group,
using 58C80 as the template. The pharmacophore (overlaid substrates) was able
to fit into the active site of the homology model without steric clash, implying
a large degree of complementarity. The combined model indicated that two
amino acid residues, Arg108 and Phe476, were important for substrate binding.
The acidic or hydrogen bond accepting group was shown to be interacts with
Arg108, consistent with the mutation study (172). The aromatic moieties within
the substrates were placed to form a π-stacking interaction with Phe476.
Although some large compounds could interact with Phe114, the model showed
that Phe114 was partially shielded by the side chain of Arg108; therefore, the
authors suggested that role of Phe114 was to stabilize the other critical inter-
action rather than directly interacting with the substrate.
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3.1.6. CYP2C19

This isoenzyme is well known by the (S)-mephenytoin 4′-hydroxylase
polymorphism. CYP2C19 shares 97% of amino acids with CYP2C9. In the
active site region, only three conservative changes of amino acids are pre-
sent. Comparison between the homology models of CYP2C9 and CYP2C19
indicated that the selectivity arises from the substrate access channel rather
than interactions in the binding site. The proposed access channel between the
F-G loop and B′ helix was negatively charged in CYP19, but not in CYP2C9.
Therefore, negatively charged molecules would be repelled and cannot reach
the active site (176).

3.1.7. CYP2D6

CYP2D6 is the most-studied polymorphic enzyme due to its significant clin-
ical relevance. It metabolizes a number of cardiovascular drugs, beta-adrenergic
blocking agents, tricyclic antidepressants, and others. The first attempt to char-
acterize the CYP2D6 (debrisoquine 4-hydroxylase) substrates identified the
distance between the basic nitrogen and the site of oxidation to be approx 5 Å
for 11 substrates (177). Furthermore, all substrates had a hydrophobic domain
near the oxidation site and a carboxylate group on the protein was suggested
to interact with the basic nitrogen atom of the substrate. Meyer and coworkers
studied substrates that were known to be affected by the CYP2D6 polymor-
phism. The common features for the substrates were lipophilic domain and basic
nitrogen, same as previously reported (177). The distance between the basic
nitrogen and the reaction site was 7 Å for dextromethorphan O-demethylation
and bufuralol 1′ hydroxylation and overlaid structures highlighted that the aro-
matic rings were nearly co-planar. In addition, the same distance (7 Å) was
observed for a number of other substrates but this model could not explain the
debrisoquine 4-hydroxylation (178).

A pharmacophore model was generated by manually superposing the meta-
bolic sites of 13 known substrates using debrisoquine as the template (179). The
heme group was included based on the crystal structure of CYP101/camphor
complex. The distance between the basic nitrogen atom and the hypothetical
anion location lies within 2.5 – 4.5 Å. The intramolecular distance between the
metabolic sites and the basic nitrogen had a large range of 4.5–8 Å, thus ques-
tioning the previous studies suggesting 5 Å or 7 Å.

Koymans et al. argued that this 2 Å difference could be explained by the
interaction to one or other oxygen atom of the same carboxylate group (the
distance between the two oxygen atoms in a carboxylate is about 2.2 Å) (180).
The structural features found for 16 substrates and 23 metabolic reactions were
in good agreement with the previous models. All substrates exhibit a coplanar
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conformation near the oxidation site and have negative molecular electrostatic
potentials in a part of this planar domain, induced by a π-system, an oxygen
atom, or a nitrogen atom, approx 3 Å away from the oxidation site. This model
was able to correctly predict 13 out of 14 oxidative metabolic routes for
4 compounds, and 2 out of 3 metabolites for GBR12909 (181). To comple-
ment the substrate model, homology modeling based on CYP101, 102, and
108 was carried out (13). Asp301 was identified as the residue forming an
ionic hydrogen bond with the basic nitrogen, and this was supported by the
site-directed mutagenesis experiments (182). The heme group and I helix con-
taining Asp301 were incorporated into the substrate model and the steric restric-
tions were included (183). The model was further extended by an addition of
four larger substrates (184). This model was used to develop a CYP2D6
selective fluorescent probe (change fluorescence-λ upon transformation),
7-methoxy-4-(aminomethyl)coumarin (185).

A combined protein and pharmacophore model was developed for 40 sub-
strates (186). Although the pharmacophore and the homology models were
derived independently, the pharmacophore was docked into the active site with-
out major steric clash, showing a high degree of complementarity. The site of
oxidation was positioned 3–3.5 Å above the heme iron, and the planar region
of the pharmacophore was roughly perpendicular to the plane of the heme. Of
40 substrates, 3 compounds were classified as “5 Å substrate,” and 6 compounds
were classified as “10 Å substrate.” Considering that the majority was classified
into “7 Å substrate,” a water-bridging with the “5 Å substrate” was suggested
instead of interactions with the one of two carboxylate oxygens of Asp301 side
chain (180). Molecular orbital calculations in conjunction with the distance
constraints (5, 7, or 10 Å) were used to determine the site of oxidation if the
experimental data were unavailable or ambiguous. Minimization of each
substrate in the presence of protein showed that the “10 Å substrate” possibly
interacted with Glu216, as suggested previously (187), and that Phe481 was the
key residue for the π-π stacking interaction. The importance of Phe481 was later
confirmed by a mutagenesis experiment (188). This model was extended to
include CYP2D6 mediated N-dealkylation reactions (189). A pharmacophore
was constructed for 14 compounds known to undergo N-dealkylation by over-
laying the substrates using MPTP as the template. Although the basic nitrogen
and Asp301 (or Glu216) were the most important sites of interaction for the
hydroxylation/O-dealkylation pharmacophore, hydrophobic interaction with
Phe481 (Leu121 and Leu213 were also suggested in the model) was the major
interaction for the N-dealkylation pharmacophore with the protein. Accordingly,
the orientations of these two pharmacophores in the binding site were slightly
different. The combined model was able to correctly predict six out of eight
observed metabolites.
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Several pharmacophore models were developed for the CYP2D6 inhibitors.
The first model was presented based on 31 competitive inhibitors of bufuralol 1′-
hydroxylation (190). The initial pharmacophore was constructed with six strong
(Ki < 7 µM) inhibitors using ajmalicin as the template, and the model was refined
with additional compounds. Features observed in the model were very similar to
that of substrate pharmacophores: tertiary nitrogen atom that is protonated at
physiological pH and flat hydrophobic region that is almost perpendicular to the
N-H axis and maximally extends up to a distance of 7.5 Å from the nitrogen
atom. Compounds with high inhibitory potency showed additional functional
groups with negative molecular electrostatic potential and hydrogen bond accep-
tor properties at distances of 4.8–5.5 Å and 6.6–7.5 Å, respectively from the
nitrogen atom. The same set of compounds (n = 31) was used to generate a phar-
macophore model by Catalyst and compared with a model based on a different
set of compounds (191). Whereas all compounds were competitive inhibitors of
CYP2D6 catalyzed bufuralol 1′-hydroxylation, the second set of compounds was
structurally more diverse than the first set, which contained related structures
(190). The first compound set resulted in a pharmacophore with five features—
three hydrophobes, one hydrogen donor, and one hydrogen bond acceptor—and
the pharmacophore for the second set included four common structural fea-
tures—two hydrophobes, one hydrogen bond acceptor, and one hydrogen bond
donor. Validation of these models showed that the pharmacophore model for
structurally related compounds was statistically more significant, suggesting that
there existed multiple binding modes for the diverse structures.

While the basic nitrogen is the “signature” of the CYP2D6 substrate/
inhibitor, there are several compounds that are missing the basic nitrogen, still
bind to this enzyme very tightly. For instance, spirosulfonamide is a CYP2D6
substrate with high-affinity (Km = 7 µM) and is lacking the basic nitrogen atom
(192). Mutation of ASP301 to neutral amino acids did not affect the binding
affinity of this compound, but did affect the metabolic turnover to the same
extent as for the classic substrates with the basic nitrogen, bufuralol. This indi-
cates that the role of Asp301 is complex rather than electrostatic interaction
with a positively charged atom in the ligands.

3.1.8. CYP3A4

Substrates of CYP3A4 cover a wide range of lipophilic drugs that are char-
acterized by different size and shape. Homology models have suggested that the
active site of CYP3A4 is large (18,25). This is consistent with the structural
diversity of the substrates. It has been proposed that there are multiple binding
subpockets in the active site (193), and a number of studies have provided evi-
dences that CYP3A4 accommodates two or more substrates in the active site
simultaneously (193–196). Furthermore, the inhibition potency is thought to
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be substrate-dependent (197–199). This complexity of how this enzyme inter-
acts with the ligands makes construction of predictive models challenging.

Thirty-eight substrates with various biotransformation pathways were
mapped into a pharmacophore with four features: two hydrogen bond accep-
tors, one hydrogen bond donor, and one hydrophobic region (200). The
distance between the two hydrogen bond acceptors was 7.7 Å, while the
hydrophobe and hydrogen bond donor were 6.6 Å and 6.4 Å, respectively, from
one of the hydrogen bond acceptors. Within the training set, carbamazepine,
nifedipine, and testosterone are known to activate their own metabolism (auto-
activator), and a pharmacophore for these three substrates was determined to
comprise three hydrophobes and one hydrogen bond acceptor.

Pharmacophore models of CYP3A4 inhibitors for three different metabolic
reactions were generated (201). The first model for 14 competitive inhibitors of
midazolam 1′-hydroxylation contained three hydrophobes at distance of 5.2, 7.0,
and 8.8 Å from a hydrogen bond acceptor. The second model was generated
with 32 inhibitors of cyclosporin A hydroxylation and that resulted in five fea-
tures: two hydrogen bond acceptors 5.2 Å apart and three hydrophobes at dis-
tances of 4.2–7.1 Å from one of the hydrogen bond acceptors. The third model
for 22 quinine 3-hydroxylation inhibitors had four features—one hydrophobe
at distances of 8.1–16.3 Å from the two farthest of three hydrogen bond acceptors.
A recent study reported pharmacophore models of 7-benzyloxy-4-trifluoromethyl-
coumarine (BFC) O-dealkylation inhibitor for CYP3A4, 3A5 and 3A7 (202).
Fourteen compounds (inhibition mechanism unknown) were used to generate
the models. All three models contain one hydrogen bond acceptor and a cluster
of three hydrophobes. While the models of CYP3A5 and 3A7 were nearly iden-
tical, the CYP3A4 pharmacophore was characterized by the large distance
(14.3 Å) between the furthest hydrophobic region (aromatic ring) and the hydro-
gen bond acceptor. The current CYP3A4 pharmacophore models indicate that
hydrogen bond acceptor is an essential feature for substrate/inhibitor, in a good
agreement with a homology model of the active site (203).

4. QSAR Approaches for Metabolism Prediction: the P450 Isozyme

QSAR approaches have proven to be useful in the drug discovery process in
cases where little or no structural information of the protein or enzyme is avail-
able. In the case of metabolism, QSAR is an attempt to find a consistent rela-
tionship between inhibition or induction data and a series of descriptors
accounting for structural differences among the molecules in the dataset.
Presently, these relationships are generally discovered through the application
of statistical techniques, including but not limited to multiple linear regression
(MLR), partial least squares (PLS), hierarchical clustering, neural networks
(NN), and k nearest neighbor (kNN).
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QSAR methods can be divided into several categories dependent on the
nature of descriptors chosen. In classical one-dimensional (1D) and two-
dimensional (2D) QSAR analyses, scalar, indicator, or topological variables
are examples of descriptors used to explain differences in the dependent vari-
ables. 3D-QSAR involves the usage of descriptors dependent on the configu-
ration, conformation, and shape of the molecules under consideration. These
descriptors can range from volume or surface descriptors to HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital)
energy values obtained from quantum mechanics (QM) calculations.

Another class of 3D descriptors is molecular interaction field (MIF) descrip-
tors, with its well-known example of Comparative Molecular Field Analysis
(204,205) (CoMFA). In CoMFA, the steric and electrostatic fields are calculated
for each molecule by interaction with a probe atom at a series of grid points
surrounding the aligned molecules in 3D space. These interaction energy fields
are correlated with the property of interest. The 3D nature of the CoMFA tech-
nique provides a convenient tool for visualization of the significant features of
the resulting models.

GRID (206) is another example of a 3D MIF-based program that is used to
determine energetically favorable binding sites on molecules of known structure
by calculating the energies of interactions between a chemical group (“the
probe”) and the target molecule. GOLPE (146) is typical of the type of program
that can used for variable selection and statistical analysis of the molecular
field interactions calculated by GRID. Almond (145) is a similar MIF tech-
nique except that it uses the alignment-independent descriptors, GRIND (GRid
INdependent Descriptors). Almond’s PCA and PLS algorithms are used to
establish a relationship between the dependent variable and the descriptors
before visualizing these interactions.

In this part of the chapter, QSAR models developed to predict or interpret
the metabolism of the CYP enzyme will be explored. The following sections
are structured according to individual CYP isoforms and the various types of
descriptors and algorithms used to develop the models.

4.1. CYP1A2

CYP1A2 is known to play a significant role in the metabolism of aromatic
amines, estradiol, and other drugs. Furthermore, it is known that CYP1A2 is
induced by cigarette smoke and charcoal-broiled meat.

In 1993, Fuhr et al. (159) correlated electrostatic and volume descriptors for
a series of quinolone antibacterials with their percentage of inhibition effect of
caffeine 3-demethylation in CYP1A2. The descriptors were derived with the
SYBYL (207) and ALCHEMY II (208) software packages. It was shown that
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the electrostatic features of the caffeine derivative and the antibacterials were
similar for the core nitrogen regions (Eq. 1, Table 5).

Lee et al. (160) investigated flavonoids, another molecular class of inhibitors
for CYP1A2, in 1998. INSIGHT II (209) and MOPAC (210) were used to
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Table 5

QSAR Expressions for CYP1A2

QSAR equation r 2a
sb r 2c

test set Fd ne

1 Inhibition = 196 + 1.56 MINI7 + 27.9 CORE2 – 189 44
CMAX7 + 0.41 VOL1 (218,238)

2 –log IC50 = 52.0 - 31.5 V/S – 3.43 10–3 Phi + 6.12 σ + 0.602 16
2.4 10–4 dV + 0.52 dL + 0.63 µ + 6.57 C4′ – 2.42 
C3 + 1.03 C5 (218,221,238)

3 –log IC50 = 2.289 σ – 2.295 EHOMO – 2.580 Cp3 + 2.761 0.867 0.346 0.626 14
Cp3′ –15.795 (224)

4 NN1f: –log IC50 = f (σ, EHOMO, Cp3, Cp3′) (224) 0.946 0.219 0.671 14
5 NN2: –log IC50 = f (Steric, C3, Cp3 and Cp4′) (224) 0.984 0.121 0.800 14
6 ∆Gbind = 0.3 µ – 0.90 l/w + 2.11 ∆E – 0.50 NHB – 22.41 0.941 0.420 22.30 11

(225)

7 log induction = 0.23 log P – 0.40 l/w – CR + 2.67 0.980 0.209 98.60 12
(229)

8 pEC50
PCBss = 0.33 a/d2 – 3.22 EHOMO + 0.84 length 0.903 0.308 31.50 14

– 36.44 (229)

aCoefficient of determination for a given training set; bstandard error; ccoefficient of determina-
tion for a given test set; dF-value; enumber of observations; and fneural network.

Eq. 1: MINI7 is the electrostatic minimum generated by the substituent at position 7 (kcal/mol),
CORE2 describes position-8 of the core (value was 0 for naphthyridines and for quinolines with H
at this position, and was 1 in the presence of F substituent), CMAX7 reflects the maximum charge
of the substituent at position 7 (kcal/mol), and VOL1 indicates the volume of the substituent at
position-1 (in Å).

Eq. 2: V/S is the volume to surface ratio; Phi, the torsion angle between the C2 atom and the B
ring; σ, the Hammett coefficient of the B ring; dV, volume difference between substrate and
flavonoid; dL, length of the C3 side chain; (µ, dipole moment; and C3, C5, and C4′ the electron den-
sity occurring at these atoms.

Eq. 3,4,5: σ, the Hammett coefficient of the B ring; HOMO, the highest occupied molecular
orbital energy; Cp3 and Cp3′, the HOMO π coefficients of C3 and C3′.

Eq. 6: ∆Gbind, free energy of binding; µ, molecular dipole moment; l/w, ratio of molecular length
to width; ∆E, EL – EH, difference between the energy of the lowest unoccupied to the highest occu-
pied molecular orbital; NHB, number of active site hydrogen bonds formed between substrate and
human CYP1A2.

Eq. 7: log P, logarithm of the octanol/water partition coefficient; l/w, ratio of molecular length
to width; CR, COMPACT radius where CR=sqrt [∆E – 7)2 + (a/d2 – 15)2].

Eq. 8: pEC50, Ah receptor binding affinity in EC50; a/d2, ratio of molecular area to depth-square;
EHOMO, energy of highest occupied molecular orbital in the ligand molecule.



sketch the molecules and to calculate their electrostatic and shape descriptors.
As observed in Eq. 2, Table 5, the volume to surface area ratio (V/S) had the
greatest effect on the inhibitory activity. Hence, small molecules with a small
V/S ratio have high inhibitory activity.

Another QSAR study utilizing 14 flavonoid derivatives in the training set
and 5 flavonoid derivatives in the test set was performed by Moon et al. (211)

using both multiple linear regression analysis and neural networks. Both
statistical methods identified that the Hammett constant σ, the HOMO energy,
the non-overlap steric volume, the partial charge of C3 carbon atom, and the
HOMO π-coefficient of C3, C3′, and C4′ carbon atoms of flavonoids play an
important role in inhibitory activity (Eqs. 3–5, Table 5).

Equation 6 in Table 5 summarizes a QSAR study reported by Lewis et al.
(212), where the free energy of binding (∆Gbind determined by Km values) cor-
relates closely with a combination of four shape and electrostatic descriptors.
Recently, Lewis et al. (213) examined six series of compounds (polyaromatic
hydrocarbons, nitrobenzofurans, food mutagens, benzanthracence, chrysenes,
aminobiphenyl derivatives), which exhibit indirect mutagenic activity. These
compounds need to be metabolized to reactive intermediates to become car-
cinogenic, which is frequently done by the CYP1A1. Molecular orbital
calculations were performed via the MOPAC using the AM1 Hamiltonian
method (214). The results revealed that mutagenic activity could be correlated
to the frontier orbital energies in the form of EHOMO, ELUMO, or the energy gap
∆E (= ELUMO – EHOMO) between the HOMO and LUMO energy (214). It is
shown in a study of 11 aminobiphenyls that the degree of correlation can be
improved by including shape descriptors and hydrophobicity (in form of a
HPLC determined lipophilicity parameter). The correlation coefficient (r)

varied between 0.81 and 0.97 with a standard error (s) of 0.21–1.05. Moreover,
it has been revealed that in some cases (e.g., PAHs, chrysenes, and benzan-
thracence) the frontier orbital electron density on key atoms can be used to
generate a predictive model (213). These results might be valuable for the
prediction of the site of metabolism.

The Ah (aryl hydrocarbon) receptor, which is known to regulate enzymes
of the CYP1 family, plays an important role in determining toxicity. Hence,
several attempts have been made to model the relationship between the recep-
tor binding and structure of xenobiotic chemicals. In 1996, Mekenyan et al.
(215) showed interest in halogenated aromatic hydrocarbons and their effect
for AhR binding affinity. For 30 polychlorinated biphenyls (PCBs), 38 poly-
chlorinated dibenzofurans (PCDFs), and 26 polychlorinated dibenxo-p-dioxins
(PCDDs) frontier orbital energies were calculated using the PM3 Hamilton.
Using EHOMO and ELUMO, charge transfer and a physicochemical parameter such
as log P, the authors were able to fit –log (1/IC50) values. The regression coef-
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ficient (r 2) ranges between 0.721 and 0.899. The predictive power of these
models, assessed as a crossvalidated r2, or q2, ranged between 0.722 and 0.841.
Lewis et al. (216) published in 2002 several QSAR models generated via linear
stepwise multiple regression analysis. Equations 7 and 8 in Table 5 show the
structure–activity relationships for nuclear receptor ligands active against the
Ah (aryl hydrocarbon) receptor.

In 1992, Waller and McKinney (217) published the results of a CoMFA
study on a series of 78 polyhalogenated aromatic compounds with respect to
their ability to bind to cytosolic Ah receptor. Bravi and Wikel (218) later uti-
lized this same dataset and a combination of size descriptors, the positive mol-
ecular electrostatic potential, and hydrogen bonding acceptor properties
calculated using the MS-WHIM (Molecular Surface—Weighted Holistic Invari-
ant Molecular) (219) methodology to develop a predictive model (q2 = 0.723).
The most surprising fact was that the hydrogen bonding acceptor property was
found as a favorable descriptor, which would mean hydrogen binding acceptor
capacity might decrease pEC50.

A 3D-QSAR study by Lozano et al. investigated the metabolism of hetero-
cyclic amines by human cytochrome P450 1A2 (148,220). In this study,
COMBINE (221–223) and GRID/GOLPE were used to compare interaction
fields of the ligand–protein complex with only the ligand structure. The best
correlation for the ligand–enzyme interaction energies was obtained for 12 het-
erocyclic amines using two latent variables. The resultant model was revealed
to be statistically robust r 2 = 0.90 and internally consistent q2 = 0.74. For the
GRID/GOLPE analysis, molecular interaction fields were calculated for each
ligand using a phenolic OH probe. The best relationship was obtained after
smart region definition (224) using two latent variables. Smart region definition
is an algorithm developed by Pastor et al. that groupes energy descriptors into
regions, where the variables contain the some chemical and statistical infor-
mation. This leads to the generation of more stable and easier to interpet
models. A model with excellent predictability of q2 = 0.79 was achieved. The
author showed that active compounds have the possibility to create hydrogen
bonds with Thr223 and possess hydrophobic or bulky groups in the vicinity of
the catalytic center.

4.2. CYP2A6/CYP2A5

With the solution of a new mammalian microsomal P450 crystal structure
(6), Lewis et al. (226) took the opportunity to evaluate the structure binding
affinity (∆Gbind) relationship of six substrates of CYP2A6, based on Km pub-
lished by Rendic et al. (227). It was found that the binding affinity correlated to
a combination of log P and the number of active site hydrogen bonds (r = 0.97).
These findings proved the importance of the substrate’s lipophilicity and hydro-
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gen binding capability. The author mentioned that the major contribution to the
overall binding energy is caused by hydrogen bonds. The importance of hydro-
gen bonding characteristic as influencing factor for inhibition of CYP2A6 has
also been pointed out by Lewis (225,228) (Eqs. 1 and 2 in Table 6).

The MS-WHIM methodology has been applied to study the binding affinity
of 16 coumarin type inhibitors of CYP2A5. Bravi and Wikel (218) obtained a
model using 48 descriptor with a cross-validated r 2 of 0.706. The most impor-
tant features identified by the MS-WHIM property selectors are the size, a pos-
itive molecular electrostatic potential together with hydrogen bonding acceptor
features of the ligands.

Poso et al. (161) performed a study to compare the inhibition of coumarin
7-hydroxylation of 28 lactone derivatives in mammalian CYP2A5 and human
CYP2A6, since these enzymes are to 82% similar in their amino acid sequence.
Moreover, the researcher analyzed the structure activities relationship using
CoMFA and GOLPE/GRID. After a semi-empirical treatment within MOPAC
the classical CoMFA interaction fields as well as the interaction energies using
phenolic hydroxyl probe in GRID were determined. The 3D QSAR models
produced with both methods were statistically indifferent (all models have
internal and external q2 values over 0.7). Using contour maps it was shown
that the size of the substituent in the position 7 is an important feature for
pIC50. In addition, the CYP2A6 map revealed an unfavorable negative charge
near the lactone moiety.

4.3. CYP2B1/CYP2B6

In general, the CYP2B subfamily is involved in the detoxication of exoge-
nous substrates such as phenobarbital, which is also the recognized chemical
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Table 6

QSAR Expressions for CYP2A5

QSAR equation r 2a
sb F c nd

1 ∆Gbind = –0.77 NHB – 0.78 log P – 4.45 (239) 0.94 0.343 21.20 6
2 pKi = 7.31 log P – 7.26 log Mr – 5.17 log D7.4 + 0.94 0.415 12.36 8

0.80 HBA – 24.12 (241)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: ∆Gbind, free energy of binding; NHB, number of active site hydrogen bonds formed
between substrate and human CYP2A6; log P, logarithm of the octanol/water partition coeffi-
cient.

Eq. 2: pKi, inhibition constant; Mr, relative molecular mass, log D7.4, logarithm of the distri-
bution coefficient at pH 7.4; HBA, number of hydrogen bond acceptors.



inducer of this isoform. Mostly, substrates of the CYP2B subfamily consist of
two aromatic ring systems and a central tetrahedral carbon atom, which
adopts “V” shape. Furthermore, it is known that CYP2B substrates usually
posses high lipophilicity.

Lewis et al. (124,229) presented one of the first QSAR studies in 1995. This
research investigated possible quantitative structure–activity relationships within
a series of 10 pair-substituted toluene derivatives processing different binding
affinity with CYP2B4, the rabbit ortholog of this subfamily. The dissosiation
constant (log kD) and binding affinity could be well correlated with molecular
volume, but the correlations could be significantly improved by adding elec-
tronic structural parameter (Eqs. 1 and 2 in Table 7).

Ekins et al. (163) used the rat ortholog 2B6 to generate a pharmaco-
phore model and compared these findings with a partial least squares
(PLS) model using MS-WHIM descriptors. The model was constructed using
16 B-lymphoblastoids and yielded a good cross-validated r 2 of 0.607. The
analysis included molecular surface properties (size) together with positive elec-
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Table 7

QSAR Expressions for CYP2B6

QSAR equation r 2a
sb F c nd

1 log kD = –0.036V – 18.201 QH + 5.677 0.960 0.150 103.00 10
(242,243)

2 ∆Gbind = –0.231V – 792.95 QL + 3.640 0.980 0.837 133.80 10
(242,243)

3 pKi = 0.934 log P – 0.193 log P2 + 0.88 0.978 0.216 114.53 18
(241)

4 log kinact = –0.003 MW + 21.594 QC – 0.813 0.698 0.175 13.843 15
(245)

5 ∆Gbind = –3.99 NHB –5.41 HBD –1.92 HBA 0.941 0.550 27.00 10
– 4.19 (238)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: log kD, dissociation constant; V, solvent-accessible surface molecular volume (Å3);
QH, greatest population in highest occupied molecular orbital for methyl group hydrogen atoms.

Eq. 2: ∆Gbind, free energy of binding; QL, greatest population in lowest unoccupied molecu-
lar orbital for methyl group hydrogen atoms.

Eq. 3: pKi, inhibition constant; log P, logarithm of the octanol/water partition coefficient
Eq. 4: log kinact, rate constant of inactivation; MW, molecular weight; QC, charge of the first

carbon atom of the alkyl chain C5.
Eq. 5: ∆Gbind, free energy of binding; NHB, number of active site hydrogen bonds formed

between substrate and human CYP2B6; HBD, number of hydrogen bond donor.



trostatic potential, hydrogen bonding acceptor capacity, and hydrophobicity.
Four out of five structurally diverse substrates for CYP2B6 could be predicted
with residuals lower than one log unit. Nanbo A. and Nanbo T. (230) investi-
gated the mechanism of N-demethylation of N,N-demethylaniline catalyzed by
P450 by evaluating the relationship of the enzyme CYP2B1 activity with elec-
tronic properties. This study suggests that one electron is being transferred from
the nitrogen to P450 resulting a cationic α-amino radical, which undergoes
hydroxylation and N-demethylation.

A series of eight aliphatic amines was studied as inhibitors of CYP2B1
(228). A linear combination of frontier orbital energies resulted in a correla-
tion coefficient (r) = 0.98, while a quadratic expression of log P yielded an
r = 0.989 (Eq. 3 in Table 8). Based on the latter equation, it was determined
that the optimal log P for the CYP2B1 substrates was 2.42, which related to an
optimal length of 10 or 11 carbon atoms of the alkyl chain in these molecules.
These results were supported by a QSAR and CoMFA study performed by
Lesigiarska et al. (231). Lesigiarska et al. (231) used 15 xanthates, which were
geometry optimized using MOPAC and the PM3 Hamilton (232). Several semi-
empirical parameters together with various shape descriptors were used to
explain variations in the CYP2B1 inhibitory activity (Eq. 4, Table 7). The com-
pounds were divided into two groups dependent on the lengths of methylene
chain. The inactivation potency of the group with the shorter chain correlated
with the charge of the first carbon atom of the chain. Hence, this atom might
represent a potential target for metabolic attack. In the second group, the group
with longer side chains, a decrease in the activation potency was observed with
an increase in the side chain lengths.

An additional study performed by Lewis et al. (225) revealed the major con-
tribution of hydrogen bonded interactions, as evident in Eq. 5, Table 7. For
10 substrates the combination of hydrogen bond donor and acceptors together
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Table 8

QSAR Expressions for CYP2C9

QSAR equation r 2a
sb F c nd

1 ∆Gbind = 8.62 log D7.4 – 8.02 log P – 0.980 0.230 29.50 8
6.26 pKa + 0.57 HBD + 42.74 (238)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: ∆Gbind, free energy of binding; log D7.4, logarithm of the distribution coefficient at pH
7.4; pKa, negative logarithm of the dissociation constant; HBD, number of hydrogen bond donors.



with the number of active site hydrogen binds resulted in a good correlation
coefficient (r) of 0.97.

Xanthates have been shown to be potent inhibitors for human CYP2B6. In a
QSAR analysis performed by Lesigiarska et al. (231) fifteen xanthates were
tested to better understand the mechanism of interaction with the enzyme. The
compounds were energy minimized using MOPAC and the PM3 Hamiltonian.
After aligning the molecules using the dithiocarbonate group as a frame of ref-
erence, CoMFA fields were calculated using a sp3 carbon as the probe atom. A
PLS analysis with 14 of 15 compounds produced a q2 > 0.7 with three or four
latent variables. As mentioned above, the authors divided that dataset into two
groups dependent on the length of methylene groups. It was shown that there
is hardly any relationship visible in the group with less methylene groups. In
the second group consisting of nine compounds, a q2 of 0.72 was calculated
with four components for the electrostatic CoMFA fields and two components
for steric fields only. These fields revealed a dependency of the alkyl chain
length and the charge of the first carbon atom with the biological activity,
which is in accordance to the 3D QSAR findings.

4.4. CYP2C9/CYP2C5/3

CYP2C9 was identified as one of the most important P450s involved in
human drug metabolism (176). It is involved in the metabolism of many
commonly used drugs such as taxol, warfarin, and omeparazole.

Ekins et al. (173) computed MS-WHIM descriptors for 29 compounds to
obtain a 3D QSAR set. Computing multiple conformers of the inhibitors
resulted in the generation of a 4D QSAR model. For each conformer, weighted
MS-WHIM descriptors were calculated, which resulted in a maximum of
504 descriptors. It was not possible to create a valuable predictive 3D model for
the inhibition of (S) warfin 7-hydroxylation. Nevertheless, the 4D QSAR model
generated a q2 of 0.64 using five components. The significant descriptors were
the negative electrostatic potential, hydrogen bond acceptor and donor proper-
ties, and hydrophobicity.

In Lewis et al.’s (225) QSAR study, eight CYP2C9 substrates where exam-
ined. In this case, it appeared as if the acid dissociation constant pKa, the
compounds’ lipophilicity, and the number of hydrogen bond donor atoms are
important features (Eq. 1, Table 8). These suggestions are supported by a
good correlation with the binding affinity.

Afzelius et al. (26) reported a study that describes the generation of a three-
dimensional QSAR model for 25 competitive CYP2C9 inhibitors in the train-
ing set and 8 inhibitors in the test set. The GRID interaction fields using the
DRY and OH probe were used as descriptors. The resulting predictive model
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(r 2 = 0.947,q2 = 0.730) was able to predict the external dataset within 0.5 log
unit of the experimental value.

A new method of determining the site of metabolism of CYP2C9 substrates
has been introduced by Zamora et al. (233). In this approach, the ligands as
well as the protein active pocket were characterized with GRID descriptors
using the probe atoms N, Dry, and O. The descriptors of the protein and
the ligand were binned in a distance-space-dependent way (e.g., for the ligand,
the distance between the different hydrogen atoms and classified atoms were
calculated; for the protein; the interaction pattern has been translated into
distances from the reactive center of the enzyme). The distance bin occurring
from the protein was compared with the fingerprint bin of the ligand using
Carbó’s similarity index, after which each hydrogen atom got ranked. As the
authors point out, in more than 90% of CYP2C9 catalyzed oxidative reactions,
the hydrogen atom ranked at the first, second, or third position were experi-
mentally reported as site of oxidation.

The first CoMFA QSAR study for CYP2C9, performed by Jones et al. (169),
used an active analog of 9 (S)-11 (R)-cyclocoumarol as a template to align
27 semiempirical geometry optimized compounds. A partial least square analy-
sis revealed a prediction capability with cross-validated r 2 (q2) of 0.70. More-
over, that model suggested a π-π stacking region together with two cationic
interaction sites as important features. Rao et al. (171) used a diverse test set of
14 coumarin derivatives along with the same alignment rule found in the phar-
macophore study of Jones et al. (169) to refine the CoMFA study. It was inter-
esting to note that the test set consisted primarily of sulfonamide derivatives. Yet,
the researchers were able to predict 13 of 14 compounds within 1 log residual.

Afzelius et al. (175) computed alignment independent GRIND descriptors in
ALMOND for a dataset of 21 inhibitors and 21 non-inhibitors. A discriminate
model was generated by assigning zeros to the non-inhibitors and ones to the
inhibitors. The model (r 2 = 0.74, q2 = 0.64) was tested with 14 competitive
and 25 non-inhibitors, which were not utilized to generate to model; 74% of
these compounds were correctly classified and 13% were in a border region. In
a second model (r 2 = 0.77, q2 = 0.60), the Ki values for 21 competitive
inhibitors were used as the continuous dependent variable together with
GRIND descriptors generated using Dry, O, and N1 probe as independent vari-
ables. This model was capable of predicting 11 of 12 test compounds within a
0.5 log error margin of Ki.

4.5. CYP2D6

Although CYP2D6 represents only 1.5% of the human P450, it participates
in the metabolism of over 30% of clinically prescribed drugs. Moreover,
CYP2D6 is absent in 5–9% of the Caucasian populations. This deficiency in
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drug oxidation is known as debrisoquine/sparteine polymorphism, which affects
the metabolism of numerous drugs. Hence, interest in this subenzyme started
fairly early. It was in 1985, that Wolff manually aligned substrates containing
a basic nitrogen at 5 Å from the center of oxidation (177).

Ekins et al. (191) used a previously published dataset by Snyder et al. (190)

and their own laboratory results to generate a pharmacophore model and 3D/4D
QSAR models with MS-WHIM descriptors derived from inhibition data of
1′-hydroxybufuralol. Inhibition data generated in the Eli Lilly laboratory
resulted in a 3D predictive model with a high degree of internal consistency
(q2 = 0.54) using a combination of three molecular properties: negative poten-
tial, hydrogen bond donor, and hydrophobicity. A 4D (multiple conformers)
model did not improve the predictability of the model, which suggests that the
range of single conformations sufficiently described the conformational space.
The same trend was reproduced for a dataset by Strobl et al. (190) using 28 of
31 inhibitors. The 3D and 4D QSAR models produced similar q2 values (>0.5).
It is worthwhile mentioning that the QSAR model produced from merged data
from Snyder and the Eli Lilly research laboratories show no sign of prediction
capability using a more realistically “five random groups repeated up to
100 times (5RG × 100)” cross-validation approach, whereas Strobl’s dataset
still results in a q5RG × 100 of 0.48. Snyder et al. (234) used a dataset containing
of 52 compounds collected from the literature to enhance the understanding in
CYP2D6 substrates requirements. A genetic algorithm was applied to find the
best model between log Km and MS-WHIM descriptors (Eq. 1, Table 9). The
obtained model has a r2 of 0.69 and a q2 of 0.58 using all 52 compounds.

Lewis et al. (228) used a dataset of 11 inhibitors to produce a QSAR model.
The best model (r = 0.979; Eq. 2, Table 9) was found using a combination of
relative molecular mass, lipophilicity, number of hydrogen bond acceptors, and
number of basic nitrogens. However, a model with only two descriptors (pKi

and log D7.4) was found with r = 0.97. The author argues that for protonated
nitrogens found in the dataset the log D7.4 descriptors from the simpler regres-
sion model is the ionization-corrected lipophilicity at pH 7.4 (log P in Eq. 2,
Table 9), which is an important feature supported by site-directed mutagenesis.
Another study of CYP2D6 substrates (Eq. 3, Table 9) performed by Lewis et al.
(225) explained the binding affinity with the relative mass of substrate together
with number of hydrogen bonds and π-π stacking interactions.

4.6. CYP2E1

CYP2E1’s substrates are small molecular weight aromatic hydrocarbons or
their methyl derivatives, as the enzyme’s active site is relative small and
restricted. In a recently published study from Lewis et al. (235) eight alkyl ben-
zenes, which undergo oxidative metabolism via human CYP2E1, were used to

Prediction of Drug-Like Molecular Properties 483



perform a QSAR study. As seen in Eq. 1, Table 10, the rate constant Vmax shows
a quadratic dependence to the difference in ELUMO and EHOMO. These results are
consistent with a previous study (30), where it was found that π-π stacking inter-
actions between aromatic rings are important for the binding of substrates.

Lewis et al. (225) also used 10 CYP2E1 substrates to generate a QSAR model
with a combination of the total number of hydrogen bond acceptor and donor, the
number of active site π-π stacking interactions, and the relative molecular mass
(Eq. 2, Table 10). It was also shown that only three descriptors (hydrogen bond
acceptor and donor, π-π stacking interactions, and the log of the relative molec-
ular mass) could satisfactorily explain the binding affinity. A early publication
from Lewis et al. (236) on a series of 20 nitriles of varying rates revealed a
correlation between molecular polarizibility and excitation energy.

Waller et al. (237) performed a CoMFA study to analyze the metabolic rates
of CYP2E1 in rodents as intrinsic clearance of a 12 chlorinated volatile organic
compounds (VOCs). After superimposition, the steric and electrostatic field
interaction energies, the HINT (hydropathic interactions) energy (238), and
molecular orbital field were calculated in addition to clogP. The “best” model
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Table 9

QSAR Expressions for CYP2D6

QSAR equation r 2a
sb F c nd

1 log Km = –9.72 + 3.15 JWMWDW4 0.690 52
+ 1.23 JWMWKW2 + 5.19 JWMWH3W2 + 
7.25 JWMWH2W1 – 1.37 JWMWP2W5
(252)

2 pKi = 0.014 Mr – 0.477 log P – 0.567 HBA 0.958 0.048 35.10 11
– 1.794 NB – 3.557 (241)

3 ∆Gbind = 492.03 log Mr – 0.88 Mr 0.884 0.37 19.60 10
– 5.08 NHB – 3.76 Nπ-π – 947.68 (238)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: JWMWDW4, hydrogen bond acceptor capacity total density; JWMWKW2, positive
molecular electrostatic potential total shape; JWMWH3W2, positive molecular electrostatic
potential emptiness 3rd direction; JWMWH2W1, unitary weight emptiness 3rd direction;
JWMWP2W5, hydrogen bond donor capacity proportion 2nd direction.

Eq. 2: Ki, inhibition constant; Mr, relative molecular mass; log P, logarithm of the
octanol/water partition coefficient; HBA, number of hydrogen bond acceptors; NB, number of
basic nitrogens.

Eq. 3: ∆Gbind, free energy of binding; Mr, relative molecular mass; NHB, number of active
site hydrogen bonds formed between substrate and human CYP2D6; Nπ-π, number of π-π stack-
ing interactions formed between substrate and enzyme active sites.



using only one field at the time was generated with the energies of the HOMO
as descriptors, lead to a q2 of –0.186 and r 2 of 0.178. The most internally con-
sistent model was generated from a combination of steric, electrostatic, LUMO
and HINT fields, resulting in a q2 of 0.527 and r 2 of 0.953. Based on the con-
tribution of these fields to the model, the author was able to suggest a model for
the metabolic process; for example, the electrostatic fields contribute with 44%
to the overall model, which can be related to the recognition process between
substrate and enzyme, based on long-range interactions.

4.7. CYP3A4

The CYP3 family constitutes the major portion (40–60%) of the human
hepatic cytochrome P450. CYP3A4 occurs in the mammalian liver as well as
mammalian small intestines, and is known to metabolize nearly 50% of all
market drugs. It is therefore not surprising that much research has been per-
formed on CYP3A4. Lewis et al. (203,239) and Ekins et al. (200,201,240) have
investigated the metabolism of CYP3A4 since 1996. Here, we intend to review
only most recent investigations.

Singh et al. (79) published in 2003 a novel approach to predict the interac-
tion sites (“hot spots”) in a molecule metabolized by CYP3A4. Once identified,
these “hot spots” on the molecules can be modified to avoid metabolism. The
assumption of this study is that the CYP3A4 susceptibility is largely dependent
on the electronic environment surrounding the hydrogens in any molecules.
Hence, the hydrogen abstraction energy was calculated using the MOPAC with
the AM1 Hamiltonian for 50 CYP3A4 substrates. Moreover, the research group
designed a novel “fingerprint” (and using a special PLS called trend vector) to
capture the hydrogen’s topological environment in a molecule. Using PLS, a

Prediction of Drug-Like Molecular Properties 485

Table 10

QSAR Expressions for CYP2E1

QSAR equation r 2a
sb F c nd

1 log Vmax = 44.301 ∆E – 2.369 ∆E 2 – 203.75 0.910 0.099 40.40 17
(253)

2 ∆Gbind = 0.56 HB – 2.18 Nπ-π – 3.37 log Mr 0.980 0.2287 73.10 10
– 0.36 NHB + 1.86 (238)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: log Vmax, rate constant for CYP2E mediated metabolism; ∆E, ELUMO – EHOMO.
Eq. 2: ∆Gbind, free energy of binding; HB, total number of hydrogen bond acceptors and

donors; Mr, relative molecular mass; NHB, number of active site hydrogen bonds formed between
substrate and human CYP2E1.



correlation was identified between the fingerprint and the hydrogen abstrac-
tion energy. The model displayed reasonable statistical results of r 2 = 0.98
with a standard error s = 2.06 kcal/mol. The model revealed that only hydrogen
atoms with hydrogen abstraction energies smaller than 27 kcal/mol in combi-
nation with an exposed surface area greater than 8 Å are susceptible to
CYP3A4 mediated metabolism. These findings identified 78% of the experi-
mentally known major metabolic sites.

Wang and coworkers (33) presented their research efforts at the 221st Amer-
ican Chemical Society National Meeting 2001; 31 dillapiol derivatives were
used to generate a QSAR model. The analyses indicated a parabolic correla-
tion between the inhibitory effect and the log P of dillapoils.

The dependence of induction of CYP3A, as determined by the percentage
increase in ethylmorphine N-demethylase activity, was studied by Lewis et al.
(241) by performing a QSAR study on 14 steroids (Eq. 1, Table 11). It was
shown that the best model (r = 0.89) includes a combination of the compounds
lipophilicity in the form of log P, the area/depth2 feature and ∆E, which is
the difference between the HOMO and LUMO energies. An additional study
(Eq. 2, Table 11) of Lewis et al. (238) performed on 10 CYP3A4 substrates
strengthen the importance of the HOMO and LUMO energies in combination
with the number of active site hydrogen bond and π-π stacking interactions.
The author underlined Koopman’s theorem (116) by pointing out that the fron-
tier orbital energies could be associated with electron donor/acceptor properties
of the substrate molecules. The relatively low correlation coefficient can be
explained by the fact that the dataset used had a large range of KD values
(1.8–348 µM).

Ekins et al. (201) used the MS-WHIM descriptors to construct 3D and 4D
QSAR models for the log(1/Ki) of 14 competitive inhibitors of CYP3A. The 3D
QSAR of the CYP3A4-mediated midazolam 1′-hydroxylation was shown to be
predictive yielding a leave-one-out (LOO) q2 value of 0.32. Although the 4D
QSAR methodology includes conformational changes, it did not provide for a
significant improvement over the 3D QSAR (LOO q2 0.44). Two other datasets
(242,243) were used to create 3D and 4D QSAR models. In both datasets, it
was not possible to build predictive 3D QSAR models; however, 4D QSAR
models were constructed (LOO q2 = 0.41–0.56).

Molnar (244) has investigated a novel and innovative method to study
CYP3A4 inhibition. It is argued that CYP3A4 has highly structurally diverse
inhibitors; hence, the probability that these inhibitors will bind in different bind-
ing modes is great. Because 3D-QSAR methods assume the same or similar
binding mode, 2D descriptors and neural networks were proposed as better
alternives; 145 inhibitors and 145 non-inhibitors were classified using a
YES/NO scheme. The 2D Unity fingerprints were chosen as descriptor set.
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A feedforward neural network consisting of 31 hidden and one output neuron
was generated; 97% inhibitors and 95% non-inhibitors of the training set were
predicted correctly; 36 inhibitors and 36 non-inhibitors of a test set, which have
not been used to generate the model, were predicted with 91.7% accuracy for
inhibitors and 88.9% for non-inhibitor.

Schneider et al. (245) used 333 one and two-dimensional descriptors to create a
virtual screening filter for CYP 3A4 inhibition. After the application of a space-
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Table 11

QSAR Expressions for CYP3A4

QSAR equation r 2a
sb F c nd

1 Log A = 0.25 a/d 2 – 0.50 ∆E + 0.08 log P 0.792 0.196 12.30 14
+ 8.27 (263)

2 ∆Gbind = 1.92 EL – 2.99 EH – 0.52 NHB 0.922 0.360 13.00 10
+ 3.55 Nπ-π – 35.10 (238)

3 Induction = 0.85 HBA + 0.68 HBD – 0.051 Mr 0.922 0.556 13.40 19
+ 32.87 log Mr – 66.59 (269)

4 Induction = 10.64 l/w – 0.88 µ – 0.016 Mr 0.960 0.470 17.50 18
– 5.01 EL – 4.58 (269)

5 Induction = 1.01 NHB – 0.336 µ – 0.321 EL 0.960 0.367 44.50 10
+ 1.056 (269)

6 Induction = 1.09 NHB – 0.615 a/d 2 – 2.147 l/w 0.960 0.315 61.20 10
+ 1.235 (269)

aCoefficient of determination for a given training set; bstandard error; cF-value; dnumber of
observations.

Eq. 1: log A, logarithm of the percentage increase in ethylmorphine N-demethylase activity;
a/d2, ratio of molecular area to depth-square; ∆E, EL – EH, difference between the energy of the
lowest unoccupied to the highest occupied molecular orbital; log P, logarithm of the
octanol/water partition coefficient.

Eq. 2: ∆Gbind, free energy of binding; EL, energy of the lowest unoccupied molecular orbital;
EH, energy of the highest occupied molecular orbital; NHB, number of active site hydrogen bonds
formed between substrate and CYP3A4; Nπ-π, number of π-π stacking interactions formed
between substrate and enzymes active site.

Eq. 3: Induction: fold induction of CYP3A4 in the presence of hGR; HBA, number of hydro-
gen bond acceptors; HBD, number of hydrogen bond donor; Mr, relative molecular mass.

Eq. 4: Induction: fold induction of CYP3A4 in the presence of hGR; l/w, ratio of molecular
length to width; Mr, relative molecular mass; EL, energy of the lowest unoccupied molecular
orbital.

Eq. 5: Induction: fold induction of CYP3A4 in the presence of hGR; NHB, number of active
site hydrogen bonds formed between substrate and CYP3A4; µ, molecular dipole moment; EL,
energy of the lowest unoccupied molecular orbital.

Eq. 6: Induction: fold induction of CYP3A4 in the presence of hGR; NHB, number of active site
hydrogen bonds formed between substrate and CYP3A4; a/d2, ratio of molecular area to depth.



filling subset selection algorithm, a total of 311 compounds were classified in as
either low (IC50 < 1 µM) or high (IC50 > 50 µM) inhibitors. The 10 most relevant
descriptors for the final PLS analyses are total number of hetero and aromatic
atoms, total number of aromatic atoms, total number of aromatic bonds, total
number of aromatic rings, total number of carbon atoms, molecular refractivity,
total number of bonds, graphic mass index, atomic connectivity index rank 3
and rank 1. The Matthews correlation coefficient was used in contrast to the
commonly used cross-validated r2. The final PLS analysis was capable of reclas-
sifying 95% of the compounds correctly; 90% of the compounds in a semi-inde-
pendent test set were predicted in agreement with the experimental data.

Lewis et al. (246) studied 10 CYP3A4 inducers, where induction is mediated
via human glucorticoid receptor (hGR). A good correlation (r = 0.98, Eq. 3–6,
Table 11) between the induction and a combination of structural parameters
including: relative molecular mass, dipole moment, LUMO energy, and rec-
tangularity can be achieved. Lewis proposed that the dipole moment and
LUMO energy are indicating a potential for hydrogen bonding between ligand
and receptors, whereas the molecular mass can be related to desolvation (216).

Wang (247) and coworker’s 3D QSAR model for 31 dillapiol revealed that
the activity was correlated with the steric bulk of the substitutes in position
5 and 6 and with the electron density of the groups at position 6. Unfortunately,
no more information about that work has been found.

4.8. Other CYPs and relevant articles

Work on CYP51 has been done by Ji et al. (247), Talele et al. (248), and
Lewis et al. (228,250). P450 aromatase has been explored via QSAR by Baston
et al. (251–253) and others (126,252–256).

Some of the earliest QSAR studies on CYPs were performed by Basak
(257), Murray (258), and Marshall (205). Gao et al. (259) explored the influ-
ence of electronic parameters of CYP substrates in 1996. The findings of Basak
that electronic terms would cancel out have been proven wrong by many
research papers published in the following decades. Tyrakowska et al. (260)

indicated via QSARs based on calculated molecular orbital descriptors that the
kcat (maximum velocity converted per nmol of P450 per min) for CYP cat-
alyzed C4-hydroxylation rates of aniline derivatives of different species (rats,
rabbit, mice, and human) are closely related to the highest occupied molecular
orbital energy (EHOMO), r ≥ 0.97. Several reviews published by Lewis et al.
(212,216,228,261–265) and Ekins (240) should also be mentioned.

5. Databases, Software Systems, Useful Web Pages, and Services

The burst in biologic and information technology in conjunction with the
combinatorial chemistry advances is making many targets become available
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for the pharmaceutical industry at a rapid pace. Therefore, it is necessary to
use our collective knowledge, contained in corporate and commercial data-
bases, to screen the incoming avalanches of compounds to find the next block-
buster medicines faster, cheaper, and cleaner.

In pharmaceutical companies, the available ADME/T data in general and
metabolism information in particular are focused around lead compounds. It is
realized that most projects are lacking sufficient relative ADME/T data in terms
of quality, quantity, and the useful range of data for modeling (266). More-
over, it is very difficult to acquire data for inactive compounds with regard to
the ADME/T endpoints. Additionally, our functional metabolism information is
limited only to several chemical scaffolds (chemotypes). As a result, the
challenge of finding “good” datasets has become the “holy grail” in ADME/T
modeling. Clearly, more comprehensive datasets of known drugs and related
series are required to provide the foundation of predictive models.

The biotechnology revolution has made an undeniable impression on the
field of metabolism. For example, it is common, to seek in vitro metabolic data
based on human CYPs. Currently, Cerep, Cyprotex, Novascreen, and many
others (267–271) are providing larger and larger metabolism datasets, compu-
tational tools, and models, often in conjunction with other biological endpoints.
However, the qualities of these datasets are yet to be established.

Having access to metabolism data in the early discovery stage is invaluable.
For example, hepatic metabolism data could be used to characterize the phar-
macokinetic behavior of a perspective lead. Several studies have reported how
metabolism databases and software systems have been used at various settings
(272). In this section, we will provide an overview of recent databases, software
systems, websites, tools, and services that could be potential starting points for
metabolism modeling at various stages in drug discovery process (271,273).

5.1. Databases and Software Systems

5.1.1. ArQule

ArQule provides professional services and products including metabolism
models for CYP 3A4, 2D6, and 2C9. The metabolism models are based on
combined empirical/quantum chemical approaches and are aimed at predicting
the site of metabolism, enzyme–substrate binding affinities (2D6 and 2C9), and
relative rates of metabolism at discrete sites within a molecule (274).

5.1.2. Cerep

Cerep evaluates hits, leads, and new compounds from the metabolic point of
view using liver microsomes and recombinant cytochrome P450s (275). The
results of these metabolic screening studies offer insight to the rate of metabolic
pathways, in vivo pharmacokinetic properties, and drug–drug interactions.
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Cerep also provides modeling tools and models for in silico prediction of new
compounds. In vitro metabolism data are described in Table 12.

5.1.3. Cloe Screen

Cyprotex, using Cloe Screen™, evaluates pharmacokinetic properties in vitro
and establishes a broad portfolio of in vitro assays that allows researchers to
investigate the metabolism parameters for drug discovery and development. This
company supplies the following data and assays (276): microsomal stability,
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Table 12

A Summary of Tests Available from Cerep

Enzyme (275) Assay

CYP1A2 inhibition Metabolic stability (liver S9, monkey,
Cynomolgus)

CYP2B6 inhibition Metabolic stability (liver S9, dog,
beagle)

CYP2C9 inhibition Metabolic stability (liver S9, rat,
Sprague-Dawley)

CYP2C19 inhibition Metabolic stability (liver S9, mouse,
CD1)

CYP2D6 inhibition Metabolic stability (CYP2D6)
CYP2E1 inhibition Metabolic stability (CYP3A4)
CYP3A4 inhibition (BFC substrate) Plasma stability (human)
CYP3A4 inhibition (BzRes substrate) Half-life determination (liver micros.,

human)
CYP3A4 inhibition (Testosterone Half-life determination (liver S9, human)

substrate)
CYP3A5 inhibition Apparent Vmax/Km (CYP2D6)
Time-dependent inhibition CYP3A4 Apparent Vmax/Km (CYP3A4 )

(half-life)
Metabolic stability (liver micros. human) Metabolite detection (liver micros,

human)
Metabolic stability (liver micros. monkey, Metabolite characterization (liver 

Cynomolgus) micros., human)
Metabolic stability (liver micros. dog, Glutathione conjugate detection

Beagle)
Metabolic stability (liver micros. rat, Glutathione conjugate characterization

Sprague-Dawley)
Metabolic stability (liver micros. Glucuronide conjugate detection

mouse, CD1)
Metabolic stability (liver S9, human) Glucuronide conjugate characterization



hepatocyte metabolic stability, cytochrome P450 inhibition (3A4, 2D6, 1A2, 2C9
and 2C19), cytochrome P450 identification, and cytochrome P450 induction.

5.1.4. COMPACT

COMPACT, Computer-Optimized Molecular Parametric Analysis of Chemical
Toxicity, allows researchers to examine, using both electrostatic and steric para-
meters, the ability of xenobiotics to form complexes with CYP1A2, CYP2A6,
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and
CYP4A11. However, it should be realized that the system has limitations in
detecting toxic agents that are participating in enzymatic oxidation (4,277–279).
COMPACT provides the ability to collectively employ diverse in silico tech-
niques for a rapid screening of novel compounds. In addition, COMPACT
involves the use of molecular modeling and related techniques for the evaluation
of human drug metabolism (4,277–279).

5.1.5. Cytochrome P450 Database (CPD)

Many references have been made to the Cytochrome P450 Database (CPD),
which is maintained by the institute for Biomedical Chemistry and Center for
Molecular Design in Russia (280–283). This institute has complied amino acid
sequences, gene structures and chromosomal location, substrate specificity,
impression of P450 nomenclature, structure and function of the P450 super-
family, information on P450-catalyzed reactions, and inducibility of the super-
family of cytochromes P450. CPD comes with its own software (available on
compact disk and online). However, accessing this site online is extremely slow,
and its usage is very impractical.

5.1.6. Drug Interaction Database

The database contains information taken from approx 4000 research papers
related to in vivo and in vitro drug interaction in humans. The database is
searchable using a number of queries and is updated on a monthly basis (284).

5.1.7. GenTest

This database, collected from hundreds of human cytochrome P450 reac-
tions, is a collection of information on human cytochrome P450 metabolism
(285). For each substance in the database, information can be found regarding
therapeutic category, human cytochrome P450 or P450 family with which the
chemical interacts, chemical reaction which occurs, classification of the inter-
acting chemical/drug substance with a human P450 as well as literature cita-
tions for this information. The Human P450 metabolism database is extracted
from the published data from original papers, reviews, or abstracts at scientific
conferences. The database is updated regularly. In addition, GenTest provides
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commercial kits and services for high throughput P450 inhibition in screening,
human, dog, and rat cytochromes P450 systems (227,245).

5.1.8. Human Drug Metabolism Database

IUPAC is constructing a human drug metabolism database model on the
internet (286). This effort is based on the premise that very few published
datasets are available for modeling (287,288), and even fewer sources outside
the major pharmaceuticals are providing metabolism databases for various use
by modeling groups. A version of this dataset is expected to be available in
2003, and it ultimately will serve as a standard for how new molecules are
metabolized in humans.

5.1.9. iDEA

Lion Biosciences is the supplier of the iDEA™ Metabolism software pack-
age as well as other ADME/T services (289). The iDEA software simulates
metabolism and predicts a compound’s metabolic behavior in humans. The
Metabolism Module consists of a data expert module to perform data fitting
and analysis of collected in vitro data and the physiological metabolism
model. The physiological metabolism model is constructed from proprietary
database of 64 clinically tested compounds. Additionally, the metabolism
module automatically calculates the Michaelis-Menten constants Km and Vmax

for the kinetic analysis of metabolism turnover (289).

5.1.10. Integrity Database

Prous Science provides a database for drug discovery and development
encompassing all the areas in drug discovery, including metabolism. Integrity
enables researchers to combine chemistry and genomics data with pharmaco-
dynamics and pharmacokinetics databases. All the data are cumulated through
available public records, literature, conferences, and patents. This database is a
very useful system to acquire public information (290).

5.1.11. META/METAPC

The META system (291–293) is an expert system, based on well-established
sources, for predicting the sites of potential enzymatic attack and the metabo-
lites formed by metabolic transformations. The program uses dictionaries of
biotransformation operators, which are created by experts to represent known
metabolic paths. Currently, META can be combined with one of the following
dictionaries: mammalian metabolism, aerobic biodegradation, anaerobic
biodegradation, and metabolic transformation reactions (291).

The program is capable of predicting the metabolites that could be gener-
ated from a novel xenobiotic. A genetic algorithm has been used to build and
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prioritize the biotransformation dictionaries. Moreover, quantum chemical
parameters and structural descriptors were implemented in predicting the
regioselectivity of ring oxidation in polynuclear aromatic hydrocarbons and
the site of oxidation (292,294–296).

5.1.12. MetaCyc

The MetaCyc database is the result of a collaborative effort between SRI
International (see the website and useful links on this document), the Carnegie
Institution, and Stanford University in creating a comprehensive database
collected from literature and cyber sources. The MetaCyc database contains
metabolic pathways (with citations), reactions, enzymes, and substrates. This
database does not offer genomic data, but it does supply its own software and
visualization tools (297).

6.1.13. EcoCyc

Encyclopedia of Escherichia coli Genes and Metabolism is a bioinformatics
database combining the biochemical and genomic information of E. coli allow-
ing a better understanding of E. coli at the system level. It is linked to other bio-
logical databases and contains structures, genomics, and bibliographic data of
E. coli. EcoCyc allows for visualizing of genes on chromosomes, a biochemical
reaction, or pathway. EcoCyc also allows for computational investigations of the
metabolism, design, evaluation, and simulation of metabolic pathways (298).

5.1.14. MDL® Metabolite Database

MDL Metabolite is a metabolism information system that provides a data-
base, registration system, and graphical interface (299,300). The database (in
vivo and in vitro studies including name, EC number, and isoenzyme) uses
information from multiple sources to construct structural metabolic database
entries for all parent compounds (299). The system provides the user with the
capability to create, edit, and register metabolic reactions. The available data
spans the last 100 years of research extracted mainly from Biotransformations

of Drugs (1977–1983), Pharmacokinetics (1986–1990), original metabolism
literature, new drug applications (1990–present), and Proceedings from
International Society for the Study of Xenobiotics (ISSX) meetings. It contains
8,590 parent compounds, 53,373 transformations, and 34,537 molecules. The
Metabolite Database is updated semiannually (301).

5.1.15. MetabolExpert

MetabolExpert (302–304) is composed of databases (including animal metab-
olism, plant metabolism, photodegradation chemistry, and soil degradation
chemistry), a knowledge-base system, and prediction tools. The biotransforma-
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tion database is based on known biotransformations and common metabolic
pathways. The transformation knowledge-base system consists of literature-
driven rules (305,306). MetabolExpert uses matching basic biotransformations to
the compound’s structure for predicting the possible metabolites. Additionally, it
includes models with validations and quantitative predictions (307).

5.1.16. Metabolism Database

This Accelrys provided database is based on the journals of the Royal Society
of Chemistry (RSC) (308). It primarily contains information on the metabolic
fate of chemicals (including pharmaceuticals, agrochemicals, food additives,
and environmental and industrial chemicals) in vertebrates, invertebrates, and
plants. New entries can be added, and the database may be searched graphi-
cally. This database can be combined with various computational tools from
Accelrys for target-specific analysis and modeling. Metabolic pathways are
organized alphanumerically, and future releases are scheduled to include a
comprehensive survey of the metabolism literature (308,309).

5.1.17. METEOR

METEOR uses a knowledge-based approach of structure–metabolism rules
(biotransformations) to predict the metabolic fate of a query structure (310).
The system, developed and marketed by LHASA Limited, evolved out of the
DEREK program. DEREK is a knowledge-based system that contains alerts
capturing structural toxicity and relies on the available mechanisms of toxicity
and metabolism. The rules in DEREK cover various toxicological endpoints
(carcinogenicity, mutagenicity, skin sensitization, teratogenicity, irritation, and
respiratory sensitization) for toxicity prediction (311–313).

METEOR’s biotransformation rules are generic reaction descriptors, and the
versatile structural representation used in the system allows each atom or bond
to have specific physicochemical properties. This approach provides more
details than simple hard-coded functional group descriptors (313), but this flex-
ibility also can give rise to an avalanche of data. METEOR manages the
amount of data by predicting which metabolites are to be formed rather than all
the possible outcomes (310,312,314,315). At high certainty levels, when
chosen, only the more likely biotransformations are requested. At lower likeli-
hood levels, the more common metabolites are also selected for examination.
Currently, METEOR knowledge-based biotransformations are exclusively for
mammalian biotransformations (phase I and phase II) (314,315).

5.1.18. NOVASCREEN

NOVASCREEN provides a screening assay platform, pharmcoinformatics
databases, and data mining tools and algorithms to create a map of the molec-
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ular recognition patterns and functional activity relationships between drug
targets and drug-like chemical compounds. The following CYP data are com-
mercially available: CYP1A2, CYP2A6, CYP2C9*1 (Arg 144), CYP2C19,
CYP2D6 and CYP3A (316).

5.2. Useful Links

5.2.1. The ICGEB (International Center for Engineering and Biotechnology)

This link (http://www.icgeb.org/~p450srv/) is a website with various links to
several research laboratories, many research papers, proposals, databases, and
proceedings. In addition, it contains a list of sequences of the CYP superfamily
and its homologs from different enzyme systems (273,317).

5.2.2. David R. Nelson’s Webpage

This webpage (http://drnelson.utmem.edu/CytochromeP450.html) includes sev-
eral links to talks, papers, presentations, and other useful information on P450.
Moreover, this site has a very strong emphasis on structure- and sequence-related
aspects of the CYP super family (318,319). Other sites, such as KEGG (Kyoto
Encyclopedia of Genes and Genomes is a bioinformatics resource for under-
standing higher-order functional meanings and utilities of the cell or the organism
from its genome information), also have links to the Nelson’s website (http://www.
genome.ad.jp/kegg/kegg.html; http://www.genome.ad.jp/kegg/metabolism.html).

5.2.3. The International Society of Xenobiotics

The International Society of Xenobiotics is providing useful information
on the P450 systems through many links to P450 research groups, the
Nomenclature Committee (http://www.imm.ki.se/CYPalleles/) and drug inter-
actions tables (319).

5.3. Useful Services

5.3.1. PanVera Corps.

PanVera offers CYP450 Screening Kits, which allow for performing minia-
turized CYP HTS. Vivid(r) CYP450 Screening Kits are designed to quantify the
inhibition of the predominant human CYP isozymes (CYP3A4, CYP3A5,
CYP2B6, CYP2D6, CYP2C9, CYP2C19, CYP1A2, and 2E1) involved in
hepatic drug metabolism (320).

5.3.2. SRI International

SRI evaluates drug metabolism and drug interactions, using human and
animal (rat, dog, and monkey) tissue models based on human hepatocytes. It
also extends services for the metabolite profiling of drug candidates using hepa-
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tocytes, liver and small intestine microsomes, and S9 microsomes containing a
single enzyme. The analysis is conducted by various spectroscopic and analyt-
ical techniques. Moreover, it provides predictions on drug interactions due to
inhibition or induction of drug metabolizing enzymes and metabolite formation
by enzymes (phase I and II). Additionally, information on pharmacogenetic
effects on human drug metabolism could be made available (321).

5.3.3. XenoTech, LLC

XenoTech offers a selection of services for drug metabolism-related research
including liver and pulmonary microsomes and S9, cryopreserved hepatocytes
from human and six other relevant species, antibodies directed against CYP
enzymes, recombinant CYPs, and bDNA probe sets (322).

5.3.4. Human Biologics International

Human Biologics International offers various in vitro data, screens (Hepato-
Screen™), kits, and analysis software (HepatoSoft™) for CYP inhibition, reac-
tions, and stability (323).

5.3.5. MDS, Inc.

MDS offers studies and designs (stability/profile screens, enzyme inhibition,
drug–drug interactions, CYP450 identification, enzyme induction) to provide
diverse in vitro metabolism screenings (324). For example, in determining
which CYP enzymes are involved in the metabolism of a drug candidate, the
variation in human rate of metabolite formation with the variation in CYP
activity in human microsomal samples from a panel of 10–15 donors are exam-
ined. The metabolism of the drug candidate is determined by various analytical
methods in the panel of human liver microsomal samples and then it compared
to known marker activities for individual CYP enzymes (324).

5.3.6. CytroChroma, Inc.

Cytochroma has developed an approach for identifying cytochrome P450s
(human, fungi, parasite, bacteria) through the use of molecular biology tools
and the information about cytochrome P450 structure (325). Cytochroma uses
a bioinformatics approach to take advantage of the wealth of gene sequence
information in public databases to identify new members of the cytochrome
P450 family. Cytochroma claims to have identified 6 proprietary human
cytochrome P450s (325).

5.3.7. Metabolic Solutions, Inc.

The erythromycin breath test, provided by Metabolic Solutions, is a rapid
and a quantitative measure of in vivo CYP3A4 activity. The test is for designed
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to be used as an investigational tool for assessing CYP3A4 activity during
pharmacological research (326–328).

5.3.8. TNO Pharma

TNO Pharma has developed a panel of 10 3T3-fibroblast–derived cell lines
that express individual human CYP450 enzymes. At present, three are
co-expressing human oxidoreductase. These cell lines can be used for metab-
olism and inhibition studies, cytotoxicity studies, and small-scale metabolite
production (329).

5.3.9. Ricerca, LLC.

Ricerca offers in vivo and in vitro ADMET services. Specifically, it pro-
vides in vitro assays for CYP inhibition, metabolism, ADME, pharmacokinetic,
and metabolism profiling (330).

5.3.10. Affymetrix, Inc.

This is the provider of GeneChip® cytochrome P450 assay for detection of
18 polymorphisms present in two human CYP genes (2D6 and 2C19 genes).
In addition, Affymetrix offers specialty classification and subclassification
systems, which operates based on the CYP450 database collected from
574 protein sequences (281,282,331,332), for gene families such as the
cytochrome P450 (332).

5.3.11. Pharmagene, plc.

Pharmagene offers various services on metabolism predictors, drug–drug
interactions, toxicity, Cytochrome P450 (CYP450), hepatocytes, MetMatrix™,
and drug metabolism (333).

6. Cross-Methods

Several research techniques are commonly used in the field of QSAR
(quantitative structure–activity relationship). Nevertheless, this research area is
constantly on the search to develop better, faster, or different methods. In this
section, we intend to point out some ongoing research efforts that are explor-
ing unique pathways with the same goal of better understanding the metabo-
lism process of CYPs.

Classification trees are used to predict membership of cases or objects in
the classes of a categorical dependent variable from their measurements on one
or more predictor variables. Lewis et al. (334) used the concept of classification
trees to design a decision tree for human P450 substrates. The intention was to
predict which CYP isozyme will interact with which substrates, based on
physicochemical parameters. The resulting classifiers are the volume, the
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charge, and the area/depth2 shape descriptor of the substrate. Based on the
volume descriptor, one is able to distinguish between CYP2E1 (low volume),
CYP3A (high volume), and the other subenzymes. These medium volume
subenzymes can be partitioned based on the pKa; where acid compounds tend
to interact with CYP2C9 and basic molecules with CYP2D6. The remaining
isozymes are finally split up based on the shape descriptor (area/depth2), where
a low value indicates interaction with CYP2B6, medium values specify inter-
actions with CYP2A6, and finally a high area/depth2 value identifies interaction
with CYP1A2. Another decision tree published in Drug Discovery Today by
Lewis et al. (361) introduced an additional branch of the previously published
decision tree, so that based on the COMPACT ratio (CR), a descriptor depen-
dent on ∆E and the area/depth2 of the substrate, one is able to distinguish
between CYP 1 substrates (CR<12) and CYP2/CYP3 substrates, if the compact
ratio is greater than 12.

Keseru and Molnar et al. (336) introduced a novel metabolic fingerprint,
METAPRINT, for the assessment of metabolic similarity and diversity in com-
binatorial chemical libraries. Metaprint contains information of the metabolic
routes and metabolites, predicted by MetabolExpert as well as clogP and mol-
ecular weight information for each metabolite and parent compound. This
approach could be advantageous for the design of cassettes for dosing phar-
macokinetic experiments. Another method to predict the metabolic route was
developed by Singh et al. (79) for CYP 3A4 substrates. Here, a trend vector,
describing the hydrogen’s topological environment in a molecule, was suc-
cessfully related to the hydrogen abstraction energy. Snyder et al. have applied
a genetic algorithm as a method to select variables in a study of 50 CYP 2D6
substrates. Neural networks, an alternative statistical method, were used to
explore the dependency of CYP1A2 flavonoids IC50 values (211) as well as
CYP 3A4 inhibition data (244) and structural descriptors. Gasteiger et al. (337)

presented self-organizing neural network models to investigate the selectivity of
CYP 2D6 against CYP3A4, 2D9, and 2C19 at the 225th ACS National Meet-
ing. Gironés et al. (254) used alignment-depended molecular quantum similar-
ities as descriptors of a partial least square model to exhibit the influences in
binding affinity of aromatase of 50 steroids (r 2 = 0.839, q2 = 0.734). Weighted

path numbers as a set of descriptors have been used to study the inhibitory
effects of 19 aliphatic alcohols on microsomal P450 p-hydroxylation of ani-
lines (338), where a path is a sequence of adjacent edges that do not pass
through the same vertex more than once. The best statistical model could be
achieved using path lengths of 4 (r = 0.975, rcv = 0.943). Finally, de novo

design strategies have been investigated by Ji et al. (248) for CYP51 and
Halpert et al. (339).
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7. Future Perspective

An overview of the current understanding of the structures and functions for
members of the CYP family has been presented in this chapter. There has been
great interest in expanding our view of the structures and functions of members
of this family of enzymes due to the key role these enzymes play in phase I
metabolism of pharmaceutical compounds. It is has been demonstrated that a
greater understanding of these proteins at the structural level can facilitate the
development of predictive models for metabolism. By incorporating these
models into the early drug discovery stages, it may prove possible to weed out
those compounds that may demonstrate metabolic liabilities in preclinical and
clinical trials.

In fact, the ability to accurately estimate and/or predict ADME-related prop-
erties has prompted some to suggest a new paradigm for drug discovery. As dis-
covery technologies such as combinatorial chemistry and high throughput
screening become the norm, it has been suggested that screening collections be
censored of compounds with the potential to possess adverse ADME properties.
As an example, the rise in the popularity of using the Lipinski “rule of five”
(340) in identifying a priori those compounds that may possess poor solubility
profiles is highly indicative of the industry-wide desire to “attrit” compounds in
a fail fast, fail early manner.

While the application of models for CYP-substrate interactions, as presented
herein, may be used to provide further support to eliminate compounds, real or
virtual, from consideration prior to synthesis and/or activity assessment, it has
been suggested that models of this type may be of greater utility in a drug dis-
covery paradigm in which biological activity and ADME related properties are
simultaneously optimized in an interactive and iterative fashion (341). Although
Lipinski-type filtering is commonplace in the pharmaceutical industry, the latter
approach is beginning to emerge as ADME models become available. In addi-
tion, a review of the biotechnology and small pharmaceutical company sector
will reveal numerous companies that incorporate this latter paradigm into their
corporate mission statements.

8. Summary

The cost to bring a new drug to market has risen from $318 million to $802
million from 1991 to 2000, respectively. Clinical costs represent the majority of
this spend ($467 million vs $335 million in 2000). In addition, the increase in
clinical costs over this same time period ($104 million in 1991 vs $467 million
in 2000) far exceeded that of the increase in preclinical costs ($214 million in
1991 vs $335 million in 2000) (2). In order to maintain profitability and
growth, given the current economic and regulatory and healthcare realities dis-
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cussed in the introduction, the average-sized pharmaceutical company must
release one average-sized new product every two years for each percentage of
market share that it holds. As an example, it is calculated that the new company
formed by the merger of Pfizer and Pharmacia will require four to five new prod-
uct launches per year to sustain itself (342). In order to meet this demand in pro-
ductivity while minimizing the total cost required to bring a new drug to market,
it is becoming increasingly important for the discovery units of pharmaceutical
organizations to deliver high-quality compounds for preclinical and clinical
assessments. The virtual screening of compounds using models (macromolecular,
pharmacophore, or structure–activity relationship) based on structural information
about or physicochemical requirements for substrates of the various CYP iso-
forms implicated in the metabolism of pharmaceuticals has the potential to accel-
erate the discovery effort and reduce the overall drug development costs by
promoting higher quality candidate compounds for clinical assessment.
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quantitative structure-activity

relationship models, 473–488

D

Database access, 67–72
Data shaving, 94–97
Descriptors

3D-logP, 219–223, 256
3D pharmacophore, 358–360
BCUTs, 18–19, 282–283, 365–367

receptor relevance, 367–368
constitutional, 302, 327
correlation, 267–268, 295
descriptor medians, 293
electron density derived, 401,

411–412
encoding, 268–271
general, 302–303, 339–341
grid cell occupancy, 164
VSA, 265–267

Distance metrics (see Feature
vectors)

Diversity (see also Molecular
similarity), 51, 58

design, 308–310
selection, 295–296

Docking, 370–371, 439, 459–463
Drug-like features, 340–341, 355, 450
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F

Feature vectors, 10–27
continuous-valued, 18–27
discrete-valued, 10–18
distance metrics

Euclidean, 11–12
Hamming, 11–12
Minkowski, 21
Tanimoto, 11–12
Tversky, 13–16

Fitness functions (see Scoring)
Focused (or sequential) screening,

59–60, 326
Force fields, 144–145, 441–442

G

G protein coupled receptors
(GPCRs), 356–357

Genetic algorithms, 161–164, 343,
415

pattern recognition, 412–419
boosting, 417–418

Gibbs free energy, 440

H

High-throughput screening, 86–87,
112

K

Kinases, 369–372
K-means, 304

L

Library design, 75–82, 87–88
combinatorial, 335–336, 361

cherry-picking, 338
filtering, 77–79, 338, 345

multi-objective design, 341–342,
344–345, 383–385

multi-objective evolutionary
algorithms, 341–344

reactant- vs product-based
design, 337–338

simulated annealing guided
diversity sampling, 382

enumeration, 79-81, 338-339
focused, 368

simulated annealing guided
focusing, 383

targeted, 355–356
cell-based, 365–368
pharmacophores, 358–363
privileged substructures, 363–364
target class-specific, 355–356
target structure-based, 368–372

Linear regression (see Quantitative
Structure-Activity
Relationship)

Lipophilicity, 216–217
molecular lipophilicity potential,

220

M

Molecular alignment (see

Quantitative Structure-Activity
Relationship)

Molecular complexity, 117–118
Molecular fields, 27–30, 176–178

field-based similarity indices, 31–32
Gaussian functions, 28-30

Molecular fingerprints (see also

Feature vectors), 10-11
Molecular similarity, 1–2, 51–52

dissimilarity, 35, 382
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Molecular surface, 219–220

N

Neural networks, 178–181

O

Olfactory stimulants, 400–401

P

Pareto ranking, 343
Partial charges, 145, 190
Partial least squares (see also

Quantitative Structure-Activity
Relationship), 174–176

Partitioning
cell-based, 282–283

cell coverage, 304–306
median, 292–293, 297–298
recursive, 319–327

feature selection, 325–326
prediction, 325–326
p-value, 320–322

Principal axes, 430–432
chirality measure, 431
symmetry, 430

Principal component analysis, 39–40,
172–174, 283–284, 413–415

Principal coordinate analysis, 39–40

Q

Quantitative structure-activity
relationship (QSAR)

2D-QSAR, 136
linear correlation coefficient,

170–171
linear regression, 169–170

3D-QSAR, 136–139

comparative molecular field
analysis (CoMFA), 176–178

comparative molecular
moment analysis
(CoMMA), 137–138

comparative molecular
similarity index analysis
(CoMSIA), 137

orthogonal signal correction,
223, 228

partial least squares regression,
176, 223, 232

self-organizing molecular field
analysis (SOMFA), 137,
194–197

4D-QSAR, 163-168
conformational ensemble

profile, 163–164
consensus model, 167–168
lack of fit function, 165

binary QSAR, 92–93, 183–184,
267, 276

bioactivity data, 142–144
scaling, 143–144
transforming, 142–143

descriptor calculation, 157–159
metabolism prediction, 473–488
molecular alignment, 150–156
molecular conformation, 145–148

conformational search, 148–150
overfitting, 184
receptor-dependent, 140–141
receptor-independent, 135–136
training and test sets, 156–157
validation, 184–188

cross-validation, 185–186
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least squares fit, 185
scrambling, 187–188

Quantitative structure-property
relationship (QSPR), 271

S

Scaffold hopping, 290
Scoring

functions, 286, 296–297, 342,
381–382, 384, 416, 440

components, 115
consensus, 121–122, 445
empirical, 443
force field approximations,

441–442
knowledge-based, 443–444

Similar property principle, 53
nearest neighbors, 52–53
similarity coefficient, 52–53

Similarity searching, 52–53, 72–75,
88–90

information retrieval, 53–54
cumulative recall graph, 57
enrichment factor, 55
G-H score, 55

precision, 54
recall, 54

Simulated annealing, 160–161,
381–382

Support vector machines, 181–183

R

Random selection, 328
Rule-based evaluation, 91–92

T

Tanimoto coefficient (see Feature
vectors)

Three-dimensional (3D)
pharmacophores (see also

Descriptors), 358–360

V

Van der Waals surface area, 262–264

Virtual screening, 52, 139–140,
297–298, 439

W

Web-based tools, 67, 495


