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 The use of in silico methods for pharmaceutical substances is quite consolidated in certain 
areas and, at the same time, is facing new perspectives in others. The whole area is complex 
for the high number of models, which apply different approaches, such as quantitative 
structure-activity relationships, models to evaluate binding to receptors, ADME methods, 
and tools for system biology. Today the challenge is even more diffi cult than in the past, 
since we discovered that pharmaceuticals reach the environment and affect the living sys-
tems. Thus, a wise planning of the new drugs and suitable treatment systems of the waste 
should take into consideration not only the toxic effects towards human beings but also the 
environmental effects. 

 When we look at models for mutagenicity, organ-specifi c toxicity, reprotoxicity, and 
repeated dose toxicity, we can say that for some properties the models have a long tradition, 
while for many other properties the research is in the initial phase, and in some cases the 
current performance of the models is not suffi cient; indeed, the reliability of the models is 
not homogeneous. 

 The scenario is evolving not only for the different general approaches and for the num-
ber of applications but also for the impact of the debate on in silico models, which is on-
going in other sectors. In Europe, the REACH regulation established some criteria for the 
use of in silico models, while in the USA the initiative Tox21 is challenging the traditional 
way to conduct toxicological screening. Other initiatives are offering new perspectives 
within different industrial sectors, and different points of view may arise from experiences 
achieved within major pharmaceutical companies, consultants, and centers offering access 
to internet-based resources. 

 On the basis of this complex series of factors, this book aims to present the theory and 
the applications, the common standards and the perspectives, giving voice to contributions 
from the different stakeholders. Several contributions derive from academia and research 
institutes in pharmacology, others from regulatory bodies, industry, and consultants of 
pharmaceutical companies. Contributions are also derived from several parts of the world, 
since the in silico modeling studies are conducted all around the world. 

 Besides a general introduction, the book is divided in three main parts. In Part I, there 
are contributions relative to sophisticated models addressing the binding to receptors, 
pharmacokinetics and adsorption, metabolism, distribution, and excretion. These are gen-
eral processes, and the reader can see the approaches that are used. 

 In Part II, the book goes through a series of models for specifi c toxicological and eco-
toxicological endpoints. Each endpoint offers different approaches, depending on the spe-
cifi c property and on the level of maturity of the tools. 

 Finally, Part III of the book offers a broad view of the main initiatives and new perspec-
tives which will very likely improve our way of modeling pharmaceuticals. The direct expe-
rience of some of the key stakeholders provides the personal experience, with useful, 
practical insights. 

 In this book, we combine the theoretical, advanced research with the practical applica-
tion of the tools. It is important to understand the theoretical basis, but it is also important 
to know how to correctly use the tools. We should know what each tool offers, to better 
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exploit what is available, but we have to know where the limitations are and avoid misuse 
of the tools, generating false expectations and false interpretation of the results. The book 
contains a step-by-step discussion showing how to extract all available information from the 
models, used alone or combined, but also indicating the uncertainty of the results with use-
ful case studies. Tens of models are introduced, and tens of practical case studies explain 
how to use the programs and interpret the results, because modern programs do not simply 
have the calculated value as output. 

 Since the in silico methods are evolving, we will give voice to the new perspectives and 
initiatives around the world, which are attempting to change the classical way to make stud-
ies in toxicology. Thus, it is important to be prepared to understand changes in the para-
digms which are anticipated. 

 Computational toxicology is a fascinating area, but also a complex one, and the best 
way to solve the complex phenomena generating toxicity is to use a battery of tools. These 
tools will be more and more integrated. In silico tools offer the advantage of incorporating 
data and knowledge from different fi elds, such as chemistry, biology, -omics, and pharma-
cology. The beauty of this approach is that the computational methods defi ne through the 
number and algorithms the ideal way to establish a dialogue between different scientifi c 
domains. This approach is transparent and allows for maintaining all the features associated 
with the original data, including for instance the information on the uncertainty and vari-
ability. The main limitation of this approach is based on our limitation to think in a complex 
way and to exploit the best of what technology can offer.  

  Milan, Italy     Emilio     Benfenati     

Preface
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Chapter 1

QSAR Methods

Giuseppina Gini

Abstract

In this chapter, we introduce the basis of computational chemistry and discuss how computational methods 
have been extended to some biological properties and toxicology, in particular. Since about 20 years, 
chemical experimentation is more and more replaced by modeling and virtual experimentation, using a 
large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, 
aimed at providing a standardized result about a biological property, can be mimicked by new in silico 
methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. 
Two main streams of such models are available: models that consider the whole molecular structure to 
predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find rele-
vant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical 
design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in 
biological science is moving more and more toward modeling and simulation. Such virtual experiments 
confirm hypotheses, provide data for regulation, and help in designing new chemicals.

Key words Computer models, Toxicity prediction, SAR and QSAR

1 Starting from Chemistry

“All science is computer science.” When a New York Times article 
published on March 25, 2001 used this sentence in the title, the 
general public was aware that the introduction of computers has 
changed the way that experimental sciences has been carried out so 
far. Chemistry together with physics is the best example of such a 
new way of making science.

A new discipline, chemoinformatics has been in existence for 
the past two decades [1, 2]. Many of the activities performed in 
chemoinformatics are information retrieval [3], aimed at searching 
for new molecules of interest when a single molecule has been 
identified as being relevant. However, chemoinformatics is more 
than “chemical information”; it requires strong algorithmic 
development.

It is useful to remember that models of atoms were defined by 
analogy with different systems; Thomson in 1897 modeled the 
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atom as a sphere of positive electricity with negative particles; 
Rutherford in 1909 adapted the solar system model with a dense 
positively charged nucleus surrounded by negative electrons.

Finally in the 1920s the electron cloud model was defined; in this 
model an atom consists of a dense nucleus composed of protons and 
neutrons surrounded by electrons. A molecule is an electrically neu-
tral group of two or more atoms held together by covalent bonds, 
sharing electrons. The valence model naturally transforms a molecule 
into a graph, where the nodes are atoms and the edges are bonds. 
This graph representation is usually called 2D chemical structure.

The graph theory, whose basic definition has been established 
back in eighteenth century, initially evolved through chemistry. Two 
scientists in particular, Alexander C. Brown and James J. Sylvester, 
developed the molecular representation as nodes (atoms, indicated 
by their name) and bonds. The edges are assigned weights accord-
ing to the bond: single, double, triple, or aromatic where electrons 
are delocalized. Today hydrogens are implicitly represented in the 
graph since they are assumed to fill the unused valences [4].

A common representation of the graph is the adjacency matrix, 
a square matrix with dimension N equal to the number of atoms. 
Each position (i, j) in the matrix specifies the absence (0 value) or 
the presence of a bond connecting the atoms i and j, filled with 1, 
2, 3 to indicate simple, double or triple bond, 4 for amide bond, 
and 5 for aromatic bond. The diagonal elements are always zero. 
An example of a matrix representation is in Fig. 1.

This is only one of the possible representations of a molecule. 
Structure Data Format (SDF) files represent the molecule into two 
blocks: the atom block and the bond block. A database record entry 
in Simplified Molecular Input Line Entry Specification (SMILES) 
[5] is very popular. This is a short string representation of the 
molecular structure, in a context free language expressing the graph 
visit in a depth first style, listing bonds and atoms encountered, and 
adding parentheses for branches. Hydrogens are left out. Table 1 
shows some examples of different representations for molecules.

C1 C2 C3 C4 C5

C1 0 1 0 0 0

C2 1 0 1 0 1

C3 0 1 0 1 0

C4 0 0 1 0 0

C5 0 1 0 0 0

1

5

4

3

2

Fig. 1 Adjacency matrix of 2-methylbutane pictured after hydrogen elimination; 
only the five carbon atoms are considered and numbered

Giuseppina Gini
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The SMILES notation suffers the lack of a unique representa-
tion, since a molecule can be encoded beginning anywhere. In 
Table 1 we see for ethanol four SMILES string, all correct. 
Therefore, a method of encoding a molecule was quickly devel-
oped that provided an invariant SMILES representation, called 
canonical SMILES [6].

Recent developments in line notations are the InChI 
(International Chemical Identifier) codes, supported by the 
International Union of Pure and Applied Chemistry (IUPAC), 
which can uniquely describe a molecule, at different levels of detail, 
but is not intended for human readability [7].

What about the real shape of molecules? They are 3D objects 
and as such they should be represented. Let us take again as an 
example the 2-methylbutane molecule, illustrated as a simple draw-
ing in Fig. 1. Its formula, SMILES, and 3D conformation are illus-
trated in Fig. 2a–c.

Defining the 3D shape of a molecule will take us to the basic 
methods of computational chemistry.

Table 1 
Examples of molecules with their SMILES code

SMILES Name Formula Graph

CC Ethane CH3CH3

HH

HH

H C C H

C=O Formaldehyde CH2O

H H

O

CO=C

CCO Ethanol CH3CH2OH H HH

HH

H C C OOCC

C(C)O

C(O)C

C5H12 CCC(C)C   

a b

c

Fig. 2 2-Methylbutane: (a) chemical formula, (b) SMILES, and (c) 3D conformer 
(from NIH PubChem)

QSAR Methods
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2 Computational Chemistry

Computational chemistry is a branch of chemistry that uses comput-
ers to assist in solving chemical problems, studying the electronic 
structure of solids, liquids, and designing new materials and drugs. It 
uses the results of theoretical chemistry, incorporated into programs, 
to calculate the structures and properties of molecules. The methods 
cover both static and dynamic situations: accurate methods—ab ini-
tio methods and less accurate methods—called semiempirical.

It all happened in about 50 years.

 1. In the early 1950s, the first semiempirical atomic orbital 
calculations.

 2. The first ab initio calculations in 1956 at MIT.
 3. Nobel prize for Chemistry, in 1998, assigned to John Pople 

and Walter Kohn, for Computational Chemistry.
 4. Nobel prize for Chemistry assigned in 2013 to chemistry 

assigned to Martin Karplus, Michael Levitt, and Arieh Warshel 
for their development of multiscale models for complex chemi-
cal systems.
Computational chemistry is a way to move away from the tradi-

tional approach of solving scientific problems using only direct exper-
imentation, but it does not remove experimentation. Experiments 
produce new data and facts. The role of theory is to situate all the 
new data into a framework, based on mathematical rules.

Computational chemistry uses theories to produce new facts in 
a manner similar to the real experiments. It is now possible to sim-
ulate in the computer an experiment before running it.

In modeling chemical processes, two variables are important, 
namely time and temperature. It is necessary to make dynamic 
simulations and to model the force fields that exist between atoms 
and explain the bonds breaking. This task usually requires solving 
the quantum mechanics equations.

A hierarchy of simulation levels provides different levels of 
details. The study of the fundamental properties without the intro-
duction of empirical parameters is the so-called ab initio methods. 
Those computations consider the electronic and structural proper-
ties of the molecule at the absolute zero temperature. They are 
computationally expensive, so the size of the molecules is limited 
to a few hundred atoms. When the ab initio methods cannot be 
used, it is possible to introduce empirical parameters to obtain the 
so-called molecular dynamics methods.

Today the applications of quantum mechanics to chemistry are 
widely used. The most notable is the Gaussian software, developed 
at the Carnegie Mellon University of Pittsburgh (PA). This pro-
gram gained a large popularity since the Nobel Prize for chemistry 
in 1998 was assigned to Pople, one of the inventors of Gaussian.

Giuseppina Gini
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Using computers to calculate the intermolecular forces, it is possi-
ble to compute a detailed “history” of the molecules. Analyzing 
this history, by the methods of statistical mechanics, affords a 
detailed description of the behavior of matter [8]. Three tech-
niques are available:

●● Molecular Dynamics (MD) Simulation. In this technique, 
the forces between molecules are calculated explicitly and 
the motion of the molecules is computed using a numerical 
integration method. The starting conditions are the posi-
tions of the atoms (from a known crystal structure) and 
their velocities (randomly generated). Following Newton’s 
equations, from the initial positions, velocities and forces, it 
is possible to calculate the positions and velocities of the 
atoms at a small time interval later. From these new posi-
tions the forces are recalculated and another step in time 
made. Following an equilibration period of many thou-
sands of time steps, during which the system “settles down” 
to the desired temperature and pressure a production 
period begins where the history of the molecules is stored 
for later analysis.

●● Monte Carlo (MC) Simulation. Monte Carlo simulation 
resembles the Molecular Dynamics method in that it also 
generates a history of the molecules in a system, which is sub-
sequently used to calculate the bulk properties of the system 
by means of statistical mechanics. However, the procedure for 
moving the atoms employs small random moves used in con-
junction with a sampling algorithm to confine the random 
walk to thermodynamically meaningful configurations.

●● Molecular Mechanics (MM) Modeling. MM is a method 
for predicting the structures of complex molecules, based 
on the energy minimization of its potential energy func-
tion, obtained empirically, by experiment, or by the meth-
ods of quantum chemistry. The energy minimization 
method is an advanced algorithm to optimize the speed of 
convergence. The methods main advantage is its computa-
tional cheapness.

Any of those methods is necessary to optimize the 3D struc-
ture of the molecule before constructing models that use the 3D 
shape instead of the graph representation of the molecules.

3 Biological Models for Toxicology

Since the nineteenth century the practice of animal experimenta-
tion was established in physiology, microbiology, and surgery. The 
 explosion in molecular biology in the second half of the twentieth 
century increased the importance of in vivo models [9].

2.1 Molecular 
Simulation

QSAR Methods
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All models have their limitations, their prediction can be poor, 
and their transferability to the real phenomena they model can be 
unsatisfactory. So extrapolating data from animal models to the 
environment or to human health depends on the degree to which 
the animal model is an appropriate reflection of the condition 
under investigation.

These limitations are, however, an intrinsic part of all model-
ing approaches. Most of the questions about animal models are 
ethical more than scientific; in public health, the use of animal 
models is imposed by strict regulations and is unlikely that any 
health authority will approve novel drugs without supporting ani-
mal data.

Toxicity is the degree to which a substance can damage an organ-
ism. Toxicity is a property of concern for every chemical substance. 
Theophrastus Phillipus von Hohenheim (1493–1541) Paracelsus 
wrote: “All things are poison and nothing is without poison; only 
the dose makes a thing not a poison.”

The relationship between dose and its effects on the exposed 
organism is of high significance in toxicology. The process of using 
animal testing to assess toxicity of chemicals has been defined in 
the following way:

●● Toxicity can be measured by its effects on the target.
●● Because individuals have different levels of response to the 

same dose of a toxin, a population-level measure of toxicity 
is often used which relates the probabilities of an outcome 
for a given individual in a population. Example is LD50: the 
dose that causes the death of 50 % of the population.

●● When the dose is individuated, multiply it for a “safety fac-
tor,” to account for uncertainty in the data and for differ-
ences between species. For example, use 10 if data are from 
mammals or 100 if data come from other animals.

This process is based on assumptions that usually are very 
crude and presents many open issues. For instance, it is more dif-
ficult to determine the toxicity of chemical mixtures (gasoline, 
cigarette smoke, waste) since the percentages of the chemicals can 
vary and the combination of the effects is not just a summation of 
them.

Perhaps the most common continuous measure of biological 
activity is the log(IC50) (inhibitory concentration), which measures 
the concentration of a particular compound necessary to induce a 
50 % inhibition of the biological activity under investigation. 
Similarly the median lethal dose, LD50, is the dose required to kill 
half the members of a tested population after a specified test dura-
tion. It has been created by J.W. Trevan in 1927 and is usually 
expressed in milligrams per  kilogram of body weight. LD50 is not 
the lethal dose for all subjects, only for half of them.

3.1 Bioassays 
for Toxicity
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The dose–response relationship describes the change in effect 
on an organism caused by differing levels of doses to a chemical 
after a certain exposure time. A dose–response curve is a x–y graph 
relating the dose to the response of the organism.

●● The measured dose is plotted on the X axis and the response 
is plotted on the Y axis.

●● The response is a physiological or biochemical response.
●● LD50 is used in human toxicology; IC50—inhibition con-

centration and its dual EC50—effect concentration are used 
in pharmacology.

Usually the logarithm of the dose is plotted on the X axis and 
in such cases the curve is typically sigmoidal, with the steepest por-
tion in the middle. In Fig. 3, we see an example of the dose–
response curve for LD50.

Today also in vitro testing is available. It is the scientific anal-
ysis of the effects of a chemical on cultured bacteria or mamma-
lian cells. Experiments using in vitro systems are useful in the 
early phases of medical studies where the screening of large num-
ber of potential therapeutic candidates may be necessary, or in 
making fast tests for possible pollutants. However, in vitro sys-
tems are nonphysiological and have important limitations. It is 
known that their results poorly correlate with the results of 
in vivo. However, there are substantial advantages in using 
in vitro systems to advance mechanistic understanding of toxi-
cant activities and the use of human cells to define human-spe-
cific toxic effects.
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Fig. 3 A curve for log LD50. Source: http://www.dropdata.org/RPU/pesticide_
activity.htm
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4 In Silico Methods

Animal testing refers to the use of nonhuman animals in experi-
ments. Worldwide it is estimated that the number of vertebrate 
animals annually used for animal experiments is in the order of tens 
of millions. In toxicity, animal tests are called in vivo models; they 
give doses for some species and are used to extrapolate data to 
human health or to the environment. As we said above, the extrap-
olation of data from species to species is not obvious. For instance, 
the lethal doses for rats and for mice are sometimes very different.

How to construct a model that relates a chemical structure to 
the effect was investigated even before computers were available. 
The term in silico today covers the methods devoted to this end; in 
silico refers to the fact that computers are used and computers have 
silicon in their hardware. The most-known in silico methods are 
the QSAR (Quantitative Structure Activity Relationships) meth-
ods, based on the assertion that the molecular structure is respon-
sible for all the activities [10–12].

From quantitative data, we can build a QSAR model that seeks to 
correlate our particular response variable of interest with molecular 
descriptors that have been computed or even measured from the 
molecules themselves. What we today refer to as QSAR methods 
were first pioneered by Corwin Hansch [13] in the 1940s, who 
analyzed congeneric series of compound and formulated the QSAR 
equation:

 Log C ap bs c1 / = + + +Es const  

where
C = effect concentration
p = octanol–water partition coefficient
s = Hammett substituent constant (electronic)
Es = Taft’s substituent constant
Log P octanol–water partition coefficient, is the ratio of con-

centrations of a compound in the two phases of a mixture of two 
immiscible solvents at equilibrium. It is a measure of the difference 
in solubility of the compound in these two solvents. Normally one 
of the solvents is water while the second is hydrophobic such as 
octanol. With high octanol/water partition coefficient the chemi-
cal substance is hydrophobic and preferentially distributed to 
hydrophobic compartments such as cell membrane, while hydro-
philic are found in hydrophilic compartments such as blood serum. 
Log P values today are predicted in most of the cases [14].

The definitions of the chemical structure and of the function 
remain a challenge today, but relating structure to property is 
widely adopted in drug discovery and in risk assessment.

4.1 QSAR
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Sometimes the QSAR methods take more specific names as: 
QSPR (quantitative structure property relationship) or QSTR 
(quantitative structure toxicity relationship). QSPR are used for 
physicochemical properties, as the boiling point, the solubility, 
log P [15].

They all correlate a dependent variable (the effect or response) 
with a set of independent variables (usually calculated properties or 
descriptors). They are statistical models and can be applied to pre-
dict the responses for unseen data points entirely in silico. It is 
possible to compute them from a model, not from an experiment.

The generation of informative data from molecular structures is of 
high importance in chemoinformatics since it is often used in sta-
tistical analyses of the molecules. There are many possible 
approaches to calculate molecular descriptors [16] that represent 
local or global salient characteristics of the molecule. Different 
classes of descriptors are:

●● Constitutional descriptors, depending on the number and 
type of atoms, bonds, and functional groups.

●● Geometrical descriptors that give molecular surface area 
and volume, moments of inertia, shadow area projections, 
and gravitational indices.

●● Topological Indices, based on the topology of molecular 
graph [4]. Only the structural information is used in gener-
ating the description. Examples are the Wiener index (the 
sum of the number of bonds between all nodes in a molec-
ular graph) and the Randic index (the branching of a 
molecule).

●● Physicochemical descriptors attempt to estimate the physi-
cal properties of molecules. Examples are molecular weight, 
hydrogen bond acceptors, hydrogen bond donors, and 
partition coefficients, as log P. The calculation of log P pre-
dicts the logarithm of the partition coefficient between 
octanol and water and indicates the general lipophilicity (or 
hydrophobicity) of the substance.

●● Electrostatic descriptors, such as partial atomic charges and 
others depending on the possibility to form hydrogen 
bonds.

●● Quantum chemical descriptors, related to the molecular 
orbital and their properties.

●● Fingerprints are instead binary strings coding the pres-
ence/absence of structures of interest, which are previously 
listed according to knowledge of which chemical entities 
can be relevant. Since substructure searching requires a 
time-consuming subgraph isomorphism algorithm, a sub-

4.1.1 Molecular 
Descriptors
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structure screening rapid method was developed to create 
the structure-key fingerprints. The fingerprint is a binary 
string encoding a molecule, where the 1 or 0 in a  position 
means that the substructure of this position in the diction-
ary is present or not. The dictionaries depend on the prop-
erty under investigation.

The selection of descriptors to use follows the build-up method 
(adding one at a time) or the build-down method (removing one 
at a time). Also optimization methods based for instance on 
Genetic Algorithms can be applied.

Whatever method is then chosen [16] to develop predictive 
models, it is important to take heed of the model quality statistics 
and ensure a correct modeling methodology is used such as testing 
the model against an external and unseen test set to ensure it is not 
overfitting to the training set. Model extrapolation is another con-
cern that frequently occurs when models are applied outside the 
space from which the models were generated. Again, numerous 
model statistics are available that can indicate if new data points, 
from which responses are to be predicted, can be applied to the 
model [17].

Two types of supervised learning methods are applied widely 
in building models chemoinformatics and toxicology: classification 
and regression. Classification methods assign new objects, in our 
case molecules, to two or more classes—most frequently either 
biologically active or inactive. Regression methods attempt to use 
continuous data, such as a measured biological response variable, 
to correlate molecules with that data so as to predict a continuous 
numeric value for new and unseen molecules using the generated 
model.

The most-often used methods for classification are Partial 
Least Squares, Linear Discriminant Analysis, Naıve Bayesian 
Classifier, Decision Trees, Recursive Partitioning, and Support 
Vector Machines, whereas, for regression modeling, Multiple 
Linear Regression, Partial Least Squares, Support Vector Machines, 
and Artificial Neural Networks [18] are often used.

In many cases, published QSAR models implement the leave-one-
out cross-validation procedure and compute the cross-validated 
determination coefficient R2, called q2. If ypi and yi are the predicted 
and observed property values, ypim and yim, respectively, are the 
average values of the predicted and observed property values, the 
determination coefficient is defined as

 
R SUM y y SUM y ypi i pi

m
i
m2 2 2

1= −( ) −( )( )/
 

(1)

A high value of q2 (for instance, q2 > 0.5) is considered as an indi-
cator or even as the ultimate proof that the model is highly predictive. 

4.1.2 Model Construction

4.1.3 Model Acceptability
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A high q2 is the necessary condition for a model to have a high predic-
tive power; however, it is not a sufficient condition. Beside the wide 
accepted criteria of checking q2, some additional, stricter conditions 
are often used [19]. Indeed different parameters and values have been 
proposed. Regardless to the absolute values, we have to remember 
that the statistical performance of any model is related to the uncer-
tainty and variability of the original data used to build the model.

Model interpretation is considered important since people would 
find it useful to understand the models from known basic princi-
ples. A low number of descriptors used and their role in a simple 
equation are often considered as necessary to accept a QSAR result.

There is generally a trade-off between prediction quality and 
interpretation quality. Interpretable models are generally desired in 
situations where the model is expected to provide information 
about the problem domain and how best to navigate through 
chemistry space allowing the medicinal chemist to make informed 
decisions. However, these models tend to suffer in terms of predic-
tion quality as they become more interpretable. The reverse is true 
with predictive models in that their interpretation suffers as they 
become more predictive. Models that are highly predictive tend to 
use molecular descriptors that are not readily interpretable by the 
chemist. However, predictive models are generally not intended to 
provide transparency, but predictions that are more reliable and 
can therefore be used as high-throughput models. If interpretabil-
ity is of concern, other methods are available, more or less as a kind 
of expert systems, or SAR.

However, both SAR and QSAR are predictive statistical mod-
els and as such they suffer the problems of the statistical learning 
theory, the theoretical framework about inference, that deals about 
how to gain knowledge from a set of data so to make prediction.

Learning from data assumes the statistical nature of the phe-
nomena that generate data; it needs to observe a phenomenon, 
construct a model, and make predictions using the model. It is well 
known that it is always possible to find a function that fits the data. 
However, such function could be very bad in predicting new data, 
in particular if data are noisy. Among the many functions that can 
accomplish the task of inducing a model, we need to quantify their 
characteristics, as performance and simplicity. Simplicity has no 
unique definition; in statistics people prefer models with few free 
parameters, in physics models with few constants, in QSAR models 
with interpretable descriptors. The definition of any property 
depends on the specific phenomenon under study, so the “no free 
lunch theorem” expresses the limitations of all our inductive meth-
ods. The “no free lunch theorem” is a popular name to indicate the 
practical results of theorems demonstrated by Wolpert and 
Macready [20] and stating that any two models are equivalent 
when their performance is averaged across all possible problems.

4.1.4 Model 
Interpretation
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The practical indication from this theorem is that we need 
assumptions on the phenomenon to study, otherwise there is no 
better algorithm. In other terms, data cannot replace knowledge. 
In practice, we should accurately describe which method we have 
successfully used and which priors explain its success. As far as 
 priors hold, the learning method used is successful to get 
predictions.

SAR (Structure–Activity Relationships) typically makes use of rules 
created by experts to produce models that relates subgroups of the 
molecule atoms to a biological property. The SAR approach con-
sists in detecting particular structural fragments of molecule already 
known to be responsible for the toxic property under 
investigation.

In the mutagenicity/carcinogenicity domain, the key contri-
bution in the definition of such toxicophores comes from [21], 
who compiled a list of 19 Structural Alerts (SA) for DNA reactiv-
ity. Practically SAs are rules that state the condition of mutagenic-
ity by the presence or the absence of peculiar chemical substructures. 
It is important mentioning that SAs are sound hypotheses that 
derive from chemical properties and have a sort of mechanistic 
interpretation; however, their presence alone is not a definitive 
method to prove the property under investigation, since the sub-
stituents present in some cases are able to change the 
classification.

A few examples exist of automatic construction of such SAR 
systems. The structure of chemicals is explicitly taken into account 
by some graph-mining approaches, which mine large datasets for 
frequent substructures. On the other hand, human experts usually 
estimate toxicity through the detection of particular structural 
fragments, already known to be responsible for the toxic property 
under investigation. In the literature, such fragments are referred 
to as SAs and are derived by human experts from knowledge of the 
biochemical mechanism of action; these mechanisms are quite 
studied for genotoxicity but in general are still poorly understood 
and largely unknown.

To this end, an automatic method for SA extraction is SARpy 
(SAR in python), a new ad hoc approach to automatically generate 
SAR models by finding the relevant fragments; it means that it can 
extract a set of rules directly from data without any a priori knowl-
edge [22]. Briefly, the algorithm generates substructures of arbi-
trary complexity and automatically selects the fragments to become 
SAs on the basis of their prediction performance on a training set. 
The rule set extracted for each model is then applied to the new 
molecule/s for prediction. The model tags the compound as toxic 
when one or more SAs for the specific toxicity endpoint are present 
in the molecular structure and as nontoxic if no SA is found by the 
model. Moreover the user can ask SARpy to also generate rules 

4.2 SAR
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related to nontoxic substances and use them to better assign 
 molecules to the nontoxic class.

Given a training set of molecular structures expressed in the 
SMILES notation, with their experimental activity binary labels, 
SARpy generates every substructure in the set and mines correla-
tions between the incidence of a particular molecular substructure 
and the activity of the molecules that contain it. This is done in 
three steps starting just from the SMILES:

●● Fragmentation: this recursive algorithm considers every 
combination of bond breakages working directly on the 
SMILES string. This fast procedure is capable of comput-
ing every substructure of the molecular input set.

●● Evaluation: each substructure is validated as potential SA 
on the training set; it is a complete match against the train-
ing structures, aimed at assessing the predictive power of 
each fragment.

●● Rule set extraction: from the huge set of substructures 
collected, a reduced set of rules is extracted in the form: “IF 
contains <SA> THEN <apply activity label>”.

The input and output to SARpy are expressed as SMILES. 
The output rules can be used as a predictive model simply by 
calling them.

QSAR models can be generated using a wide variety of statistical 
methods and a large choice of molecular descriptors. The obtained 
QSAR model is usually a nonlinear relation between descriptors 
values and the property. If the main aim of QSAR is simply predic-
tion, the attention should be focused on the quality of the model 
and not on its interpretation. Moreover it is dangerous to attempt 
to interpret statistical models, since correlation does not imply cau-
sality. On this basis, we can differentiate predictive QSARs, focused 
on prediction accuracy, from descriptive QSARs, focused on inter-
pretability. If interpretability is an issue, SAR models are usually 
developed.

If the main aim of SAR and QSAR is simply prediction, the 
attention should be focused on model quality and not on its inter-
pretation [10]. Regarding the interpretability of QSAR models, 
Livingstone [12] states: “The need for interpretability depends on 
the application, since a validated mathematical model relating a tar-
get property to chemical features may, in some cases, be all accurate 
estimates of the chemicals activity.” Descriptive QSAR, however, is 
highly appreciated by stakeholders to characterize the toxic risk of 
chemicals. Structural rules are expressions that correlate local char-
acteristics of the molecule to a risk and usually can be explained in 
terms of reactivity or activation of biological pathways.

In Table 2, we see the number of results obtained searching 
the web for the terms so far introduced.

4.3 QSAR 
and SAR Today
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The old QSAR paradigm considered only congeneric compounds 
in the hypotheses that:

●● Compounds in the series must be closely related.
●● Same mode of action is supposed.
●● Basic biological activities are investigated.
●● Linear relations are constructed.
Basically today there has been a shift from some of the charac-

teristics introduced at the beginning of this chapter toward a more 
complex situation. New QSAR and SAR methods, developed in 
the last decade, are aimed at:

●● Heterogeneous compound sets.
●● Mixed modes of action.
●● Complex biological endpoints.
●● Large number of properties.
●● Non linear modeling.

The development of computer programs able to contain in explicit 
form the knowledge about a given domain was the basis of the 
development of “Expert Systems” in the 1970s [23]. Soon expert 
systems moved from the initial rule-based representation to the 
modern modeling and interpretation systems. The starting 
“Machine Learning” community developed in the same years a 
way to make use of data in absence of knowledge which led to the 
development of Inductive Trees, well exemplified by C4.5 [24] 
and after by the commercial system CART.

4.4 Consensus  
Models

Table 2 
The number of results obtained by Google search on the terms—April 
2015

Classifiers 3,600,000

Predictive modeling 2,480,000

toxicity testing method 1,650,000

Adverse outcome pathway 681,000

QSAR 635,000

In silico testing 514,000

SAR toxicitya 458,000

3D QSAR 445,000

2D QSAR 358,000
aThe pure SAR acronym refers to many more technical methods
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Using different representations to reach a common agreement 
or a problem solution led to the idea of using computationally dif-
ferent methods on different problem representations, so to make 
use of their relative strengths. Examples are the hybrid neural and 
symbolic learning systems and the neuro-fuzzy system that com-
bines connectionist and symbolic features in form of fuzzy rules. 
While the neural representation offers the advantage of homoge-
neity, distribution, and  parallelization and of working with incom-
plete and noisy data, the symbolic representation brings the 
advantages of human interpretation and knowledge abstraction 
[25]. Independently a similar evolution in the Pattern Recognition 
community proposed to combine classifiers. In this area, most of 
the intuitions started with a seminal work about bagging classifiers 
[26], which opened the way to ensemble systems. Combining the 
predictions of a set of classifiers has shown to be an effective way to 
create composite classifiers that are more accurate than any of the 
component classifiers. There are many methods for combining the 
predictions given by component classifiers, as voting, combination, 
ensemble, and mixture of experts [27].

In the literature, we can find at least two main streams, namely 
“ensembles” of highly correct classifiers that disagree as much as 
possible, and “mixture of experts,” built on the idea to train indi-
vidual networks on a subtask, and then combine their predictions 
with a “gating” function that depends on the input. Basic combi-
nations as majority vote or average of continuous outputs are 
sometimes effective. In this case, the classifiers are developed in 
parallel and they result combined. Finally, it is possible to use a 
sequential approach, so to train the final classifier using the outputs 
of the input classifiers as new features. In QSAR literature, they are 
simply called consensus models and are not yet fully exploited. 
Examples in QSAR are in [28, 29]; some ensemble QSAR models 
are also available in VEGA (http://www.vega-qsar.eu).

Why ensembles works and why they outperform single classi-
fiers can be explained considering the error in classifiers. Usually 
the error is expressed [30] as:

 Error noise bias variance= + +2
 (2)

where bias is the expected error of the classifier due to the fact that 
the classifier is not perfect; variance is the expected error due to the 
particular training set used, and noise is irreducible.

We observe that models with too few parameters can perform 
poorly, but the same applies to models with too many parameters. 
A model which is too simple, or too inflexible, will have a large 
bias, while a model which has too much flexibility will have high 
variance. Usually, the bias is a decreasing function of the complex-
ity of the model, while variance is an increasing function of the 
complexity, as illustrated in Fig. 4. The concepts of bias and 
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variance are of help in understanding the balance between the con-
flicting requirements of fitting our training set accurately to obtain 
a good predictor. We seek a predictor sufficiently insensitive to the 
noise on the training data, to reduce variance, but flexible enough 
to approximate our model function and so minimize bias. There is 
a trade-off between the two components of the error and balanc-
ing them is an important part of error reduction [31, 32].

5 From Animal Models to Human and Environment Protection

Toxicity testing typically involves studying adverse health outcomes 
in animals administered with doses of toxicants, with subsequent 
extrapolation to expected human responses. The system is expen-
sive, time consuming, low throughput, and often provides results 
of limited predictive value for human health. The toxicity testing 
methods are largely the same for industrial chemicals, pesticides, 
and drugs and have led to a backlog of tens of thousand chemicals 
to which humans are potentially exposed but whose potential tox-
icity remains largely unknown.

This potential risk has urged national and international organi-
zations in making a plan for assessing the toxicity of those chemicals. 
In USA, for instance, EPA (Environmental Protection Agency) rou-
tinely uses predictive QSAR based on existent animal testing to 
authorize new chemicals. Recently in the USA, a new toxicity test-
ing plan, “Human Toxome Project,” has been launched which will 
make extensive experimentation using predictive, high-throughput 
cell-based assays (of human organs) to evaluate perturbations in key 
pathways of toxicity. There is no consensus about this concept of 
“toxicity pathway” (see Chapter 14) that in the opinion of many 
should be instead “disruption of biological pathways.” The target of 
the project is to gain more information directly from human data, so 

variance

bias2

error = bias2+variance

complexity

Fig. 4 The error function for different complexities of the model
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to check in a future, with specific experiments, the most important 
pathways. In the European Union, the REACH legislation for 
industrial chemical has been introduced together with specific regu-
lations for cosmetics, pesticide, food additives. REACH is accepting, 
still with restrictions, QSAR models as well as read across [33].

The subject about regulations for human and environmental 
protection is out of the scope of this chapter. We only mention that 
different regulations apply for

●● Air pollutants.
●● Industrial products (e.g., REACH).
●● Food.
●● Drinking water.
●● Cosmetics and detergents.
●● Pesticides.
●● Drugs.
There is only limited international agreement on the regula-

tions and doses. In a separate chapter, we will address the issues 
related to the international regulations. Another chapter will be 
devoted to the experience in USA regulation.

Of the many open problems in assessing toxicology using in 
silico models we discuss about a few points. The first is the causal 
or mechanistic value of the QSAR equation. The QSAR for LS50, 
for instance, does not have a simple interpretation in term of logic 
sentences. This is why recent work in modeling pathways has 
started. Another point is about ethical issues. It is really needed to 
make experiments on animal? This will take us to the last point: 
how good a predictive model can be?

Hume argued that causality cannot be perceived and instead we 
can only perceive correlation. And indeed the basic biological 
experiments aim at finding a correlation (positive or negative) 
between some features and effect.

Discovering causal relationships in toxicology is a challenging 
topic. More recently studies address the so-called adverse outcome 
pathway (AOP) with the aim to identify the workflow from the 
molecular initiating event to the final outcome, as will be illus-
trated in Chapter 14.

Biologists want to understand why the effect can be explained 
in terms of metabolism, transformation substances, etc. This is 
often with the vague terms of “mode of action” or “mechanistic 
interpretation.” Unfortunately there is no unique definition of 
mode of action: in some cases this is an observed behavior as nar-
cosis, in other it is a supposed chemical transformation. This is 
more complex than considering the organic chemical transforma-
tions since they happen in an organism where different biological 
pathways are usually supposed.

5.1 Mechanism or 
Causality

QSAR Methods
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Inferring causality from data through Bayesian Networks is 
today an active area of research and hopefully some answers could 
be automatically found using those tools [34].

Toxicity testing typically involves studying adverse health outcomes 
in animals subjected to high doses of toxicants with subsequent 
extrapolation to expected human responses at lower doses. The 
system is  expensive, time consuming, low throughput, and often 
provides results of limited predictive value for human health.

Conversely each year a huge number of new substances are 
synthetized and possibly sent to the market. It is really necessary to 
test all of them on animals? Even more, it is necessary to synthetize 
them or would it be better to in silico assess their properties before 
making them, using a proactive strategy?

The Declaration of Bologna, in 1999, called the 3 R (for 
Reduce, Refine, and Replace), proposed a manifesto to develop 
alternative methods that could save millions of animals. In this sce-
nario, the ethical issues, however, are advocated also by authorities 
that have to protect humans and see the animals as a more ethical 
use than that of humans.

The stakeholders in the toxicity assessment are:

●● Scientists and producers: they want modeling of the process, 
discovery of properties. In other words, build knowledge 
and translate it rapidly in products and drugs.

●● Regulators and standardization organizations: they want to 
be convinced by some general rule (mechanism of action). 
In other words, reduce the risk of erroneous evaluations. 
Be fast and conservative in decisions taking.

●● Public, media, and opinion makers; they wants to be 
 protected against risk at 100 %. Part of the population is 
strongly against the use of animal models.

As we may understand, good and validated in silico models can 
attract agreement from multiple actors. We have to note that for 
QSAR systems the output of the model, despite its good predictive 
value, is not sufficient; documentation enabling the user to accept 
or not the prediction is necessary. Some European projects, as 
CALEIDOS and PROSIL, are working in this direction. In the 
following chapters, we will address how to accept and interpret the 
results of a model for a large series of endpoints.

6 Conclusions

Alongside classical methods as in vivo and in vitro experiments, the 
use of computational tools is gaining more and more interest in the 
scientific community that is necessary, though it is obviously 

5.2 Ethical Issues

Giuseppina Gini
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desirable to attempt some explanation of the mechanism in chemi-
cal terms, but it is often not necessary, “per se.” On this basis, we 
can differentiate predictive (Q)SARs, focused on prediction accu-
racy, from descriptive (Q)SARs, focused on descriptor interpret-
ability. The usage of predictive QSAR models is growing, since 
they provide fast and reliable assessments for the benefit of the 
industrial world, both as accompaniment or replacement of exist-
ing techniques. For regulatory purposes, it is important to obtain 
satisfactory accuracy on new chemical families not well studied. In 
this area, it is important to develop models that can take advantage 
of statistical analysis on great numbers and can be further refined 
using cooperative methods to improve or confirm the results and 
give more insights into the domain [35].

7 Notes

As we have seen there are many models, many techniques, and also 
many reasons to build up a model. The intended use of a model 
can greatly affect its development. The research community work-
ing for pharmaceutical compounds with in silico methods is suing 
these methods to identify new active compounds, so the frame-
work which is considered has to avoid false positives. Industry uses 
confidential data, often large sets of them or at least large sets of 
structures. The framework considered by the community of 
researchers and users of in silico models for toxicological endpoints 
is quite the opposite. The data at the basis of the models are quite 
limited (see the chapters below) with the exception of the availabil-
ity of thousands of data for the Ames test. Regulators want to avoid 
false negatives. Regulators want to see all the documentation at the 
basis of the model, so the use of confidential data may represent a 
problem. It is important to consider the different purposes to build 
up the model and to be consistent with the intended use.
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Chapter 2

In Silico 3D Modeling of Binding Activities

Stefano Moro, Mattia Sturlese, Antonella Ciancetta, and Matteo Floris

Abstract

In silico three-dimensional (3D) molecular modeling tools based upon the receptor/enzyme–ligand dock-
ing simulation in protein crystal structures and/or homology modeling of receptors have been reliably 
used in pharmacological research and development for decades. Molecular docking methodologies are 
helpful for revealing facets of activation and inactivation, thus improving mechanistic understanding and 
predicting molecular ligand binding activity, and they can have a high level of accuracy, and have also been 
explored and applied in chemical risk assessment. This computational approach is, however, only applicable 
for chemical hazard identification situations where the specific target receptor for a given chemical is 
known and the crystal structure/homology model of the receptor is available.

Key words Molecular modeling, Molecular docking, Scoring function, Binding affinity prediction, 
Chemical risk assessment

1 Introduction

Developing and evaluating predictive strategies to elucidate the 
mode of biological impact of environmental chemicals is a major 
objective of the concerted efforts of any computational toxicology 
program. The biological activity of any chemical compounds is based 
on its appropriate recognition by specific biological target, for exam-
ple an enzyme or a receptor. We can define “mechanism of action” 
of a chemical compound as the detailed molecular description of key 
events in the induction of a biological response. The mechanism of 
action of a chemical compound is related to its “mode of action” 
that we can define as the description of key events and processes, 
starting with interaction of an agent with the cell through functional 
and anatomical changes, resulting in a health endpoint (Fig. 1) [1].

In principle, the rationalization of the receptor/enzyme–
ligand interaction could follow a three-step process. First, an 
enzyme or receptor involved in a physiopathological process 
needs to be undoubtedly identified. Second, the structure of the 
enzyme or receptor needs to be solved. Finally, the structure of the 
ligand that binds the enzyme or the receptor must be known. 
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There is no shortage of information about the first step. Good 
structural information is still lacking for many interesting enzymes 
and receptors but, in the last two decades, an increasing number of 
fundamental biological targets have been solved. The genes of 
many enzymes and receptors have been cloned, so making it pos-
sible to obtain them in sufficient amount to experimentally deter-
mine their structure by X-ray crystallography or by nuclear 
magnetic resonance (NMR). The Protein Data Bank (PDB) is the 
open access repository where all solved structures of biopolymers 
are deposited [2]. Obviously, even with a good three-dimensional 
structure for the biological target, it is not trivial to understand 
where and how tightly a ligand can bind to it. A number of factors 
combine to make this problem an extremely challenging one:

●● Will a particular ligand fit in an active/recognition site?
●● What holds it in?
●● How tightly do these ligands bind?
●● How can a different molecule fit in the same active/recogni-

tion site?

The aim of this chapter is to describe molecular docking tech-
nologies as a potential valuable tool to identify or describe the 
“mechanism of action” guiding selection of test species and proto-
cols to  experimentally characterize its “mode of action” for rele-
vant endpoints in risk assessments.

Fig. 1 Flow chart elucidating the differences between “mode of action” and “mechanism of action” concepts

Stefano Moro et al.
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2 Methods

Molecular docking is a computational technique aimed at the pre-
diction of the most favorable ligand–target spatial configuration 
and an estimate of the corresponding complex interaction energy, 
although as stated at the beginning accurate scoring methods 
remain still elusive (Fig. 2) [3]. Docking methodologies are helpful 
for revealing facets of activation and inactivation, thus improving 
mechanistic understanding and predicting molecular ligand bind-
ing activity, and they can have a high level of accuracy, and have 
also been explored and applied in chemical risk assessment [4–6].

In the first step, a conformational search algorithm explores 
the possible ligand conformations (poses) inside the target binding 
pocket. In the second step, a scoring function is applied to evaluate 
and select the most favorable pose. In many programs, the two 
parts are coupled and the scoring function drives the ligand poses 
generation. Docking is often used to mine a database of com-
pounds for those most likely to be active, with a ranking of the 
ligand molecules by the docking score, a process usually referred to 
as (structure-based) virtual screening [3]. Due to various possible 
errors in the docking or scoring process, a visual inspection of the 
“best” scoring hits and final selection is always needed.

Docking a ligand into a binding site needs to compute several 
degrees of freedom. These are the six degrees of translational and 
rotational freedom of one body relative to another and then 
the conformational degrees of freedom of the ligand and of 
the protein.

2.1 Molecular 
Docking 
Methodologies

2.2 Conformational 
Search Algorithm

Fig. 2 Molecular docking key concepts

In Silico 3D Modeling of Binding Activities
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In the rigid docking algorithms only six degrees of freedom of 
the small organic molecules are considered, corresponding to 
translation and rotation, with both ligand and protein treated as 
rigid bodies. Today the standard is the semi-flexible docking, where 
the conformational flexibility of ligands is also taken in account 
while the protein is kept rigid (Fig. 3) [3]. A systematic search of 
all the rotatable bonds of a drug-like molecule is not efficient from 
a computational view point because the number of the possible 
combinations of the rotamers increases exponentially with the 
number of rotatable bonds. The search algorithms address this 
problem and aim to explore the conformational space of the ligands 
inside the protein active site in an efficient and fast fashion. In the 
approaches based on systematic methods, the result is exactly 
reproducible and the conformational space is somehow reduced 
and simplified [3].

Protein flexibility can be included in the protocol using 
“on-the- fly” generation of side-chain conformations while the pro-
tein site points are being generated or by using multiple protein 
conformations [3]. Such algorithms where the protein conforma-
tional space is also in part explored are called flexible docking 
methods. In the attempt to minimize the high computational cost 
generally only conformations that are close to the experimentally 
determined target structure are evaluated [3]. The less computa-
tionally demanding possibility is to include amino acids side-chain 
flexibility exploiting rotamer libraries.

Fig. 3 Conventional classification of docking protocols referring to the explora-
tion of ligand and/or target conformational space

Stefano Moro et al.
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Energy scoring functions are mathematical functions used to esti-
mate the binding energy of a ligand to the protein target active 
pocket. Unfortunately, scoring is the weakest step in docking 
methodologies. In fact, in the majority of the cases, it is unable to 
accurately reproduce the experimental binding data [3].

Common scoring functions used in the molecular docking 
software simplify dramatically the thermodynamics of the binding 
event. The principal parts of ligand–protein interactions are taken 
in account to estimate in a fast way the most important energy 
contributions. Electrostatic and steric energy terms are generally 
included together with an explicit evaluation of the hydrogen 
bonding interaction [3]. An internal energy part could also be 
included, while entropy and desolvation effects are neglected. The 
scoring process can also be a multistep procedure composed by a 
first fast analysis followed by a more accurate and computational 
demanding rescoring phase.

Scoring functions can be grouped in three families: molecular 
mechanics force field, empirical, and knowledge-based scoring 
functions (Fig. 4) [3]. In molecular mechanics, the energy 
includes intra- molecular and inter-molecular contributions. 
Molecules are represented using force field-specific atom and 
bond types with atom-centered partial charges. Bond energy 
derives from a bond stretching, bond angle, torsion angle, and 
improper torsion angle energy terms. The  electrostatic energy is 
estimated using the Coulomb equation, while for the van der 

2.3 Scoring 
Functions

Fig. 4 Conventional classification of the most popular scoring functions

In Silico 3D Modeling of Binding Activities
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Waals contribution the Lennard–Jones energy term is used. The 
AMBER [7] and OPLS [8] force fields are well parameterized for 
protein and small organic molecules, but the disadvantage is that 
they are more computationally demanding than the knowledge-
based and empirical scoring functions.

Empirical scoring functions approximate the binding energy as 
a sum of uncorrelated energy terms. Coefficients are obtained from 
a regression analysis of a set of ligands with known experimental 
binding energy to the target and with available X-ray structures of 
the complex. They have the role to compensate for possible error 
of the energy terms used; examples are ChemScore [9], the 
Piecewise Linear Potential (PLP) [10], and X-Score [11]. Their 
accuracy depends on how well the ligand and receptor were repre-
sented in the training data used to fit the coefficients. They can be 
optimized for particular tasks, like binding mode prediction, rank-
ing of a particular set of inhibitors or to study a particular target.

Knowledge-based scoring functions are composed of multiple 
weighted molecular features related to ligand–receptor binding 
modes. The features are often atom–atom distances between pro-
tein and ligand in the complex, but also the number of inter-
molecular hydrogen bonds or atom–atom contact energies. A large 
number of X-ray diffraction crystals of protein–ligand complexes 
are used as a knowledge base. A putative protein–ligand complex 
can be assessed on the basis of how similar its features are to those 
in the knowledge base. These contributions are summed over all 
pairs of atoms in the complex and the resulting score is converted 
into a pseudo-energy function estimating the binding affinity. The 
coefficients of the features can be fitted using a linear regression 
analysis, but also other non-linear statistical approaches can be 
used, like neural network, Bayesian modeling, or machine learning 
technique like Random Forest analysis. Examples are PMF [12], 
DrugScore [13], LUDI [14], and RF-Score [15]. Disadvantages 
with this class of scoring functions are difficulties in the evaluation 
of the chemical–physical meaning of the score and the risk of errors 
when trying to predict ligands not included in the training set [3] 
(see Note 1).

In the last step of the computational protocol, when the most 
promising ligands have been selected it is possible to further evalu-
ate their interaction with the target with more demanding compu-
tational approaches. For example, the top ranked compounds from 
a virtual screening study can be rescored before the final selection 
is done. It is also possible to apply these techniques in a project in 
optimization phase to the most promising derivatives of the lead 
compound. There are different high-quality methods based on a 
rigorous physical framework, however they still have to be further 
evaluated to better  understand the potential and limits. Additional 
improvements are still needed to correctly model the high com-
plexity of the ligand binding event [16, 17].

2.4 Physic-Based 
Post-Processing 
Scoring Methods

Stefano Moro et al.
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Post-processing methods consider only the bound and unbound 
states of the ligand–protein complex without taking in account the 
intermediate states [17, 18]. This simplification sensibly reduces 
the computational cost compared to other physic-based methods. 
The free energy of binding is therefore estimated as follows:

 bind complex ligand proteinG G G G= - +( )  
The most popular post-processing method is probably the molecu-
lar mechanics Poisson–Boltzmann surface area (MM-PBSA) 
method [19]. In this approach, the individual energy terms are 
decomposed in a gas phase component calculated using the force 
field and a solvation energy term (Fig. 5). For ligands also an 
entropic contribution is included:

 G G Gligand gas solvation ligandTS= + -  
The electrostatic contribution to the free energy of solvation is 
evaluated using an implicit solvent model: the Poisson–Boltzmann 
equation in MM-PBSA or the generalized Born equation in 
MM-GBSA [20]. The hydrophobic contribution to the free energy 
of solvation is taken in account evaluating the solvent accessible 
surface area (SASA) of the molecule.

 G G Gsolvation PB GB SASA= +/  

Fig. 5 The MM-PBSA approach represents the post-processing method to evalu-
ate free energies of binding or to calculate absolute free energies of molecules 
in solution

In Silico 3D Modeling of Binding Activities
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Only in some studies the vibrational entropy is taken in account for 
the ligand using normal mode analysis [20] because of the high 
computational cost and the risk of producing large errors. The final 
free energy of binding is estimated comparing the energy terms of 
the ligand and protein alone with the complex. The approach has 
been used to calculate absolute and relative binding affinities with 
error frequently of 1 or 5 kcal/mol. Protein flexibility is taken in 
account using molecular dynamics (MD) simulation or a faster 
energy minimization protocol. MM-GBSA using simply energy 
minimization can evaluate one ligand per minute. Still too slow to 
be applied in virtual screening studies, but order of magnitude 
faster than MM-PBSA using molecular dynamics with accuracy 
sometimes comparable or even higher [20].

The linear interaction energy (LIE) method developed by 
Åqvist represents a plausible compromise between accuracy and 
computational speed in determining the free energy of binding 
[21]. The LIE approach is based on the assumption that the inhib-
itor free energy of binding to a macromolecule is linearly corre-
lated to several energy terms that can be calculated using a 
molecular mechanic force field. In the original version, the LIE 
binding free energy is approximated using the following equation 
(Fig. 6) [21]:

 bind
vdw elG G G= + +a b g  

Fig. 6 Schematic depiction of procedure for the estimation of the ligand binding free energy by the LIE approach

Stefano Moro et al.
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where the van der Waals (Gvdw) and the electrostatic (Gel) interaction 
energy of the ligand with its surrounding environment are evaluated 
for the bound and unbound state. The Δ in the equation denotes 
that the difference between these two states is calculated. For both 
states, the averages of these energy contributions are computed on a 
population of conformations sampled by a molecular dynamics or a 
Monte Carlo procedure. Using a training set of molecules with 
known activity, a semi-empirical energy model is built by fitting the 
energy terms to the experimental free energy of binding. The LIE 
method assumes that the intra-molecular strain, entropy, and desol-
vation effects are embedded in this linear response, and can be 
 cancelled out by the empirically determined scaling parameters. The 
constant term γ can be substituted with a third energy term contain-
ing the difference in solvent-accessible surface area of the ligand, 
scaled by an empirical coefficient [21]. The molecular dynamics sam-
pling method can be substituted by simple energy minimization with 
a sensible decrease in the calculation times [22]. The LIE method 
demonstrated to result in accurate predictions of relative and abso-
lute free energy of binding with error around 1–5 kcal/mol [22, 23].

The post-processing methods seem so far the best approaches 
to bridge the gap between simple docking scoring methods and 
more rigorous free-energy calculations to improve accuracy at a 
practicable computational cost.

Recently, Walkers and collaborators reported a nice example of the 
potentiality of molecular docking to assist ecotoxicity testing in 
environmental risk assessment of drugs [4]. The aim of Walker’s 
work was to evaluate whether molecular docking offers a potential 
tool to predict the effects of pharmaceutical compounds on non-
target organisms (Fig. 7). In particular, three highly prescribed 
drugs such as Diclofenac, Ibuprofen, and Levonorgestrel which fre-
quently pollute freshwater environments were selected as examples. 
Their primary drug targets are cyclooxygenase 2 (COX2) and pro-
gesterone receptor (PR). Molecular docking experiments were per-
formed using these drugs and their primary drug target homologs 
for Danio rerio, Salmo salar, Oncorhynchus mykiss, Xenopus tropica-
lis, Xenopus laevis, and Daphnia pulex. The results show that fish 
and frog COX2 enzymes are likely to bind Diclofenac and Ibuprofen 
in the same way as humans but that D. pulex would not. Binding 
will probably lead to inhibition of COX function and reduced pros-
taglandin production. Levonorgestrel was found to bind in the 
same binding pocket of the progesterone receptor in frogs and fish 
as the human form. This suggests implications for the fecundity of 
fish and frogs which are exposed to Levonorgestrel. This study can 
be considered an interesting example in which molecular docking 
may provide a valuable support to anticipate the ecotoxicity profile 
of a drug by guiding selection of test species and protocols for 
 relevant chronic test endpoints in environmental risk assessments.

2.5 Environmental 
Risk Assessment: 
Docking-Based Key 
Study

In Silico 3D Modeling of Binding Activities
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3 Note

 1. Modern sophisticated docking methods allow a fast evaluation 
of a large number of ligand poses corresponding to different 
conformations and orientations of the small organic molecule 
in the protein target. Recently also receptor flexibility has 
started to be considered [3]. Although the sensible improve-
ment in the speed of calculation and efficacy of the conforma-
tional search algorithm, several limits are still challenging the 
predicting capability of these approaches especially affecting 
the scoring functions.

The calibration of the scoring functions is generally based on 
the data available in the X-ray crystal structures of small organic 
molecules in complex with proteins. These crystal structures 
could include important uncertainties as a result of the subjec-
tive interpretation of the experimental electron-density map 
concerning in particular: (1) the identity of the isoelectric 
nitrogen and oxygen of the side chains of asparagine and gluta-
mine, (2) the position of whole flexible residues, like lysine and 
glutamate, especially at the protein surface, or of mobile loops, 
(3) also ligand atoms can be ambiguous, for example the posi-
tion of pyridine nitrogen of asymmetrical substituted pyridine, 

Fig. 7 Workflow of the docking-based key study for environmental risk assessment reported by Walker and 
collaborators [4]

Stefano Moro et al.
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(4) the identification and location of water molecules, that are 
often isoelectronic to common buffer constituents in crystalli-
zation media, (5) the influence of crystallization media can 
affect crystal morphology, but also the ligand and the active site 
conformation, (6) since hydrogen are not experimentally 
observed the ionization and tautomeric states cannot be deter-
mined and could be difficult to evaluate. The degree of confi-
dence in the position of a particular atom or residue can be 
assessed using the temperature factors and examining the 
structure together with the electron- density map.

The data set used to calibrate the scoring function tends to 
be unbalanced as a consequence of the smaller number in the 
X-ray crystal structures of low-affinity (Ki > 1 mM) ligands 
compared to the high-affinity molecules. As a consequence the 
effects of unfavorable geometries of ligands in the protein 
pocket are not considered. The dipole moment of the ligand 
and the molecular electrostatic potential of the protein are 
often not included in the scoring functions. Residual flexibility 
of the protein or ligands is also not considered and entropic 
effects are often neglected. Some docking algorithms try to 
approximate such important contribution analyzing the num-
ber of rotatable bonds affected by the binding event. The 
desolvation event is roughly evaluated by the area of the inter-
acting hydrophobic surfaces. Generally, an inadequate evalua-
tion of the desolvation effect can result in an overestimation of 
the affinity of polar compounds. When protein flexibility is 
considered in the search algorithm especially with a minimiza-
tion step the risk is that locally introduced strain is dissipated by 
other part of the protein to such an extent to become unrecog-
nizable by the scoring function. Non-classical types of interac-
tions are often neglected or not accurately evaluated: cation–π 
interactions, charge transfer interactions, hydrogen bonding to 
π-systems, halogen bonding, orthogonal dipolar alignment, 
dipolar antiperiplanar interactions, π-stacking, π edge-to-face 
contacts, and hydrogen bonding involving CH groups.

The limits of the scoring functions are the direct conse-
quence of our incomplete understanding of the energetic con-
tributions of individual interactions. Formulating rules is 
possible only within certain boundaries especially if we con-
sider that molecular interactions behave in a highly non-addi-
tive fashion [3]. The link between thermodynamics and 
geometry of ligand–protein complexes still remains elusive.

Additionally, as clearly stated by Tirado-Rives and Jorgensen 
[24], the “window of activity” is very tiny. Thus, the free energy 
difference between the best ligand that one might reasonably 
expect to identify using virtual screening (potency, ≈50 nM) 
and the experimental detection limit (potency, ≈100 μM) is 
only about 4.5 kcal/mol. The free energy contributions due to 
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 1. Simon T (2014) Environmental risk assess-
ment: a toxicological approach. CRC, Boca 
Raton, p 139

 2. Berman AM, Westbrook J, Feng Z, Gilliland 
G, Bhat TN, Weissig H, Shindyalov IN, 
Bourne PE (2000) The Protein Data bank. 
Nucleic Acids Res 28:235–242

 3. Bortolato A, Fanton M, Mason JS, Moro S 
(2013) Molecular docking methodologies. 
Methods Mol Biol 924:339–360

 4. Walker SD, McEldowney S (2013) Molecular 
docking: a potential tool to aid ecotoxicity test-
ing in environmental risk assessment of pharma-
ceuticals. Chemosphere 93:2568–2577

 5. Zou X, Zhou X, Lin Z, Deng Z, Yin D (2013) 
A docking-based receptor library of antibiotics 
and its novel application in predicting chronic 
mixture toxicity for environmental risk assess-
ment. Environ Monit Assess 185:4513–4527

 6. Vedani A, Dobler M, Smieško M (2012) 
VirtualToxLab—a platform for estimating the 
toxic potential of drugs, chemicals and natural 
products. Toxicol Appl Pharmacol 261: 
142–153

 7. Case DA, Cheatham TE 3rd, Darden T, 
Gohlke H, Luo R, Merz KM Jr et al (2005) 
The Amber biomolecular simulation pro-
grams. J Comput Chem 26:1668–1688

 8. Jorgensen WL, Maxwell DS, Tirado-Rives 
J (1996) Development and testing of the 
OPLS all-atom force field on conformational 
energetics and properties of organic liquids. 
J Am Chem Soc 118:11225–11236

 9. Eldridge MD, Murray CW, Auton TR, Paolini 
GV, Mee RP (1997) Empirical scoring func-
tions: I. The development of a fast empirical 
scoring function to estimate the binding affin-
ity of ligands in receptor complexes. J Comput 
Aided Mol Des 11:425–445

 10. Verkhivker GM (2004) Computational analy-
sis of ligand binding dynamics at the intermo-
lecular hot spots with the aid of simulated 
tempering and binding free energy calcula-
tions. J Mol Graph Model 22:335–348

 11. Wang R, Lai L, Wang S (2002) Further develop-
ment and validation of empirical scoring 
 functions for structure-based binding affinity 
prediction. J Comput Aided Mol Des 16:11–26

 12. Muegge I (2006) PMF scoring revisited. 
J Med Chem 49:5895–5902

 13. Velec HF, Gohlke H, Klebe G (2005) 
DrugScore(CSD)-knowledge-based scoring 
function derived from small molecule crystal 
data with superior recognition rate of near-
native ligand poses and better affinity predic-
tion. J Med Chem 48:6296–6303

conformational factors alone for typical drug-like ligands 
(which are usually neglected in most scoring functions) can be 
as large as this.

In conclusion, molecular docking of potential environmen-
tal chemicals to putative macromolecular targets for toxicity 
provides a measure of their capacity to interact and hence is an 
aid in the (pre)screening process for specific modes of toxicity. 
These results provide a rationale for developing further, more 
complete testing strategies. However, because of the greater 
diversity of chemical space and binding affinity domains being 
considered and the differences in the strategic application of 
the results (the need to minimize false negatives), these molec-
ular modeling strategies require additional considerations 
when assessing chemical hazards.
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Chapter 3

Modeling Pharmacokinetics

Frederic Y. Bois and Céline Brochot

Abstract

Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharma-
cokinetic (PBPK) models provide realistic descriptions of xenobiotics’ absorption, distribution, metabolism, 
and excretion processes. They model the body as a set of homogeneous compartments representing organs, 
and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer 
a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a 
substance in various organs and body fluids. These models are well suited for performing extrapolations 
inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained 
from various sources (e.g., in vitro or in vivo experiments, structure–activity models). In this chapter, 
we describe the practical development and basic use of a PBPK model from model building to model simu-
lations, through implementation with an easily accessible free software.

Key words 1,3-Butadiene, PBPK, Monte Carlo simulations, Numerical integration, R software

1 Introduction

The therapeutic or toxic effects of chemical substances not only 
depend on interactions with biomolecules at the cellular level, but 
also on the amount of the active substance reaching target cells 
(i.e., where the effects arise). Therefore, conceptually, two phases 
can be distinguished in the time course of such effects: the absorp-
tion, transport, and elimination of substances into, in, and out of 
the body including target tissues (pharmacokinetics), and their 
action on these targets (pharmacodynamics). Schematically, phar-
macokinetics (or toxicokinetics for toxic molecules) can be defined 
as the action of the body on substances, and pharmacodynamics as 
the action of substances on the body. Pharmacokinetic and pharma-
codynamics first aim at a qualitative understanding of the underlying 
biology. They also use mathematical models to analyze and extrapo-
late measurements of various biomarkers of exposure, susceptibility 
or effect, in order to quantitatively predict effects. This chapter 
focuses on toxicokinetic models and in particular on physiologically 
based pharmacokinetic (PBPK) models.
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Toxicokinetic models aim to link an external exposure to an 
internal dosimetry in humans (e.g., concentration in blood, urine, 
or in tissues) by describing the process of absorption, distribution, 
metabolism, and excretion (ADME) that undergoes a substance in 
living organisms. A class of toxicokinetic models, the physiologi-
cally based pharmacokinetic (PBPK) models, bases the description 
on the ADME processes on the physiology and the anatomy of indi-
viduals, and the biochemistry of the compounds. A PBPK model 
subdivides the body in compartments representing organs con-
nected through a fluid, usually blood. Model parameters correspond 
to physiological and biochemical entities specific to the body and 
compounds, such as organ volumes, tissue blood flows, affinities of 
the compounds for the tissues, or the metabolic clearance.

The first works in pharmacokinetic modeling were based on 
physiological descriptions of the body [1–6]. However, at the time, 
the corresponding mathematical models were too complex to be 
solved. Research and applications then focused on simpler one-, 
two-, or three-compartment models [7], which proved to be ade-
quate for describing and interpolating concentration–time profiles 
of many drugs in blood or other biological matrices. However, for 
substances with complex kinetics, or when inter-species extrapola-
tions were required, simple models were insufficient and research 
continued on physiological models [8–12].

Over the years, the ever-increasing computing capabilities and 
the advent of statistical approaches applicable to uncertainty and 
population variability modeling have turned PBPK models into 
well- developed tools for safety assessment of chemical substances 
[13]. A significant advance has been the development of quantita-
tive structure–properties models for the chemical-dependent 
parameters of PBPK models (e.g., tissue affinities) [14, 15]. Those 
developments are still ongoing and have led to large generic mod-
els which can give quick, even if approximate, answers to pharma-
cokinetic questions, solely on the basis of a chemical’s formula and 
limited data [16–18].

The mechanistic basis of PBPK models is particularly well 
adapted to toxicological risk assessment [19, 20] and also in the 
pharmaceutical industry for the development of new therapeutic 
substances [21], in particular for dealing with extrapolations inher-
ent to these domains (in vitro to in vivo, laboratory animals to 
human populations, various exposure or dosing schemes, etc.). 
PBPK models can be applied in two different steps of the risk 
assessment framework. First, these models can be used to better 
characterize the relationship between the exposure dose and the 
adverse effects by modeling the internal exposure in the target tis-
sues (i.e., where the toxic effects arise) [22]. Secondly, PBPK mod-
els can be used in the exposure assessment to estimate the external 
exposure using human biomonitoring data, like the concentrations 
of chemicals in blood or urine [23, 24]. These predictions can then 

Frederic Y. Bois and Céline Brochot



39

be compared to existing exposure guidance or reference values 
such as tolerable daily intakes [25].

To provide a general overview of the basis and applications of 
PBPK modeling, the first section of this chapter describes the 
development of a PBPK model (model formulation, parameter 
estimation). We then propose to illustrate the different steps with 
1,3-butadiene, a volatile organic compound that is carcinogenic to 
humans (group 1 in the IARC classification).

2 Development of a PBPK Model

In this section, we present the steps to follow in developing a PBPK 
model. Recently, the International Programme on Chemical Safety 
provided guidance on the characterization and application of 
PBPK models in risk assessment [20]. The guidance aimed to pro-
pose a standardized framework to review and critically evaluate the 
available toxicological data, and describe thoroughly the develop-
ment of the model, i.e., structure, equations, parameter estima-
tion, model evaluation, and validation. The ICRP framework also 
aimed to harmonize good modeling practices between risk assessors 
and model developers [26–28].

A PBPK model represents the organism of interest—human, rat, 
mouse, etc.—as a set of compartments, each corresponding to an 
organ, group of organs or tissues (e.g., adipose tissue, bone, brain, 
gut) having similar blood perfusion rate (or permeability) and affin-
ity for the substance of interest. Transport of molecules between 
those compartments by blood, lymph, or diffusion, and further 
absorption, distribution, metabolism, or excretion (ADME) pro-
cesses are described by mathematical equations (formally differential 
equations) whose structure is governed by physiology (e.g., blood 
flow in exit of gut goes to liver) [29, 30]. As such, PBPK modeling 
is an integrated approach to understand and predict the pharmaco-
kinetic behavior of chemical substances in the body.

Drug distribution into a tissue can be rate-limited by either 
perfusion or permeability. Perfusion-rate-limited kinetics apply 
when the tissue membranes present no barrier to diffusion. Blood 
flow, assuming that the drug is transported mainly by blood, as is 
often the case, is then the limiting factor to distribution in the vari-
ous cells of the body. That is usually true for small lipophilic drugs. 
A simple perfusion-limited PBPK model is depicted in Fig. 1. 
It includes the liver, well-perfused tissues (lumping brain, kidneys, 
and other viscera), poorly perfused tissues (muscles and skin), and 
fat. The organs have been grouped into those compartments under 
the criteria of blood perfusion rate and lipid content. Under such 
criteria, the liver should be lumped with the well-perfused tissues, 
but is left separate here as it is supposed to be the site of 

2.1 Principles 
and Model Equations
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metabolism, a target effect site, and a port of entry for oral absorption 
(assuming that the gut is a passive absorption site which feeds into 
the liver via the portal vein). Bone can be excluded from the model 
if the substance of interest does not distribute to it. The substance 
is brought to each of these compartments via arterial blood. Under 
perfusion limitation, the instantaneous rate of entry for the quan-
tity of drug in a compartment is simply equal to the (blood) volu-
metric flow rate through the organ times the incoming blood 
concentration. At the organ exit, the substance’s venous blood 
concentration is assumed to be in equilibrium with the compart-
ment concentration, with an equilibrium ratio named “partition 
coefficient” or “affinity constant” [30]. In the following we will 
note Qi the quantity of substance in compartment i, Ci the corre-
sponding concentration, Vi the volume of compartment i, Fi the 
blood flow to that compartment, and PCi the corresponding tissue 
over blood partition coefficient. Note that all differentials are writ-
ten for quantities, rather than concentrations because molecules 
are transported. Arguably, they are proportional to differentials for 
concentrations, but only if volumes are constant (and they may not 
be). For consistency, we strongly suggest you work with quantities. 
The rate of change of the quantity of substance in the poorly 
perfused compartment, for example, can therefore be described by 
the following differential equation:
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Fig. 1 Schematic representation of a simple, perfusion-limited, PBPK model. The 
model equations are detailed in Subheading 2 of the text
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where Qpp is the quantity of substance at any given time in the 
poorly perfused compartment, Fpp the blood volumetric flow rate 
through that group of organs, Cart the substance’s arterial blood 
concentration, Ppp the poorly perfused tissues over blood partition 
coefficient, and Vpp the volume of the poorly perfused compart-
ment. Since Qpp kinetics are governed by a differential equation, it 
is part of the so- called “state variables” of the model. The tissue 
over blood partition coefficient Ppp measures the relative affinity of 
the substance for the tissue compared to blood. It is easy to check 
that, at equilibrium,
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if we denote by Cpp the concentration of the substance in the poorly 
perfused compartment. Similarly, for the well-perfused and the fat 
compartments we can write the following equations for the two 
state variables Qwp, and Qfat, respectively:
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The equation for the last state variable, Qliv (for the liver) is a bit 
more complex, with a term for metabolic clearance, with first-order 
rate constant kmet, and a term corresponding to the oral ingestion 
rate of the compound (quantity absorbed per unit time), Ring which 
corresponds to the administration rate if gut absorption is complete, 
or to a fraction of it otherwise:
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Obviously, this is a minimal model for metabolism, and much more 
complex terms may be used for saturable metabolism, binding to 
blood proteins, multiple enzymes, metabolic interactions, extra- 
hepatic metabolism, etc. If the substance is volatile, and if accumu-
lation in the lung tissue itself is neglected, the arterial blood 
concentration Cart can be computed as follows, assuming instanta-
neous equilibrium between blood and air in the lung:
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where Ftot is the blood flow to the lung, Fpul the pulmonary ventila-
tion rate, rds the fraction of dead space (upper airways’ volume 
unavailable for blood-air exchange) in the lung, Pa the blood over 
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air partition coefficient, and Cinh is the concentration inhaled. 
Equation 6 can be derived from a simple balance of mass exchanges 
between blood and air under equilibrium conditions. Cven is the 
concentration of compound in venous blood and can be obtained 
as the sum of compound concentrations in venous blood at the 
organ exits weighted by corresponding blood flows:
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Finally, the substance’s concentration in exhaled air, Cexh, can be 
obtained under the same equilibrium conditions as for Eq. 6:
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(8)

Note that Cart, Cven, and Cexh, are not specified by differential equa-
tions, but by algebraic equations. Those three variables are not 
fundamental in our model and could be expressed using only 
parameters and state variables. They are just (very) convenient 
“output variables” that we may want to record during simulation 
and that facilitate model writing.

The above model assumes that all the substance present in blood 
is available for exchange with tissues. This may not be true if a frac-
tion of the substance is bound, for example to proteins, in blood or 
tissues. In that case it is often assumed that binding/unbinding is 
rapid compared to the other processes. The equations are then writ-
ten in terms of unbound quantities and the rapid equilibrium 
assumption is used to keep track of the balance bound/unbound 
quantity in each organ or tissue [30].

Diffusion across vascular barriers or cellular membranes can be 
slower than perfusion. This condition is likely to be met by large 
polar molecules. In that case, to account for diffusion limitation, a 
vascular sub-compartment is usually added to each organ or tissue 
of interest. Diffusion between that vascular sub-compartment and 
the rest of the tissue is modeled using the Fick’s law. A diffusion 
barrier can also exist between the extracellular and intracellular 
compartments. Consequently, PBPK models exhibit very different 
degrees of complexity, depending on the number of compartments 
used and their eventual subdivisions [31].

A PBPK model needs a considerable amount of information to 
parameterize. At the system level, we find substance-independent 
anatomical (e.g., organ volume), physiological (e.g., cardiac output), 
and some biochemical parameters (e.g., enzyme concentrations). 
All those are generic, in the sense that they do not depend on the 
substance(s) of interest, and are relatively well documented in 

2.2 Parameter 
Estimation
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humans and laboratory animals [29, 32–36]. They can be assigned 
once for ever, at least in first approximation, for an “average” 
individual in a given species at a given time.

There are also, inevitably, substance-specific parameters which 
reflect the specific interactions between the body and the substance 
of interest. In many cases, values for those parameters are not read-
ily available. However, such parameters often depend, at least in 
part, on the physicochemical characteristics of molecule studied 
(e.g., partition coefficients depend on lipophilicity, passive renal 
clearance depends on molecular weight). In that case, they can be 
estimated, for example by quantitative structure–activity relation-
ships (QSARs) [37, 38], also referred to as quantitative structure–
property relationships (QSPRs) when “simple” parameter values 
are predicted. Molecular simulation (quantum chemistry) models 
can also be used [39, 40], in particular for the difficult problem of 
metabolic parameters’ estimation. QSARs are statistical models 
(often a regression) relating one or more parameters describing 
chemical structure (predictors) to a quantitative measure of a 
property or activity (here a parameter value in a PBPK model) 
[15, 41–44]. However, when predictive structure–property mod-
els are not available (as is often the case with metabolism, for exam-
ple), the parameters have to be measured in vitro (for an extensive 
review see [45, 46]) or estimated from in vivo experiments and are 
much more difficult to obtain.

However, using average parameter values does not correctly 
reflect the range of responses expected in a human population, nor 
the uncertainty about the value obtained by QSARs, in vitro exper-
iments or in vivo estimation [47]. Inter-individual variability in PK 
can have direct consequences on efficacy and toxicity, especially for 
substances with a narrow therapeutic window. Therefore, simula-
tion of inter-individual variability should be an integral part of the 
prediction of PK in humans. The mechanistic framework of PBPK 
models provides the capacity of predicting inter-individual variabil-
ity in PK when the required information is adequately incorpo-
rated. To that effect, two modeling strategies have been developed 
in parallel: The first approach has been mostly used for data-rich 
substances. It couples a pharmacokinetic model to describe time-
series measurements at the individual level and a multilevel (ran-
dom effect) statistical model to extract a posteriori estimates of 
variability from a group of subjects [48, 49]. In a Bayesian context, 
a PBPK model can be used at the individual level, and allows easy 
inclusion of many subject-specific covariates [50]. The second 
approach also takes advantage of the predictive capacity of PBPK 
models but simply assigns a priori distributions to the model 
parameters (e.g., metabolic parameters, blood flows, organ volumes) 
and forms distributions of model predictions by Monte Carlo 
simulations [51].
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Many software programs can actually be used to build and simulate 
a PBPK model. Some are very general simulation platforms—R 
[52], GNU MCSim [53, 54], Octave [55], Scilab [56], Matlab® 
[57], Mathematica® [58], to name a few. Those platforms usually 
propose some PBPK-specific packages or functionalities that ease 
model development. An alternative is to use specialized software 
(e.g., PK-Sim® [59], Simcyp® [60], GastroPlus® [61], Merlin-expo 
[62]), which has often an attractive interface. However, in that 
case the model equations cannot usually be modified and only the 
parameter values can be changed or assigned pre-set values or 
distributions.

The evaluation (checking) of the model is an integral part of its 
development to objectively demonstrate the reliability and rele-
vance of the model. Model evaluation is often associated with a 
defined purpose, such as a measure of internal dosimetry relevant 
to the mode of action of the substance (e.g., the area under the 
curve or maximal concentration in the target tissues during critical 
time windows). The objective here is to establish confidence in the 
predictive capabilities of the model for a few key variables. A com-
mon way to evaluate a model’s predictability is to confront its pre-
dictions to an independent data set, i.e., that has not been used for 
model development. That is called cross-validation in statistical 
jargon. For example, the evaluation step could check that the 
model is able to reproduce the peaks and troughs of tissue concen-
trations under repeated exposure scenarios. Model evaluation is 
not limited to a confrontation between model predictions and 
data, but also requires checking the plausibility of the model struc-
ture, its parameterization and the mathematical correctness of 
equations (e.g., the conservation of mass, organ volumes, and 
blood flows). Because of their mechanistic description of ADME 
processes, PBPK model structures and parameter values must be in 
accordance with biological reality. Parameter values inconsistent 
with physiological and biological knowledge limit the use of the 
model for extrapolation to other exposure scenarios, and ultimately 
need to be corrected by the acquisition of new data, for example.

Most models are valid only on a defined domain. That is true even 
for the most fundamental models in physics. The term “validation” 
is rarely used in the context of toxicokinetic modeling as it is almost 
impossible to validate in all generality a model of the whole body. 
Actually, it is not done because it is bound to fail. It would require 
experimental data for all state variables (time evolution of concen-
tration in all compartments) and model parameters under innu-
merable exposure scenarios. In that context, to be useful, the 
validation process should first define a validity domain. For exam-
ple, we should not expect PBPK models to give accurate descrip-
tions of within- organ differences in concentrations (organs are 

2.3 Solving 
the Model Equations

2.4 Evaluation 
of the Model

2.5 Model Validation 
and Validity Domain
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described as homogeneous “boxes”). There is actually an avenue 
of research for improved organ descriptions. As far as time scale is 
concerned, we are doing pretty well for long-term [17], but for 
inhalation at the lung level in particular, PBPK models are not suit-
able for time scales lower than a couple of minutes (the cyclicity of 
breathing is not described). Metabolism and the description of 
metabolites distribution is a deeper problem, as it branches on the 
open-ended field of systems biology [63]. In that area the domain 
of validity becomes harder to define and is usually much smaller 
than that of the parent molecule. The model’s domain of validity 
should be documented, to the extent possible, and even more 
carefully as we venture into original and exotic applications. 
Fortunately, the assumptions consciously made during model 
development usually help in delineating the domain of validity.

3 A PBPK Model for 1,3-Butadiene

In this section, we propose to apply the model development process 
presented above to the development of a PBPK model for 
1,3- butadiene, a volatile organic compound. First, some background 
information on 1,3-butadiene will be provided to fulfill some require-
ments of the guidance defined by the International Programme on 
Chemical Safety [20]. Because the aim here is not to run a risk assess-
ment on butadiene, most sections of the guidance will be omitted 
(e.g., the comparison with the default approaches).

An extensive literature exists on 1,3-butadiene human uses, exposures, 
toxicokinetics, and mode of action, see for example [64, 65].

1,3-Butadiene (CAS No. 106-99-0) is a colorless gas under 
normal conditions. It is used for production of synthetic rubber, 
thermoplastic resins and other plastics, and is also found in cigarette 
smoke and combustion engine fumes. It enters the environment 
from engine exhaust emissions, biomass combustion, and from 
industrial on-site uses. The highest atmospheric concentrations 
have been measured in cities and close to industrial sources. The 
general population is exposed to 1,3-butadiene primarily through 
ambient and indoor air. Tobacco smoke may contribute significant 
amounts of 1,3- butadiene at the individual level. It is a known 
carcinogen, acting through its metabolites [65].

1,3-Butadiene metabolism is a complex series of oxidation and 
reduction steps [65]. Briefly, the first step in the metabolic conver-
sion of butadiene is the cytochrome P450-mediated oxidation to 
1,2-epoxy-3-butene (EB). EB may subsequently be exhaled, con-
jugated with glutathione, further oxidized to 1,2:3,4-diepoxybu-
tane (DEB), or hydrolyzed to 3-butene-1,2-diol (BDD). DEB 
can then be hydrolyzed to 3,4-epoxy-1,2-butanediol (EBD) or 
conjugated with glutathione. BDD can be further oxidized to EBD. 

3.1 Setting 
Up Background
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EBD can be hydrolyzed or conjugated with glutathione. The 
metabolism for 1,3- butadiene to EB is the rate-limiting step for 
the formation of all its toxic epoxy metabolites. It makes sense, 
given the above, to define the cumulated amount of 1,3-butadiene 
metabolites formed in the body as the measure of its internal dose 
for cancer risk assessment purposes.

In our butadiene example, we will use the R software and its pack-
age deSolve. We will assume that the reader has a minimal working 
of knowledge of R and has R and deSolve installed. R is freely 
available for the major operating systems (Unix/Linux, Windows, 
Mac OS) and deSolve provides excellent functions for integrating 
differential equations. R is easy to use, but not particularly fast. If you 
need to run many simulations (say several thousands or more) you 
should code your model in C language, compile it, and have 
deSolve call your compiled code (see the deSolve manual for that). 
An even faster alternative (if you need to do Bayesian model cali-
bration, for example) is to use GNU MCSim. You can actually use 
GNU MCSim to develop C code for deSolve.

Our research group has previously developed and published a 
PBPK model for 1,3-butadiene on the basis of data collected on 
133 human volunteers during controlled low dose exposures. We 
used it for various studies and as an example of Bayesian PBPK 
analysis [66–68]. That model (see Fig. 2) is a minimal description 
of butadiene distribution and metabolism in the human body after 
inhalation. Three compartments lump together tissues with similar 
perfusion rate (blood flow per unit of tissue mass): the 
“well-perfused” compartment regroups the liver, brain, lungs, 

3.2 Model 
Development 
and Evaluation

3.2.1 Software Choice

3.2.2 Defining the Model 
Structure and Equations

Fig. 2 Representation of the PBPK model used for 1,3-butadiene. The model 
equations and parameters are detailed in Subheading 3 of the text
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kidneys, and other viscera; the “poorly perfused” compartment 
lumps muscles and skin; and the third is “fat” tissues. Butadiene 
can be metabolized into an epoxide in the liver, kidneys, and lung, 
which are part of the well-perfused  compartment. Our model will 
therefore include four essential “state” variables, which will each 
have a governing differential equation: the quantities of butadiene 
in the fat, in the well-perfused compartment, in the poorly perfused 
compartment, and the quantity metabolized. Actually, the latter is a 
“terminal” state variable which depends on the others state vari-
ables and has no dependent. We could dispense with it if we did not 
want to compute and output it. That would save computation time, 
which grows approximately with the square of the number of state 
variables of the model.

In an R script code for use with deSolve, we first need to define 
the model state variable and assign them initial values (values they 
will take at the start of a simulation, those are called “boundary 
conditions” in technical jargon). The syntax is quite simple (the 
full script is given in Appendix):

         y = c("Q_fat" = 0,   # Quantity of butadiene in fat (mg)
      "Q_wp"  = 0,   # ~        in well-perfused (mg)
      "Q_pp"  = 0,   # ~        in poorly-perfused (mg)
      "Q_met" = 0)   # ~        metabolized (mg)
That requests the creation of y as a vector of four named 

components, all initialized here at the value zero (i.e., we assume 
no previous exposure to butadiene, or no significant levels of buta-
diene in the body in case of a previous exposure). The portions of 
lines starting with the pound sign (#) are simply comments for the 
reader and are ignored by the software. We have chosen milligrams 
as the unit for butadiene quantities and it is useful to indicate it 
here. In R indentation and spacing do not matter and we strive for 
readability.

We then need to define similarly, as a named vector, the model 
parameters:

         parameters = c(
  "BDM"    = 73,          # Body mass (kg)
  "Height" = 1.6,         # Body height (m)
  "Age"    = 40,          # in years
  "Sex"    = 1,           # code 1 is male, 2 is female
  "Flow_pul"      = 5,    # Pulmonary ventilation rate (L/min)
  "Pct_Deadspace" = 0.7,  # Fraction of pulmonary deadspace
  "Vent_Perf"     = 1.14, # Ventilation over perfusion ratio
  "Pct_LBDM_wp"   = 0.2,  # wp tissue as fraction of lean mass
  "Pct_Flow_fat"  = 0.1,  # Fraction of cardiac output to fat
  "Pct_Flow_pp"   = 0.35, # ~                          to pp
  "PC_art" = 2,           # Blood/air partition coefficient
  "PC_fat" = 22,          # Fat/blood ~
  "PC_wp"  = 0.8,         # wp/blood  ~
  "PC_pp"  = 0.8,         # pp/blood  ~
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  "Kmetwp" = 0.25)        # Rate constant for metabolism (1/min)
We will see next how those parameters are used in the model 

equations, but you notice already that they are not exactly, except 
for the partition coefficients and metabolic rate constant, the 
parameters used in Eqs. 1, and 3–5. They are in fact scaling coef-
ficients used to model parameter correlations in an actual subject.

Before we get to the model core equations, we need to define 
the value of the concentration of butadiene in inhaled air. This is 
an “input” to the model and we will allow it to change with time, 
so it is a dynamic boundary condition to the model (deSolve uses 
the term “forcing function”). We use here a convenient feature of 
R, defining Cinh as an approximating function.

         C_inh = approxfun(x = c(0, 100), y = c(10, 0),
                  method = "constant", f = 0, rule = 2)
The instruction above defines a function of time Cinh(t), right 

continuous (option f = 0) and constant by segments (the option 
method = “linear” would yield a function linear by segments). At 
times 0 and 100 (x values), it takes values y 10 and then 0, respec-
tively. Before time zero and after time 100, Cinh(t) will take the 
closest y value defined (option rule = 2). Figure 3 shows the behavior 
of the function Cinh(t) so defined.

Formally you do not necessarily need such an input function in 
your model. Cinh could simply be a constant, or no input could be 
used if you were to model just the elimination of butadiene out of 
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Fig. 3 Plot of the time–concentration profile of butadiene inhaled generated by 
the function Cinh(t) of the example script. Cinh(t) is used as a forcing function for 
the model simulations
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body following exposure. Indeed, the initial values of the state 
variables would have to be non-null in that case.

Now we need to define a function that will compute the deriv-
atives at the core of the model, as a function of time t—used for 
example when parameters are time varying, or for computing 
Cinh(t), of the current state variable values y, and of the parameters. 
Here is the (simplified) code of that function which we called “bd.
model” (intermediate calculations have been deleted for clarity, we 
will see them later):

    bd.model = function(t, y, parameters) { # function header
     # function body:
     with (as.list(y), {
      with (as.list(parameters), {
      # … (part of the code omitted for now)
      # Time derivatives for quantities
      dQ_fat = Flow_fat * (C_art - Cout_fat)
      dQ_wp  = Flow_wp  * (C_art - Cout_wp) - dQmet_wp
      dQ_pp  = Flow_pp  * (C_art - Cout_pp)
      dQ_met = dQmet_wp;
      return(list(c(dQ_fat, dQ_wp, dQ_pp, dQ_met),   # 

derivatives
           c("C_ven" = C_ven, "C_art" = C_art)))     # extra 

outputs
      }) # end with parameters
     }) # end with y
    } # end of function bd.model()
The first two “with” nested blocks (they extend up to the end 

of the function) are an obscure but useful feature of R. Remember 
that y and “parameters” are arrays with named components. In R, 
you should refer to their individual components by writing for 
example “parameters[“PC_fat”]” for the fat over blood partition 
coefficient. That can become clumsy and the “with” statements 
allow you to simplify the notation and call simply “PC_fat”.

The most important part of the “bd.model” function is the 
calculation of the derivatives. As you can see they are given an 
arbitrary name and computed similarly to the equations given 
above (e.g., Eq. 1). Obviously we need to have defined the tem-
porary variables “Cout_fat”, “Cout_wp”, and “dQmet_wp” but 
they are part of the omitted code and we will see them next. 
Finally, the function needs to return (as a list, that is imposed by 
deSolve) the derivatives computed and eventually the output 
variables we might be interested in (in our case, for example Cven 
and Cart).

The code we omitted for clarity was simply intermediate 
calculations. First some obvious conversion factors:

    # Define some useful constants
    MW_bu = 54.0914    # butadiene molecular weight (in 

grams)
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    ppm_per_mM = 24450 # ppm to mM under normal 
conditions

    # Conversions from/to ppm
    ppm_per_mg_per_l = ppm_per_mM / MW_bu
    mg_per_l_per_ppm = 1 / ppm_per_mg_per_l
The following instructions scale the compartment volumes to 

body mass. The equation for the fraction of fat is taken from [69]. 
That way, the volumes correlate as they should to body mass or 
lean body mass:

    # Calculate fraction of body fat
    Pct_BDM_fat = (1.2 * BDM / (Height * Height) - 10.8 

*(2 - Sex) +
                   0.23 * Age - 5.4) * 0.01
    # Actual volumes, 10% of body mass (bones…) receive no 

butadiene
    Eff_V_fat = Pct_BDM_fat * BDM
    Eff_V_wp  = Pct_LBDM_wp  * BDM * 

(1 - Pct_BDM_fat)
    Eff_V_pp  = 0.9 * BDM - Eff_V_fat - Eff_V_wp
The blood flows are scaled similarly to maintain adequate per-

fusion per unit mass:
    # Calculate alveolar flow from total pulmonary flow
    Flow_alv = Flow_pul * (1 - Pct_Deadspace)
    # Calculate total blood flow from Flow_alv and the V/P 

ratio
    Flow_tot = Flow_alv / Vent_Perf
    # Calculate actual blood flows from total flow and percent 

flows
    Flow_fat = Pct_Flow_fat * Flow_tot
    Flow_pp  = Pct_Flow_pp  * Flow_tot
    Flow_wp  = Flow_tot * (1 - Pct_Flow_pp - Pct_Flow_fat)
We have now everything needed to compute concentrations at 

time t in the various compartments or at their exit:
    # Calculate the concentrations
    C_fat = Q_fat / Eff_V_fat
    C_wp  = Q_wp  / Eff_V_wp
    C_pp  = Q_pp  / Eff_V_pp
    # Venous blood concentrations at the organ exit
    Cout_fat = C_fat / PC_fat
    Cout_wp  = C_wp  / PC_wp
    Cout_pp  = C_pp  / PC_pp
The next two lines are typical computational tricks. The right- 

hand sides will be used several times in the subsequent calculations. 
It is faster, and more readable to define them as temporary 
variables:

      # Sum of Flow * Concentration for all compartments
      dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp +
               Flow_pp * Cout_pp
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      # Quantity metabolized in liver (included in 
well-perfused)

      dQmet_wp = Kmetwp * Q_wp
      C_inh.current = C_inh(t) # to avoid calling C_inh() twice
The last series of intermediate computations obtain Cart—as 

in Eq. 6, with a unit conversion for Cinh(t), Cven as in Eq. 7 (those 
two will be defined as outputs in the function’s return statement), 
the alveolar air concentration Calv, and finally the exhaled air con-
centration Cexh:

    # Arterial blood concentration
    # Convert input given in ppm to mg/l to match other units
    C_art = (Flow_alv * C_inh.current * mg_per_l_per_ppm + 

dQ_ven) /
            (Flow_tot + Flow_alv / PC_art)
    # Venous blood concentration (mg/L)
    C_ven = dQ_ven / Flow_tot
    # Alveolar air concentration (mg/L)
    C_alv = C_art / PC_art
    # Exhaled air concentration (ppm!)
    if (C_alv <= 0) {
      C_exh = 10E-30 # avoid round off errors
    } else {
      C_exh = (1 - Pct_Deadspace) * C_alv * ppm_per_mg_per_l 

+
              Pct_Deadspace * C_inh.current
    }
The calculation of Cexh just above is an example of computa-

tional trick to avoid rounding errors (useful if you later want to 
take the log of Cexh, you want to avoid values like −7 × 10−16 for 
example). It also illustrates one idiosyncrasy of R: spacing and 
disposition do not matter except that “} else {” must be on the 
same line.

The R script we detailed above is almost ready to perform simulations. 
We just need to define the output times (times at which we will 
want to look at the results, here a sequence from zero to 1440 min, 
every 10 min), load the deSolve library (so far we have only used 
standard R functions) and call the integration routine “ode”, 
storing its results in the variable “results”:

    # Define the computation output times (minutes)
    times = seq(from=0, to=1440, by=10)
    # Call the ODE solver
    library(deSolve)
    results = ode(times = times, func = bd.model, y = Y, parms 

= parms)
By default, deSolve uses the lsode integration routine for 

stiff systems [70]. This is a very efficient solver, but you have the 
choice of several integrators (see the deSolve manual for details). 

3.2.3 Running the Model
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The content of results can be looked at, saved to a file, further 
manipulated or simply plotted:

    # results is basically a table
    results
    # Plot the results of the simulation
    plot(results)
Figure 4 shows the plot obtained (just for the four butadiene 

quantities state variables). That is in essence all it takes to write and 
simulate a PBPK model.

Running Monte Carlo simulations in R, for uncertainty or sensi-
tivity analyses [49], is rather easy. R is fundamentally a statistical 
software and is well equipped for random numbers generation. 
The skeleton for a Monte Carlo simulation script is simply a loop 
of n iterations:

         for (iteration in 1:1000) { # 1000 Monte Carlo 
simulations

  # Sample randomly some parameters
…
  # Reduce output times eventually
  times = c(0, 1440)

3.2.4 Running Monte 
Carlo Simulations
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Fig. 4 Simulated time courses of the quantities of butadiene in the compartments of the sample PBPK model. 
Inhalation exposure was specified as shown in Fig. 3
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  # Integrate
tmp = ode(times = times, func = bd.model, y = y,
            parms = parameters)
  # Accumulate results in a table
…
         } # end Monte Carlo loop
Here too the ellipsis (…) refers to pieces of code we will detail 

below. The full script is given in Appendix). The calculations inside 
the “for” loop are performed a thousand time. At each iteration, 
new parameter values are randomly sampled. For example, if we 
choose to sample only four parameters (we could sample all) from 
normal distributions, the code would look like:

  # Sample randomly some parameters
  parameters["BDM"]      = rnorm(1, 73,   7.3)
  parameters["Flow_pul"] = rnorm(1, 5,    0.5)
  parameters["PC_art"]   = rnorm(1, 2,    0.2)
  parameters["Kmetwp"]   = rnorm(1, 0.25, 0.025)
For each parameter, one normal random variable is drawn with 

a mean set to the value used in the simple script above, and a stan-
dard deviation equal to 10 % of the mean. When doing Monte 
Carlo simulations, you usually do not want to look at the distribu-
tions of state or output variables at thousands of different times 
(that is heavy). Here we decided to look at them only at time 1440 
min, so we reset the times array. Note that the starting time (here 
zero) still needs to be defined among the times. The integrator is 
then called and its results stored in the “tmp” table. But that is only 
one set of results in a thousand and we need to accumulate those 
results. The following few lines of code show how to keep only the 
results obtained at time 1440 (line 2 or the tmp table) but without 
the output time (which is always 1440) (the “-1” in “tmp[2,-1]” 
removes the first column). It is also very useful to store the sampled 
parameter values:

      if (iteration == 1) { # initialize
       results = tmp[2,-1]
       sampled.parms = c(parameters["BDM"],    

parameters["Flow_pul"],
                         parameters["PC_art"], parameters["Kmetwp"])
      } else { # accumulate
       results = rbind(results, tmp[2,-1])
       sampled.parms = rbind(sampled.parms,
                        c(parameters["BDM"],    

parameters["Flow_pul"],
                          parameters["PC_art"], parameters["Kmetwp"]))
      }
When the Monte Carlo loop is finished we probably want to 

save the accumulated results in a file (unless the simulations are 
very fast to compute):

         # Save the results
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         save(sampled.parms, results, file="MTC.dat.xz", 
compress = "xz")

         # use load(file="MTC.dat.xz") to read them back in
Finally, such large amounts of information are best handled 

with statistical and graphical methods. Figure 5 shows a nicer 
version of the three simple plots which would be produced by the 
following lines:

         # Plot the results
         hist(sampled.parms[,1])
         hist(results[,1])
         plot(sampled.parms[,1], results[,1])
Figure 5 shows the relationship between the Monte Carlo 

sampled body mass values and the resulting prediction for the 
quantity in fat after a day. You can observe an obvious and expected 
correlation between the two (butadiene storage in fat increases 
with the fat compartment volume which in turn increases with 
body mass). The increase in butadiene storage is roughly propor-
tional to body mass, so that is a sensitive parameter. The relation-
ship is not perfect because three other parameters were sampled. 
We can that way study the sensitivity of any model prediction, at 
any time, with respect to any model parameter [49]. The plot also 
shows the marginal distributions of body masses and butadiene 
quantities in fat. The uncertainty attached to predictions is about 
±50 %. That type of histogram can give an idea of the reliability of 
any model prediction.
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Fig. 5 Illustration of the PBPK model Monte Carlo simulation results. The dot plot 
shows the quantity of butadiene in fat after 1 day as a function of sampled body 
mass. The random sampling of other parameters explains the dispersion of the 
results, however the quantity in fat is clearly sensitive to body mass. The mar-
ginal histograms show the distributions of the sampled values for body mass and 
of the predicted quantities of butadiene in fat. A sizeable uncertainty affects 
those results
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A thousand Monte Carlo simulations took us a few minutes on 
a laptop computer. A thousand is actually a small number if you 
want to accurately characterize upper or lower percentiles of the 
resulting distributions. If computation time becomes an issue you 
can divide it by a factor 10 if you compile your model in C—GNU 
MCSim [53, 54] can actually produce a C code compatible with 
deSolve without having to learn the C language. A factor 100 can 
be gained if you work only with GNU MCSim.

4 Conclusion

PBPK modeling is more and more used in research, development, 
and regulation [71, 72]. Obviously, the precision and accuracy of 
PBPK model will be only as good as those of the QSAR predictions 
or in vitro data used to set their parameters. Quality assurance of 
those components is therefore an important issue [26, 73], and we 
have seen that in several areas (metabolism in particular), research 
work is still needed. As to the models themselves, their validity will 
probably be easier to check if they are generic and with a stable and 
well- documented structure [74]. This requirement, however, runs 
somewhat contrary to the next challenge: Coupling PBPK models 
to predictive pharmacology or toxicity models, both at the cellular 
level and at the organ level [75]. We hope however, that this step-
by- step introduction to PBPK model development and simulation 
will help the reader in his/her first steps into that exciting area.
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5 Appendix

R script for the butadiene PBPK model:
#==============================================

===================
# Butadiene human PBPK model
# Define and initialize the state variables
y = c("Q_fat" = 0,   # Quantity of butadiene in fat (mg)
      "Q_wp"  = 0,   # ~        in well-perfused (mg)
      "Q_pp"  = 0,   # ~        in poorly-perfused (mg)
      "Q_met" = 0)   # ~        metabolized (mg)
# Define the model parameters
# Units:
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# Volumes: liter
# Time:    minute
# Flows:   liter / minute
parameters = c(
  "BDM"    = 73,          # Body mass (kg)
  "Height" = 1.6,         # Body height (m)
  "Age"    = 40,          # in years
  "Sex"    = 1,           # code 1 is male, 2 is female
  "Flow_pul"      = 5,    # Pulmonary ventilation rate (L/min)
  "Pct_Deadspace" = 0.7,  # Fraction of pulmonary deadspace
  "Vent_Perf"     = 1.14, # Ventilation over perfusion ratio
  "Pct_LBDM_wp"   = 0.2,  # wp tissue as fraction of lean mass
  "Pct_Flow_fat"  = 0.1,  # Fraction of cardiac output to fat
  "Pct_Flow_pp"   = 0.35, # ~                          to pp
  "PC_art" = 2,           # Blood/air partition coefficient
  "PC_fat" = 22,          # Fat/blood ~
  "PC_wp"  = 0.8,         # wp/blood  ~
  "PC_pp"  = 0.8,         # pp/blood  ~
  "Kmetwp" = 0.25)        # Rate constant for metabolism 

(1/min)
# The input air concentration (in parts per million) can vary 

with time
C_inh = approxfun(x = c(0,120), y = c(10,0), 

method="constant", f=0, rule=2)
# Check the input concentration profile just defined
plot(C_inh(1:300), xlab = "Time (min)",
     ylab = "Butadiene air concentration (ppm)", type = "l")
# Define the model equations
bd.model = function(t, y, parameters) {
 with (as.list(y), {
  with (as.list(parameters), {
  # Define some useful constants
  MW_bu = 54.0914    # butadiene molecular weight (in grams)
  ppm_per_mM = 24450 # ppm to mM under normal 

conditions
  # Conversions from/to ppm
  ppm_per_mg_per_l = ppm_per_mM / MW_bu
  mg_per_l_per_ppm = 1 / ppm_per_mg_per_l
  # Calculate Flow_alv from total pulmonary flow
  Flow_alv = Flow_pul * (1 - Pct_Deadspace)
  # Calculate total blood flow from Flow_alv and the V/P ratio
  Flow_tot = Flow_alv / Vent_Perf
  # Calculate fraction of body fat
  Pct_BDM_fat = (1.2 * BDM / (Height * Height) - 10.8 

*(2 - Sex) +
                 0.23 * Age - 5.4) * 0.01
  # Actual volumes, 10% of body mass (bones…) get no 

butadiene
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  Eff_V_fat = Pct_BDM_fat * BDM
  Eff_V_wp  = Pct_LBDM_wp  * BDM * (1 - Pct_BDM_fat)
  Eff_V_pp  = 0.9 * BDM - Eff_V_fat - Eff_V_wp
  # Calculate actual blood flows from total flow and percent 

flows
  Flow_fat = Pct_Flow_fat * Flow_tot
  Flow_pp  = Pct_Flow_pp  * Flow_tot
  Flow_wp  = Flow_tot * (1 - Pct_Flow_pp - Pct_Flow_fat)
  # Calculate the concentrations
  C_fat = Q_fat / Eff_V_fat
  C_wp  = Q_wp  / Eff_V_wp
  C_pp  = Q_pp  / Eff_V_pp
  # Venous blood concentrations at the organ exit
  Cout_fat = C_fat / PC_fat
  Cout_wp  = C_wp  / PC_wp
  Cout_pp  = C_pp  / PC_pp
  # Sum of Flow * Concentration for all compartments
  dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp + 

Flow_pp * Cout_pp
  C_inh.current = C_inh(t) # to avoid calling C_inh() twice
  # Arterial blood concentration
  # Convert input given in ppm to mg/l to match other units
  C_art = (Flow_alv * C_inh.current * mg_per_l_per_ppm + 

dQ_ven) /
          (Flow_tot + Flow_alv / PC_art)
  # Venous blood concentration (mg/L)
  C_ven = dQ_ven / Flow_tot
  # Alveolar air concentration (mg/L)
  C_alv = C_art / PC_art
  # Exhaled air concentration (ppm!)
  if (C_alv <= 0) {
    C_exh = 10E-30 # avoid round off errors
  } else {
    C_exh = (1 - Pct_Deadspace) * C_alv * ppm_per_mg_per_l +
            Pct_Deadspace * C_inh.current
  }
  # Quantity metabolized in liver (included in well-perfused)
  dQmet_wp = Kmetwp * Q_wp
  # Differentials for quantities
  dQ_fat = Flow_fat * (C_art - Cout_fat)
  dQ_wp  = Flow_wp  * (C_art - Cout_wp) - dQmet_wp
  dQ_pp  = Flow_pp  * (C_art - Cout_pp)
  dQ_met = dQmet_wp
  # The function bd.model must return at least the derivatives
  list(c(dQ_fat, dQ_wp, dQ_pp, dQ_met),     # derivatives
       c("C_ven" = C_ven, "C_art" = C_art)) # extra outputs
  }) # end with parameters
 }) # end with y
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} # end bd.model
# Define the computation output times
times = seq(from=0, to=1440, by=10)
# Call the ODE solver
library(deSolve)
results = ode(times = times, func = bd.model, y = y, parms = 

parameters)
# results is basically a table
results
# Plot the results of the simulation
plot(results)
# End
# End Simple Simulation.
#==============================================

===================
#==============================================

===================
# Monte Carlo simulations
# We assume that a simple simulation has already been run, so 

that
# y, parameters, C_inh, and bd.model have all been defined 

and that
# deSolve has been loaded.
for (iteration in 1:1000) { # 1000 Monte Carlo simulations…
  # Sample randomly some parameters
  parameters["BDM"]      = rnorm(1, 73,   7.3)
  parameters["Flow_pul"] = rnorm(1, 5,    0.5)
  parameters["PC_art"]   = rnorm(1, 2,    0.2)
  parameters["Kmetwp"]   = rnorm(1, 0.25, 0.025)
  # Reduce output times eventually. We only care about time 

1440,
  # but time zero still needs to be specified
  times = c(0, 1440)
  # Integrate
  tmp = ode(times = times, func = bd.model, y = y, parms = 

parameters)
  if (iteration == 1) { # initialize
   results = tmp[2,-1]
   sampled.parms = c(parameters["BDM"],    

parameters["Flow_pul"],
                     parameters["PC_art"], parameters["Kmetwp"])
  } else { # accumulate
   results = rbind(results, tmp[2,-1])
   sampled.parms = rbind(sampled.parms,
                    c(parameters["BDM"],    

parameters["Flow_pul"],
                      parameters["PC_art"], parameters["Kmetwp"]))
  }
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} # end Monte Carlo loop
# Save the results, specially if they took a long time to 

compute
save(sampled.parms, results, file="MTC.dat.xz", compress 

= "xz")
# use load(file="MTC.dat.xz") to read them back in
# Plot the results
hist(sampled.parms[,1])
hist(results[,1])
plot(sampled.parms[,1], results[,1])
# End Monte Carlo Simulations.
#==============================================

===================
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    Chapter 4   

 Modeling ADMET                     

     Jayeeta     Ghosh    ,     Michael     S.     Lawless    ,     Marvin     Waldman    , 
    Vijay     Gombar    , and     Robert     Fraczkiewicz      

  Abstract 

   Drug discovery and development is a costly and time-consuming endeavor (Calcoen et al. Nat Rev Drug 
Discov 14(3):161–162, 2015; The truly staggering cost of inventing new drugs. Forbes. http://www.
forbes.com/sites/matthewherper/2012/02/10/the-truly-staggering-cost-of-inventing-new-drugs/, 
2012; Scannell et al. Nat Rev Drug Discov 11(3):191–200, 2012). Over the last two decades, computa-
tional tools and in silico models to predict ADMET (Adsorption, Distribution, Metabolism, Excretion, 
and Toxicity) profi les of molecules have been incorporated into the drug discovery process mainly in an 
effort to avoid late-stage failures due to poor pharmacokinetics and toxicity. It is now widely recognized 
that ADMET issues should be addressed as early as possible in drug discovery. Here, we describe in detail 
how ADMET models can be developed and applied using a commercially available package, ADMET 
Predictor™ 7.2 (ADMET Predictor v7.2. Simulations Plus, Inc., Lancaster, CA, USA).  

  Key words     ADMET  ,   Adsorption  ,   Distribution  ,   Metabolism  

1      Introduction 

 ADMET profi ling of molecules consists of two steps: the fi rst 
involves building quantitative structure–property relationship 
(QSPR) models for desired ADMET endpoints and the second 
step involves using those QSPR models to predict the modeled 
endpoints for compounds of interest. Since these models require 
merely drawing a molecule’s structure for making predictions, 
even virtual chemical libraries can be scored or ranked based on 
ADMET liabilities. This in silico profi ling can help progress only 
those molecules along the discovery chain that are less likely to fail 
later in the drug discovery process. This may may positively impact 
the very high costs [ 1 – 3 ] of drug discovery and development. 
QSPR models can also be used to guide structural modifi cations to 
improve ADMET properties [ 4 ]. 

 In addition to the in silico models developed inside the fi rewalls 
of many companies, a number of free and commercial software 
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packages are available for building and applying ADMET models. 
A representative, but not exhaustive, list of such software packages 
is given in Tables  1  and  2 . Similar lists are available elsewhere [ 5 ].

    In this chapter, we describe how ADMET Predictor can be 
used for estimating crucial physicochemical and biological proper-
ties for large numbers of compounds during virtual library screen-
ing in early drug discovery. The simplest application of ADMET 
Predictor is to profi le the library for a single property, but profi ling 
only on one property carries with it the dangers of “one-dimensional 

   Table 1  
  Free predictive ADMET software   

 ADMET software  Predicted ADMET properties  Link 

 CAESAR/VEGA  Bioconcentration factor, skin 
sensitization, mutagenicity, 
developmental toxicity, 
carcinogenicity, aquatic toxicity 

   http://www.caesar-project.eu/
index.php?page=links     

   http://www.caesar-project.eu/     
   http://www.vega-qsar-eu/     

 Chem Prop 
(OSIRIS 
EDITION) 

 Solubility, log  P , air/water, 
octanol/air, melting point, 
boiling point, vapor pressure, 
soil sorption, human toxicology 

   http://www.ufz.de/index.php?en=6738     

 EPI Suite™  Melting point, boiling point, 
vapor pressure, water solubility, 
log  P , p K a, aquatic toxicity 

   http://www.epq.gov/oppt/exposure/pubs/
episuitedl.htm     

 Lazar  Mutagenicity, repeated dose 
toxicity, carcinogenicity, fathead 
minnow acute toxicity 

   http://lazar.in-silico.de     

 OpenTox 
platform: 
ToxPredict 

 log  P , p K a, reproductive toxicity, 
carcinogenicity 

   http://apps.ideaconsult.net:8080/ToxPredict     

 OSIRIS property 
explorer 

 Solubility, cLog  P , toxicity risk 
assessment, mutagenicity, 
reproductive toxicity, 
carcinogenicity 

   http://www.organic-chemistry.org/prog/peo/     

 SMARTCyp  Metabolism    http://www.farma.ku.dk/smartcyp/index.php     

 T.E.S.T.  Boiling point, fl ash point, surface 
tension, viscosity, density, water 
solubility, thermal conductivity, 
vapor pressure, melting point, 
mutagenicity, acute toxicity, 
aquatic toxicity 

   http://www.epa.gov/     

 ToxTree  Skin irritation, eye irritation, 
mutagenicity, carcinogenicity 

   http://eurl-ecvam.jrc.ec.europa.eu/
laboratories-research/predictive_toxicology/
qsar_tools/toxtree     

 VCCLAB  Solubility, log  P     http://www.vcclab.org/     
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thinking.” Therefore, ADMET Predictor offers functionality to 
rank order compounds using one of the default ADMET Risk™ 
fi lters, which combine predictions from numerous ADMET mod-
els that have been parameterized against a focused subset of the 
World Drug Index. Along with the numerical risk score, ADMET 
Predictor assigns alphanumeric risk codes that indicate the pre-
dicted ADMET issues associated with a compound. In the last sec-
tion, we present case studies exemplifying application of ADMET 
Predictor to the prediction of metabolites.  

2    Materials 

       1.    ADMET Predictor—to calculate descriptors, build a model, and 
score desired chemical structures with the developed model.      

       1.    MedChem Designer™—to draw chemical structures.   
   2.    MedChem Studio™—to organize data in a spreadsheet and 

perform scaffold analysis.   
   3.    Microsoft Excel™—to prepare tab-delimited input fi les.      

       1.    Suffi cient quantity of high-quality experimental data: chemical 
structures with corresponding measured values of the property 
of interest.       

3    Methods 

 The main objective of using in silico ADME models in the drug 
discovery screening process is to either prioritize or deprioritize 
molecules for synthesis and/or further experimentation. ADMET 
Predictor provides models to screen compounds for more than 
140 physicochemical, biopharmaceutical, toxicity, and metabolism 
properties. The program also calculates more than 300 carefully 
selected molecular descriptors with which users can build and 
install new models from their own assay data. If the property of 
interest is part of Simulations Plus’ models built into ADMET 
Predictor, then one should follow the protocol that is described in 
Subheading  3.1  to use the built-in models. If the property of inter-
est is not part of the built- in models, then the protocol described 
in Subheading  3.2  should be followed to build new models. 

         ADMET Predictor can read chemical structures in the following 
formats:

 ●    SMILES strings (2D predictive models only).  
 ●   CTFile formats (formerly known as ISIS™ fi le formats) [ 6 ].

2.1  Software 
Requirements

2.2  Optional 
Software

2.3  Experimental 
Requirements (Model 
Building Only)

3.1  Using ADMET 
Predictor’s Built-In 
Models

3.1.1  Preparing the Input 
File

Modeling ADMET



68

 –    Molecular Structure Format (MOL)  
 –   Structure Data Format (SDF)  
 –   Reaction Data Format (RDF)       

 In the following section, we describe a detailed protocol to 
create one of these input fi les that can be read into ADMET 
Predictor. 

   SMILES is an acronym for Simplifi ed Molecular Input Line Entry 
System [ 7 ,  8 ] and is used to encode a particular valence representa-
tion of a molecular structure as a linear string. The instructions for 
creating SMILES strings for molecules can be found on the 
Daylight website [ 9 ]. As an example, the molecular structure of 
Diazepam with its SMILES representation is shown in Fig.  1 .

   The structures in SMILES format are input into ADMET 
Predictor in a tab-delimited ASCII text fi le with extension .smi. The 
fi le contains one compound per line (record) and the number of 
fi elds in each line must be equal. The fi rst fi eld must be the SMILES 
string followed by compound identifi er and optional property 
values. An optional header can be added as the fi rst line. However, 
if the fi le contains data columns in addition to the SMILES string 
and identifi er, the header line is required. The number of header 
words must equal the number of data columns in subsequent 
lines. The fi rst word must be “SMILES.” Comments or empty lines 
are  NOT  allowed in the fi le and missing data are indicated by a single 
~ (tilde) character. 

 A sample .smi fi le is shown below: 
 SMILES Name MeltingPoint CAS No. ExlogP ExSol 
 CC(=O)Nc1ccc(OCC)cc1 4-Ethoxyacetanilide 407.5 

000062- 44- 2 1.58 0.766 
 O=C(N)C Acetamide 342.5 000060-35-5 -1.26 ~ 
 O=C(O)C Acetic acid~000064-19-7 -0.17 ~ 
 O1CC(O)C(O)C(O)C1O Arabinose 431000147-81-9 -2.32 

550 

3.1.1.1  SMILES (.smi) 
File

O

NN

CI

  Fig. 1    Molecular structure of Diazepam, which has the SMILES: =C1N
(c2c(C(c3ccccc3)=NC1)cc(Cl)cc2)C       
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 The .smi input fi le can be quickly and easily prepared in an Excel 
spreadsheet. The SMILES strings can be generally extracted from 
supplementary information included with published articles or trans-
lated from structure drawings using either MedChem Designer 
(please see below) or other structure-drawing programs. The SMILES 
string for many compounds can also be found by searching online 
databases such as ChEMBL, PubChem, and ChemSpider. 

 New compounds may be easily added to the spreadsheet by 
drawing them using MedChem Designer, a free chemical structure- 
drawing program [ 10 ]. Multiple structures may be drawn and 
manipulated on the canvas ( see  Fig.  2 ). The optional Optical 
Structure Recognition (OSR) tool allows you to extract chemical 
structures from displayed images in Word documents, PDF fi les, 
PowerPoint slides, web pages, etc., by simply positioning the trans-
parent window capture tool over the image of interest and clicking 
the Convert Image button ( see  Fig.  3 ). The chemical structure will 
be retrieved automatically and displayed in MedChem Designer. 
Any errors in the automatic conversion to a chemical structure can 
be easily corrected using MedChem Designer’s chemical editing 
capabilities. (Note: paid license to ADMET Predictor or MedChem 
Studio is required for OSR capability.)

       In addition to SMILES, ADMET Predictor can read MOLfi les, 
RDfi les, and SDfi les (.mol, .rdf, and .sdf extensions). Briefl y, the 
MOL fi le  contains two- or three-dimensional atomic coordinates 
and a bond connectivity table. SDF and RDF fi les are assemblages 

3.1.1.2  CTFile Formats: 
RDF, SDF, and MOL File

  Fig. 2    Drawing and manipulating structures       
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of multiple MOL fi le records and supplemental property data. 
Missing supplemental property data fi elds are allowed for an indi-
vidual molecule record. ADMET Predictor identifi es data column 
headers in its initial scan of the input fi le. 

 MOL fi les (fi le name extension .mol) are also easily produced 
by molecular drawing programs such as ChemDraw® [ 11 ] and 
Accelrys Draw [ 12 ]. The simplest way to create an RDF or SDF 
fi le compatible with ADMET Predictor is to export data from a 
commercial chemical database such as Biovia Insight [ 13 ] or using 
workfl ow programs such as Pipeline Pilot [ 14 ]. Most molecular 
databases contain 2D coordinates with a connectivity table to 
enable two-dimensional molecular depictions. This is the minimal 
amount of structural information needed to generate 2D descrip-
tors. In contrast, some databases contain 3D atomic coordinates 
obtained either from X-ray crystallography or generated in silico by 
a molecular structure prediction program. The “Open 2D” menu 
option in ADMET Predictor will process both 2D and 3D SDF/
RDF formats because in this mode ADMET Predictor uses only 
the list of atoms and connectivity tables contained in the SDF/
RDF fi les and ignores actual coordinate information. In contrast, 
the “Open 3D” option will produce meaningful results only for 
3D SDF/RDF fi les since the program uses the supplied 3D 

  Fig. 3    Optical Structure Recognition (OSR) tool in MedChem Designer™       
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coordinates to calculate 3D molecular descriptors which are used 
as inputs for calculating ADMET properties. Users should consult 
their chemical database administrator or software user manual for 
specifi c information regarding how to export or generate SDF or 
RDF fi les within their scientifi c environment.   

          1.    Start ADMET Predictor. From the main menu, click File > Open 
2D structures. Now select your input fi le created in Subheading 
 3.1.1 . To predict properties, select “Calculate ADMET 
Properties” from the “Calculate” menu. The “Run Options” 
dialog box opens. You can either keep the default run options 
or change them according to your needs. For example, you can 
change the pH (default = 7.4) at which you want to calculate 
pH-dependent properties, or you can include aliphatic hydroxyl 
groups in p K  a  calculations (default = off).   

   2.    Click the “Calculate” button to accept your selected options. 
The calculated results are displayed under the “Molecular 
Data” tab in a molecular record spreadsheet. ADMET 
Predictor property models are displayed in columns colored 
gray and green. Molecular descriptors are displayed in blue 
columns. Columns shaded in pink indicate user input data 
such as experimental results or other descriptors. Scroll to the 
right to see all columns.   

   3.    Left click on the structure column to open the “Structure 
Visualization” window to display atomic descriptors mapped 
on the atoms ( see  Fig.  4 ). Pressing [Shift] + left click on a struc-
ture will open the structure in MedChem Designer for editing 
or metabolite generation.

       4.    Predicted properties are organized in different modules.
   (a)    The Physicochemical and Biopharmaceutical Module con-

tains 28 properties such as p K  a , log  P , log  D , various per-
meability models, blood–brain barrier, fraction protein 
unbound, fraction unbound in human liver microsomes, 
and transporter inhibition. For a full list of properties 
please see the ADMET Predictor manual.   

  (b)    The Metabolism Module predicts kinetic constants 
(Michaelis [ 15 ] constant (Km), maximum metabolic rate 
(Vmax), and intrinsic clearance (CLint)), and inhibition 
fl ag for fi ve major human cytochrome P450 enzymes: 1A2, 
2C9, 2C19, 2D6, and 3A4. The model for overall Human 
Liver Microsomal intrinsic clearance is a separate model. In 
addition, substrate classifi cation models predict whether a 
given molecule is a substrate for one of nine CYPs, while 
the regioselectivity models predict the sites of metabolism 
for each molecule classifi ed as a CYP substrate. These 
models make separate predictions for each of nine human 

3.1.2  Running ADMET 
Predictor Models
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cytochrome P450 enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 
2C19, 2D6, 2E1, and 3A4. Another model classifi es the 
molecule as a substrate/nonsubstrate for the most impor-
tant class of phase II enzyme, human uridine 
5’-diphosphate- glucuronosyltransferase (UGT).   

  (c)    The Toxicity Module predicts endocrine toxicity, maxi-
mum recommended therapeutic dose, aquatic toxicity, car-
cinogenicity, genotoxicity (Ames mutagenicity, 
chromosomal aberrations), cardiac and hepatic toxicity, 
environmental toxicities such as bioconcentration factor, 
and others. For a full list of toxicity models please see the 
ADMET Predictor manual.   

  (d)    The Simulation Module features a special set of predictive 
models that are mechanistic rather than statistical. These pre-
dictions are based on a simplifi ed GastroPlus™ [ 16 ] simula-
tion of the pharmacokinetics of an orally administered drug 

  Fig. 4    Structure visualization window showing primary site of CYP 2D6 metabolic attack displayed on the 
compound structure       
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at several default dose levels (1, 10, 100, and 1000 mg). 
They use various ADMET model results as inputs along with 
dose and predefi ned human physiology, and solve a deter-
ministic, region-dependent system of differential equations. 
The output is an estimate of fraction absorbed and the 
optimal dose that yields a targeted pharmacokinetic param-
eter such as an effective blood plasma concentration.       

   5.    Check all the relevant properties for your project and compare 
predictions against experimental values, if present. If a 
required property is not part of ADMET Predictor’s built-in 
models but suffi cient experimental data are available, then 
proceed to the following model-building protocol to build a 
new QSPR model.       

          1.    ADMET Modeler™ is an integrated module of ADMET 
Predictor that automates the process of building high-quality 
QSPR models.   

   2.    Once the experimental data have been properly curated, one 
should prepare an input fi le for ADMET Predictor as described 
above. Here one must pay special attention to data accuracy 
(chemical structure, units of reported values, assay protocol, 
measured endpoint, etc.). Failure to use correct structures, 
and/or inaccurate, non-uniform experimental data will result 
in models of little value.   

   3.    Open the ADMET Predictor main window.   
   4.    Open an input fi le and calculate ADMET properties along 

with descriptors.   
   5.    Select the Basic Modeler Settings tab and select Dependent 

Variable from the drop-down menu ( see  Fig.  5 ).
       6.    From the “Dependent Variable” drop-down menu, select the 

variable name representing the experimental data for which 
you wish to build a model.   

   7.    Open the “Adv. Modeler Settings” tab.   
   8.    Select Test Set allocation percent (set at, e.g., 20 %) and the 

method to divide training and test sets from the Test Set 
sub-tab (Kohonen [ 17 ] is the default).   

   9.    Next, click the Descriptors icon to open the Descriptors sub-tab. 
In the Descriptor Number Reduction window, select a value for 
Minimum Representation (default is 4) and select the Sensitivity 
Analysis method (default is Truncated Linear Analysis).   

   10.    On the Kohonen sub-tab, confi rm that the default value of 
Automatic is selected.   

   11.    Click the ANNE icon to open the ANNE sub-tab. Use 
Automatic settings of the network architecture (Network 
neurons and Network inputs (descriptors)).   

3.2  Build and Use 
Your Own ADMET 
Models

3.2.1  QSPR Model 
Building Process
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   12.    Return to the Basic Modeler Settings tab, click the desired 
modeling method button, e.g., ANNE Regression or ANNE 
Classifi cation icon for regression and classifi cation models, 
respectively.   

   13.    As model training begins, the Ensemble Statistics tab will open 
and messages related to this process are displayed in the status 
bar. You may click the Stop icon at any time to stop the train-
ing process.   

   14.    Wait until “Modeler training is complete” is displayed in the 
status bar, and then proceed to fi nd the best ensemble model 
( see  Fig.  6 ).

       15.    To fi nd the best ensemble, click the Find Best Ensemble button 
on the right. If you check the Show Adv Settings box, a new 
window with various criteria for fi nding the best ensemble will 
pop up. Try different options or simply accept the default 
values to fi nd the best ensemble, as shown in Fig.  7 .

       16.    To view model performance, click on the best ensemble (green 
cell) on the grid. The Performance Viewer window opens 
showing the plot of experimental vs predicted values if you 
built a regression model, or a contingency plot for classifi cation 
models, as shown in Fig.  8 .

  Fig. 5    ADMET Predictor main window, Basic Modeler Settings tab       

 

Jayeeta Ghosh et al.



75

  Fig. 6    Best ensemble highlighted in  bright green        

  Fig. 7    Model Selection Criteria dialog box       
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  Fig. 8    Performance Viewer window for regression ( upper graph ) and classifi cation ( lower graph ) models         
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       17.    Now try changing the model-building options (in the Adv. 
Modeler Settings tab), such as test set selection method, 
sensitivity analysis algorithm, number of neurons, and number 
of inputs to build alternative models.   

   18.    To make the fi nal model selected in  step 17  a part of the ADMET 
Predictor models, holding the [ctrl] key, click on the cell that 
displays the best ensemble model (the one highlighted in green). 
A message seeking confi rmation to load the chosen ANNE 
model with “ n ” neurons and “ i ” inputs is displayed ( see  Fig.  9 ).

       19.    Click OK to confi rm. Next, export the model using the Model 
Export tab ( see  Fig.  10 ). It shows a performance table of the 
individual member networks that make up the ANNE ensemble. 
Optionally, you may deselect some of these networks (with a 
left mouse click) before model export, resulting in a smaller 
ensemble, although this is usually not recommended unless 
certain models are signifi cant outliers from the majority (very 
high RMSE for regression models, or very high false rate for 
classifi cation models).

       20.    On the Model Export tab, click Export Current Ensemble as 
New Model. The Add New Model dialog box will be displayed 
( see  Fig.  11 ). Fill in this form with appropriate entries (model 
name, type, location of model fi les, etc.) and click on Append as 
Last Model. The Add New Model dialog box closes. The model 
is displayed in the last row of the Model Editor window and is 
automatically selected. Click OK to save the newly added model.

       21.    If you now return to the Molecular Data tab and click on the 
User Models tab at the bottom, you should be able to see your 
new model which can be used for predictions on untested 
compounds.       

       1.    Prepare a structure fi le for compounds to be screened 
(as described in Subheading  3.1.1 ).   

   2.    Open the prepared structure fi le (.smi or .sdf or .mol) and 
calculate properties as described in Subheading  3.1.2 .   

3.3  Application 
of QSAR Models 
in Virtual Screening

  Fig. 9    Model loaded and ready for export message       
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  Fig. 10    Model Export tab       

  Fig. 11    Add New Model dialog box       

 

 

Jayeeta Ghosh et al.



79

   3.    Click on the ADMET Risk tab (Fig.  12 ) on the ADMET 
Predictor spreadsheet. You will see four pairs of columns; one 
each for absorption (Absn), metabolism (CYP), toxicity 
(TOX), and overall ADMET (ADMET) risks likely to be asso-
ciated with a compound. The numerical score for each risk 
type is derived from a set of rules (inspired by the Lipinski’s 
Rule of 5, but more extensive) based on predicted values from 
multiple prebuilt models in ADMET Predictor. An alphanu-
meric code, if present, indicates the violated rule(s), i.e., the 
type of ADMET liability(ies) likely to be associated with the 
molecule. These computed risk scores, having been carefully 
validated with a focused subset of over 2000 molecules from 
the World Drug Index, have been found to be accurate to 
allow rank ordering of a large number of compounds.

       4.    The S+Absn_Risk model includes eight rules based on descrip-
tors and predicted properties as part of the Physicochemical 
and Biopharmaceutical Module, which are size, fl exibility, 
hydrogen bond donors and acceptors, charge, lipophilicity, 
permeability, and solubility.   

   5.    The S+Absn_Risk score can be between 0 and 8; for about 
90 % of the focused subset of WDI [ 18 ], the S+Absn_Risk is 

  Fig. 12    ADMET Risk tab showing different risks and codes       
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below 3.5. The S+Absn_Code indicates the type of likely liabil-
ity for the compound based on the rule(s) violated out of these 
eight rules. The CYP_Risk model is comprised of seven indi-
vidual rules, based on CYP clearance, Km, and Ki (inhibition 
constant) predictions from ADMET Predictor. The CYP_Code 
column indicates the specifi c CYP liability for each compound 
that violates any of the seven rules. The CYP_Risk is less than 
1 for 85 % of the focused WDI.   

   6.    The TOX_Risk model consists of seven rules. This risk indi-
cates the likelihood of a compound to have acute toxicity in 
rats or mice, hERG toxicity, hepatotoxicity, and mutagenicity. 
For about 90 % of the focused subset of WDI, the TOX_Risk 
is below 3.3. The TOX_Code, if present, indicates the likely 
toxicity liability for each compound.   

   7.    Finally, the global ADMET_Risk model combines all the above 
risks plus two additional rules based on fraction unbound in 
plasma and steady state volume of distribution. There are 24 
different rules that contribute to the default ADMET_Risk 
score; which is below 6.5 for about 90 % of the focused 
WDI. ADMET Risk can be edited to add your own rules or to 
modify the default rules.     

   In this section, we will discuss the Metabolism module in greater 
detail and provide an interesting case study using our regioselectivity 
(site of metabolism) models. The prediction of sites and products 
of metabolism for xenobiotic and endogenous compounds is an 
important aspect of research in the development and use of 
pharmaceuticals. Toxicity or side effects due to metabolites can be 
detrimental and may play a major role in the withdrawal of a new 
drug from the market as well as contributing to the high attrition 
rates in the development of new chemical entities. Metabolites can 
also be benefi cial, adding to the therapeutic effi cacy. For prodrugs, 
it is the metabolite that is the active moiety.

    1.    Prepare and open a structure fi le for which predictions are 
desired (see detailed description of how to create input fi les in 
Subheading  3.1.1 ).   

   2.    Calculate the properties as described in Subheading  3.1.2 .   
   3.    Scroll spreadsheet columns to the range occupied by the 

Metabolism module or click the Metabolism tab ( see  Fig.  13 ).

       Metabolism models have been described in Subheading  3.1.2 . 
Some models, indicated by the gray background of the spread-
sheet cells, offer a deeper, atomic level of detail. Click one of the 
gray cells to reveal sites of potential metabolic attack by a particular 
CYP and, if applicable, the rates of site-specifi c attacks mapped 
onto a molecular structure. Chlorpromazine, a substrate of human 
CYP1A2, offers an interesting example of predictive 

3.3.1  A Case Study 
Using Metabolism Models
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regioselectivity. Figure  14  reveals atomic propensity scores for the 
 fi rst  step of metabolic oxidation by this enzyme. These scores, 
ranging between 0 and 1000, should  not  be confused with prob-
abilities. They may be compared in a relative sense for atoms 
within the same molecule but such comparisons are not applicable 
between different molecules. In this sense, the scores are  not  
transferable. The fi ve atoms carrying scores above the model’s 

  Fig. 13    Predictions of metabolic properties related to the human CYP1A2 P450 enzyme       
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  Fig. 14    Propensity of individual atoms of chlorpromazine toward metabolic 
attack by human CYP1A2.  Arrow  indicates site known in 2009; see text for 
details       
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threshold are highlighted by red cross-hatched circles. Figure  15  
shows that predicted intrinsic clearances (CLint) for these atoms 
indicate no large differences in the atomic rates of oxidation by 1A2.

    We chose chlorpromazine as a case study, since as of 2009, the 
only reported metabolite (of which we were aware at the time—
other metabolites had been reported but the enzymes producing 
them had not been determined) resulted from hydroxylation of 
C-7, identifi ed by the arrow in Fig.  14 , mediated by 1A2 and 2D6 
[ 19 ]. However, the 1A2 dataset has two similar structures, pera-
zine and promazine, shown in Fig.  16  with arrows showing their 
reported CYP1A2-mediated sites of metabolism [ 20 ,  21 ].

   Based on these results, it seems reasonable for the 1A2 model 
to predict sites of metabolism for the sulfur and  N -methyl carbons 
of chlorpromazine as well. Such assignments, as of 2009, would 
be considered “false” positives! However, in late 2010, both 
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  Fig. 15    Predicted intrinsic clearances in μL/min/mg microsomal protein for individual atoms of chlorpromazine 
for the complete metabolic oxidation by human CYP1A2       
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N-demethylation and sulfoxidation of chlorpromazine were 
reported as metabolites formed by CYP1A2 [ 22 ]. Later, we found 
two more articles confi rming sulfoxidation of chlorpromazine [ 23 ] 
and the formation of its [ 18 ] 3-hydroxy metabolite [ 24 ]. Thus, 
“false” positives in the model in 2009 became true positives in 
2010! Out of four, only one site (with relatively low score) thus 
remains as a tentatively false-positive prediction for 1A2, perhaps 
pending future verifi cation.       
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    Chapter 5   

 In Silico Prediction of Chemically Induced Mutagenicity: 
How to Use QSAR Models and Interpret Their Results                     

     Enrico     Mombelli     ,     Giuseppa     Raitano    , and     Emilio     Benfenati     

  Abstract 

   Information on genotoxicity is an essential piece of information gathering for a comprehensive toxicological 
characterization of chemicals. Several QSAR models that can predict Ames genotoxicity are freely available 
for download from the Internet and they can provide relevant information for the toxicological profi ling 
of chemicals. Indeed, they can be straightforwardly used for predicting the presence or absence of geno-
toxic hazards associated with the interactions of chemicals with DNA. 

 Nevertheless, and despite the ease of use of these models, the scientifi c challenge is to assess the reliability 
of information that can be obtained from these tools. This chapter provides instructions on how to use 
freely available QSAR models and on how to interpret their predictions.  

  Key words     Mutagenicity  ,   Ames test  ,   QSAR  ,   Predictive reliability  ,   Structural alerts  

1      Introduction 

 The assessment of information on mutagenicity represents an impor-
tant component for the evaluation of the toxicological characteristics 
of chemicals [ 1 ]. For instance, in the fi eld of drug discovery the 
detection of mutagenic potential of a chemical can result in the 
rejection of a promising chemotype owing to the deleterious conse-
quences that the introduction of gene mutations can elicit. In addi-
tion, the characterization of genotoxicity is required for the 
regulatory qualifi cation of impurities in drug substances [ 2 ] and it is 
a mandatory requirement for all the different tonnage bands defi ned 
by the overarching REACH regulation [ 3 ]. 

 Mutagenic effects caused by chemical agents can be detected 
by the Ames test that was devised by Bruce Ames during the 
1970s [ 4 ]. This test is still commonly in use in many toxicological 
laboratories around the world because of its good interlaboratory 
reproducibility, aptitude at testing different agents, cost-effectiveness, 
and structure–activity analysis [ 5 ]. The remarkable juxtaposition 
of these attributes has brought the Ames test to the forefront 
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of modern  toxicology. Indeed, this test is a paradigm for the 
development of nowadays in vitro toxicology and it has been nick-
named “the stethoscope of genetic toxicology for the twenty-fi rst 
century” [ 5 ] given that testing strategies for carcinogenicity rely 
on the Ames test as an essential fi rst-tier assay [ 5 ,  6 ]. 

 This test is based upon the ability of  Salmonella typhimurium  
and  Escherichia coli  auxotrophic strains to recover the ability to syn-
thesize an essential amino acid (histidine for  S. typhimurium  and 
tryptophan for  E. coli ) as a consequence of the mutagenic effect of 
chemicals to which they are exposed. The design of the experimental 
protocol enables the detection of bacterial colonies that can grow in 
the absence of essential amino acids as a result of a back mutation 
that restores their biosynthetic capabilities. The detection of this 
back mutation to wild type has the potential to identify point 
mutations that are caused by the substitution, addition, or deletion 
of one or few DNA base pairs. At least fi ve bacterial strains should 
be used when testing a chemical [ 7 ], including strains that are sen-
sitive to oxidizing mutagens, cross-linking agents and hydrazines 
( E. coli  WP2 or  S. typhimurium  TA102,  see   Note 1 ). 

 Anyhow, it is important to note that, as stated in the OECD 
guideline [ 7 ], mammalian tests may be more appropriate when 
evaluating certain classes of drugs. For example, the Ames test is 
not the most appropriate choice for chemicals displaying a high 
bactericidal activity such as certain antibiotics, topoisomerase 
inhibitors, and some nucleoside analogs. 

 The interlaboratory reproducibility of the Ames test is esti-
mated at 85–90 % [ 8 ,  9 ] and these percentages represent the upper 
limit of predictive performance that can be expected from QSAR 
models for the same endpoint. Indeed, these models are derived 
from data obtained by means of the same protocol. In other words, 
these fi ndings mean that 10–15 % of the chemicals that were exper-
imentally tested gave different results when analyzed in different 
laboratories. Therefore, this experimental uncertainty in terms of 
false negative or positive predictions is transposed into the semi-
empirical QSAR models that cannot be expected to be more reliable 
than their experimental counterpart. 

 Consequently, one key issue that should be given attention 
when judging the reliability of a QSAR model predicting Ames 
genotoxicity is whether or not this model predicts with a reliability 
that is comparable to the reproducibility of the test. It is worth 
mentioning that this comparison has to be critically assessed as a 
function of the number and chemotypes of the chemicals that 
compose the external test set that was adopted in order to validate 
the model. For example, if the external test set does not include all 
the chemotypes that are covered by the training set, the estimated 
predictive performance of the model will only be representative of 
a subset of chemical structures. 
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 One fi nal word of caution should be added with respect to 
models whose alleged performance is much higher than the experi-
mental test they are meant to replace. This special situation could 
indicate a potential overfi tting of the model and its lack of ability 
to provide reliable prediction for new cases (i.e. molecules that are 
not included in its training set). 

 The theory of electrophilic reactivity by Miller and Miller [ 10 ] 
adequately describes the molecular mechanisms that control the 
genotoxicity of chemicals as detected by the Ames test. Indeed, 
this theory has proved to be in agreement with the observations 
ever since it was formulated in the late 1970s. According to this 
theory, the vast majority of known chemical carcinogens are also 
genotoxic since they are (or are metabolized to) reactive electro-
philes that react with nucleic acids. The (Q)SAR models described 
in this chapter ( see  Subheading  2.6 ) conform to this theory by 
identifying structural fragments that trigger electrophilic reactions 
as formalized by E-state values and fragments (e.g. CAESAR) and 
by structural alerts (SA) validated by experts (e.g. Toxtree SA) or 
automatically extracted by learning algorithms (e.g. SARpy). 

 Because of the complementary nature of these tools, this chap-
ter illustrates the practical application of models covering the three 
main categories of in silico tools for the prediction of the mutagenic 
potential of chemicals: (Q)SAR models that are based on numerical 
descriptors (e.g. partition coeffi cients, topological descriptors, 
functional group counts), rule-based expert systems that are 
based on structural alerts (molecular fragments that are associ-
ated with the occurrence of adverse outcomes), and hybrid mod-
els combining these two approaches. Models based on all these 
approaches are implemented within the freely available VEGA 
platform (version 1.0.8): CAESAR, SARpy, and ToxTree-VEGA 
(TT-VEGA) ( see   Note 2 ). A brief description of the models is 
given in the following paragraphs and more detailed information 
can be found in the literature therein cited.  

2    Materials 

   The performance of models predicting the presence and absence of 
toxicological hazards is usually described by Cooper statistics [ 11 ] 
that characterize the predictive capabilities of diagnostic tests: sen-
sitivity, specifi city, and accuracy (or concordance). Sensitivity is the 
ability to identify a chemical that presents a toxicological hazard as 
toxic; specifi city is the ability to correctly identify chemicals that do 
not present toxicological hazards as safe; and accuracy describes 
the overall concordance between predicted and experimental values. 
Their mathematical defi nitions are the following:

2.1  Performance 
Characterization 
of (Q)SAR Models

In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models…
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Sensitivity

TP

TP FN
=

+    

  
Specificity

TN

TN FP
=

+    

  
Concordance

TP TN

TP FN TN FP
=

+
+ + +    

where TP = number of true positive predictions, TN = number of 
true negative predictions, FP = number of false positive predictions, 
FN = number of false negative predictions. 

 In the presence of skewed data sets (e.g. a data set including a 
majority of non-mutagenic chemicals), Cooper statistics are not fully 
reliable. It is therefore more appropriate to compute the Matthews 
correlation coeffi cient (MCC) which is defi ned as follows:

  
MCC

TPTN FPFN

TP FP TP FN TN FP TN FN
=

+

+( ) +( ) +( ) +( )    

The MCC ranges from −1 to +1. A MCC value of +1 represents a 
total agreement between experimental results and predictions; a value 
of 0 no better than random prediction, and a value of −1 indicates a 
total disagreement between predicted and observed values.  

   TTVEGA, CAESAR, and SARpy models are embedded within the 
standalone software application VEGA (v. 1.0.8) that allows for a 
secure in-house execution of the three models without the need to 
send information to any external server [ 12 ]. VEGA can be also 
used for batch processing of multiple chemical structures. The 
software application can be freely downloaded for the VEGA web-
site [ 12 ] and it can be installed and used on any operative system 
supporting JAVA.  

   Any software application that allows to draw chemical structures 
and convert them into two types of chemical fi le formats supported 
by VEGA: “Simplifi ed Molecular Input Line Entry specifi cation” 
(SMILES) [ 13 ] or “Structure Data Format” (SDF) can be used in 
order to generate input structures. Several chemical drawing pro-
grams can perform this task: VEGA ZZ [ 14 ], ACD/ChemSketch 
[ 15 ], MarvinSketch [ 16 ], and the OECD QSAR Toolbox [ 17 ] 
(for SMILES formats only). 

 This list is not exhaustive and these applications are subjected 
to different software licenses and terms and conditions of use.  

   VEGA has a simple workfl ow which is schematically depicted in 
Fig.  1 . Basically, a user types or pastes a SMILES string in the blank 
space at the top of the user interface and then adds it to a working 
list of molecules to be analyzed. Once that a SMILES string is 
added at the working list, it is possible to highlight it and visually 

2.2  Software 
Requirement

2.3  Optional 
Software

2.4  VEGA: 
The Workfl ow
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check the two- dimensional structure encoded by the text line. 
This checkpoint is crucial. Indeed, several structural inaccuracies 
can take place at this stage and compromise the reliability of the 
predictions [ 18 ].

   If needed, users can also input multiple molecules at once 
(“import File” button at the top right of the user interface). In this 
case the fi le contains a list of SMILES codes saved in “txt” or “smi” 
format. 

 Thanks to the “Select” button it is then possible to choose the 
model(s) of interest, to specify the desired output format (PDF or 
csv fi les), and to indicate where the prediction reports should be 
saved (“Export” button). Finally, the selected model(s) can be 
executed by clicking on the “Predict” button.  

    All the models that will be described in the following paragraphs 
adopt the VEGA defi nition of applicability domain [ 19 ] ( see   Note 3 ). 
According to this defi nition, the degree of membership of a query 
chemical to the applicability domain of the model is described by 
an Applicability Domain Index (ADI) with values that range from 0 
(no membership) to 1 (full membership). Chemicals characterized 
by ADI values that are less than 0.7 are to be regarded as potentially 
not belonging to the AD. ADI values that are within the range 
0.7–0.9 represent a critical region since the query chemical could 
be out of the applicability domain. Finally, ADI values that are 
greater than or equal to 0.9 indicate chemicals that should be 
regarded as belonging to the applicability domain of the model. 

 These reference values represent a general guideline and they 
should be interpreted in the light of a thorough inspection of 
the sub-indexes that compose the ADI: the similarity index, 

2.5  Applicability 
Domain

  Fig. 1    Workfl ow of VEGA.  The SMILES string corresponding to 1-butanol was used as input structure        
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the concordance index, the accuracy index, and the atom-centered 
fragments index. If, as in the case of the CAESAR model, the 
chemical structures are characterized by numerical descriptors the 
ADI takes also into account a check of the ranges in descriptor 
values ( see   Note 4 ). 

 These critical factors should always be analyzed when interpret-
ing results and they will be described in the following paragraphs. 

   This index takes into account the degree of similarity between the 
query chemical and the three most similar chemicals. Values close 
to 1 indicate that the chemotype of the query chemical is well rep-
resented by the training set of the model ( see   Note 5 ). On the 
other hand, lower values could indicate that the prediction is an 
extrapolation since the query chemicals is located in regions of the 
chemical space that are scarcely populated. In this case the predic-
tion cannot be supported by the evaluation of similar chemicals. 
This does not mean that the prediction is wrong. It means that the 
user should gather further elements to support the model results. 
In particular, additional models should be run to get support.  

   This index provides information on the concordance between the 
predicted value for the query chemical and the experimental values 
of the three most similar chemicals. Values that are close to zero 
may indicate an unreliable prediction and the possible identifi ca-
tion of a region in the chemical space whose structure–toxicity 
behavior is not adequately described by the model. Therefore, a 
careful inspection of chemicals that give rise to confl icting predic-
tions is requested. Indeed, one or more structural analogs  can be 
characterized by experimental values that are at odds with the pre-
diction for the target compound. 

 For instance, a visual inspection may easily identify the pres-
ence of a specifi c toxic SA within the structure of the structural 
analog(s). 

 Consequently, two compounds that are similar from a chemical 
point of view may differ for the presence/absence of structural alerts, 
and this fact can explain differences in their property values. 

 If the user does not recognize SA, it is possible to run VEGA 
on the similar compound with the confl icting value; VEGA will list 
the SA, which can then be compared.  

   When assessing the reliability of predictions, it is important to 
understand how well a model predicts the toxicity in the region of 
the chemical space where the query chemical is located. This index 
informs on such a local reliability by taking into account the 
 classifi cation accuracy of the three most similar chemicals. Low val-
ues for this index should warn about a lack of predictive accuracy. 
In this case, additional models should be run, to see if they have 
better accuracy.  

2.5.1  Similarity Index

2.5.2  Concordance Index

2.5.3  Accuracy Index
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   This index takes into account the presence of one or more frag-
ments that are not found in the training set, or that are rare frag-
ments. An index value equal to 1 implies that all atom-centered 
fragments of the target compound were found in the training set. 
On the other hand, a value that is less than 0.7 implies that a prom-
inent number of atom-centered fragments of the target compound 
have not been found in the compounds of the training set or are 
rare fragments of the training set. 

 Also in this case, it is recommended to run additional models, 
because each model can bring new information as a function of its 
own training set.  

   Computed only for the CAESAR model, this index checks if the 
descriptors calculated for the predicted compound are inside the 
range of descriptors of the training and test set. The index has 
value 1 if all descriptors are inside the range, 0 if at least one 
descriptor is out of the range.   

     To compare the performance of three VEGA models, we applied 
them to the same evaluation set. This data set counts more than 
6000 compounds evenly distributed between mutagens and non- 
mutagens and was used within the European LIFE project 
ANTARES for the evaluation of different QSAR models [ 20 ]. 

 In the next paragraphs, for each model we report the statistical 
values referred to the entire evaluation set (6064 compounds) and 
to the molecules belonging to the applicability domain that are out 
of its training set. 

   TT-VEGA (version 1.0.0-DEV) is based on a series of rules defi ned 
by Benigni and Bossa that detects mutagenic chemicals [ 21 ]. This 
rulebase was originally implemented within the Toxtree application 
freely distributed by the European Joint Research Center [ 21 ]. 

   Data were extracted from the ISSCAN database [ 22 ] and includes 
730 compounds, 350 of which are mutagenic.  

   Toxtree is a rule-based system that includes alerts for genotoxic 
carcinogenicity and non-genotoxic carcinogenicity. Genotoxic 
carcinogenicity alerts can be considered as a valuable tool for the 
detection of compounds that yield positive results during an Ames 
test. The version of Toxtree implemented within the VEGA plat-
form offers the same compilation of rules as the original version 
[ 21 ]. This model offers a compilation of SA that refers mainly to 
knowledge on the mechanism of action for genotoxic carcinoge-
nicity (i.e. they are also pertinent for mutagenic activity in bacteria). 
The SAs detecting non- genotoxic carcinogens are not to be taken 
into account when applying this model since non-genotoxic 
carcinogens cannot, by defi nition, be detected by the Ames test.  

2.5.4  Atom-Centered 
Fragments (ACF) Index

2.5.5  Model Descriptors 
Range Index

2.6  Models 
Description

2.6.1  Benigni-Bossa 
Mutagenicity (TT-VEGA)

 Toxicity Data Source

 Description of the Model
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 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.75, Specifi city = 0.65, Sensitivity = 0.83, MCC = 0.49.  
 –    Performance in ADI out of training  (calculated on 1419 

compounds with ADI > 0.9): 
 –  Accuracy = 0.87, Specifi city = 0.75, Sensitivity = 0.94, MCC = 0.72.     

   TT-VEGA classifi es query chemicals as mutagenic when one or 
more SAs are detected within their molecular structure or as a non- 
mutagenic if no SA is identifi ed.   

     The CAESAR model [ 23 ] was developed on the basis of 4204 
chemicals (2348 mutagenic and 1856 non-mutagenic) extracted 
from the Bursi data set [ 24 ]. This initial set was then split into 
training set (3367 chemicals, 80 % of the entire data set) and external 
test set (837 chemicals, 20 % of the entire data set) [ 24 ].  

   The algorithm of the model is described in Ferrari and Gini [ 23 ]. 
CAESAR-VEGA automatically calculates chemical descriptors for 
the chemicals of interests and contains a subset of Toxtree rules 
( see  previous paragraph) to enhance the sensitivity of the model. 
The model integrates two complementary predictive approaches 
in series (statistical and rule-based): a support vector machine 
(SVM) algorithm coupled to two sets of structural alerts rules 
aimed at reducing the false negative rate. In order not to infl ate 
the false positive rate a chemical which is identifi ed as negative 
during the fi rst two steps (SVM output and fi rst SA fi lter) and 
positive by the second set of rules is fl agged as a suspicious muta-
genic chemical. 

 If the user wants only the results of the statistical model, (s)he 
can check if the model identifi es SA and discard this approach.  

 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.81, Specifi city = 0.69, Sensitivity = 0.91, 

MCC = 0.63.  
 –    Performance in ADI out of training  (calculated on 942 

compounds with ADI > 0.9): 
 –  Accuracy = 0.79, Specifi city = 0.61, Sensitivity = 0.93, 

MCC = 0.57.    

 During this evaluation, compounds predicted as suspicious 
mutagens were considered as mutagens.  

   CAESAR-VEGA classifi es chemicals as mutagenic, non-mutagenic, 
and suspicious mutagenic. Suspicious chemicals are associated with 
higher predictive uncertainty.   

 Model Statistics

 Interpretation of the Output

2.6.2  Mutagenicity 
Model (CAESAR) 
(Version 2.1.12)

 Toxicity Data Source

 Description of the Model

 Model Statistics

 Interpretation of the Output

Enrico Mombelli et al.



95

     The data set employed for rule extraction was retrieved from the 
CAESAR model for Ames mutagenicity ( see  previous paragraph). 
This model and VEGA CAESAR share the same training set.  

   SARpy (SAR in python) is a QSAR method that identifi es relevant 
fragments and extracts a set of rules directly from data without any a 
priori knowledge [ 25 ]. The algorithm generates substructures; rel-
evant SAs are automatically selected on the basis of their prediction 
performance for a training set. The application of this modeling 
approach to the CAESAR data set extended the previous work [ 25 ] 
by extracting two sets of rules: one for mutagenicity (112 rules) and 
the other for non-mutagenicity (93 rules) ( see   Note 6 ). 

 The SARpy application is available through a graphic interface 
or through the VEGA platform.  

 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.77, Specifi city = 0.71, Sensitivity = 0.82, 

MCC = 0.54.  
 –    Performance in ADI out of training  (calculated on 880 

compounds with ADI > 0.9): 
 –  Accuracy = 0.81, Specifi city = 0.67, Sensitivity = 0.92, MCC = 0.62.     

   If the target compound matches one or more mutagenicity rules, 
the prediction will be “mutagenic”; if the target compound 
matches one or more non-mutagenicity rules (or no rules), the 
prediction will be “non-mutagenic.”     

3    Methods 

 A critical assessment of predictions is the most demanding aspect 
related to the interpretation of the output of (Q)SAR models. VEGA 
facilitates the interpretability of (Q)SAR predictions by breaking 
down several critical aspects of the applicability domain as described 
in Subheading  2.5 . Nevertheless, possible misinterpretations can still 
take place and the following examples will provide further insights 
into the analysis of (Q)SAR results. 

 The fi rst two examples illustrate predictions characterized by a 
clear output which is concordant across all VEGA models. On the 
contrary, the last example is more challenging and it will advise the 
reader about complex cases. The purpose of this section is to pro-
vide an insight into the critical assessment of QSAR predictions 
and to highlight relevant aspects that should be taken into account 
when analyzing (Q)SAR outputs. 

2.6.3  Mutagenicity 
SARpy Model (Version 
1.0.6—DEV)

 Toxicity Data Source

 Description of the Model

 Model Statistics

 Interpretation of the Output
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 ●           CAESAR results :  Prediction is non-mutagenic and the result 
appears reliable.     

 The CAESAR model does not identify any SA linked to muta-
genic activity. 

 Similarity values for the six most similar compounds are very high 
(ranging from 0.989 to 0.903). Furthermore, experimental and 
predicted toxicities agree for all the similar molecules that were found 
in the training set. Indeed, predicted and experimental toxicities 
systematically designate non-mutagenic chemicals ( see   Note 7 ). 

 On the basis of this information and in particular thanks to a 
visual inspection of the fi rst three similar compounds, the predicted 
substance is considered into the applicability domain of the model 
(ADI = 0.978) ( see  Fig.  3 ).

 ●      SARpy results :  Prediction is non-mutagenic and the result 
appears reliable.     

 The model fi nds within the structure of the query chemical 
only SAs for non-mutagenicity (“Inactive” rules) ( see  Fig.  4 ).

   Also in this case, the query chemical falls into the applicability 
domain (ADI = 0.978) and the predicted and experimental toxici-
ties for the most similar compounds are the same. This behavior is 
not completely surprising since CAESAR and SARpy are based on 
the same training set. Nevertheless, this result corroborates the 
prediction computed by CAESAR by assessing toxicities according 
to a complementary analysis executed by a different algorithm.

 ●     TT-VEGA results :  Prediction is non-mutagenic and the result 
appears reliable.     

 Similarly to what described for the CAESAR model, Toxtree 
does not fi nd any SA for mutagenicity. 

 The most similar compounds shown in the output are different 
from those of CAESAR and SARpy since the corresponding train-
ing sets are different. These structural analogs are characterized by 
lower similarity values (ranging from 0.823 to 0.773) and this lower 
degree of similarity is refl ected by the ADI (0.906). This degree of 
overall similarity combined with a lack of identifi cation of SA 
substantiates the validity of the prediction ( see   Note 8 ).

3.1  Case Study: 
Valproic Acid (Fig.  2 )

  Fig. 2    Valproic acid structure, chemical information, and experimental activity [ 26 ]       

 

Enrico Mombelli et al.



97

 ●     Overall evaluation :  for this case there is agreement between the 
three models, and each model is corroborated by the high ADI 
value.      

 ●           CAESAR results:   Prediction is mutagenic and the result 
appears reliable.     

 The model identifi es one fragment related to mutagenic activity 
included within the Benigni-Bossa rulebase [ 21 ]: Nitro aromatic, 
SA27 ( see  Fig.  6 ).

3.2  Case Study: 
Nifuratel ( See  Fig.  5 )

  Fig. 3    A particular of the three on six most similar compounds that are shown in the pdf outputs of the models 
for Valproic acid. SARpy and CAESAR display the same molecules       

SAi 51 SAi 57 SAi 70

  Fig. 4    Inactive SAs identifi ed by SARpy in Valproic acid molecule       
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   In addition to the six most similar molecules found in the 
training set, the model shows the three most similar compounds 
having the same fragment ( see  Fig.  7 ).

   The similarity index is high, 0.9. The concordance for similar 
molecules and the accuracy index are both equal to 1. 

 For these reasons the predicted substance is considered into 
the applicability domain (ADI = 0.948).

 ●     SARpy results:   Prediction is mutagenic and the result appears 
reliable.     

 In this case the identifi ed fragments are four and all linked to 
mutagenic activity ( see  Fig.  8 ).

   SARpy also shows the most similar compounds that are char-
acterized by the presence of the identifi ed fragments. In this case 
predictions and experimental values agree for all the structural 
analogs. 

 This prediction is characterized by the same ADI (and his sub- 
indexes) as the prediction computed by the CAESAR model.

 ●     Toxtree results :  Prediction is mutagenic and the result appears 
reliable.     

 As explained in Subheading  2.6 , CAESAR contains a subset of 
Toxtree rules and both models identify the same nitro aromatic 
fragment that plays a key role in supporting the prediction. 

 The ADI value (0.933) is slightly lower than what observed for 
CAESAR and SARpy; this is related only to the index of similarity 
(0.871) while the other indices are all excellent.

 ●     Overall evaluation :  all models agree, and there are good examples 
of similar compounds suggesting the predictions.      

  Fig. 5    Nifuratel structure, chemical information, and experimental activity [ 27 ]       

(Aromatic or heteroaromatic ring) N

O

O

  Fig. 6    Nitro aromatic structural alert no. 27       
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      Unlike the previous examples, in this case the output is equivocal 
because the prediction models are in disagreement and show very 
low values of ADI.

 ●     CAESAR results :  Prediction is non-mutagenic but the result 
may not be reliable.     

3.3  Case Study: 
Dexamethasone 
( See  Fig.  9 ).

Nitro aromatic (Benigni/Bossa structural alert no. 27).

Following, the most similar compounds from the model’s dataset having the same fragment.

Fragment found: Nitro aromatic

CAS: 67-45-8
Dataset id: 1522 (training set)
SMILES: O=C2OCCN2(N=Cc1oc(cc1)[N+](=O)[O-])
Similarity: 0.922

CAS: 23256-30-6
Dataset id: 2794 (training set)
SMILES: O=[N+]([O-])c2oc(C=NN1CCS(=O)(=O)CC1C)cc2
Similarity: 0.899

CAS: 75888-03-8
Dataset id: 3089 (training set)
SMILES: O=C2NCCCN2(N=Cc1oc(cc1)[N+](=O)[O-])
Similarity: 0.882

Experimental value: Mutagen
Predicted value: Mutagen

Experimental value: Mutagen
Predicted value: Mutagen

Experimental value: Mutagen
Predicted value: Mutagen
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o

o

o
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o
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  Fig. 7    Part of the CAESAR output in Nifuratel prediction: three of the most similar compounds within training 
set that have the same SA27 fragment found in the target       
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SA 4 SA 94 SA 98 SA 103

  Fig. 8    Four active fragments identifi ed by SARpy       
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 Although similarity, concordance, and accuracy indices are high 
(respectively 0.875, 1 and 1), ADI is equal to 0.795, therefore 
Dexamethasone could be out of the applicability domain of the 
model. This lack of reliability is caused by a low (0.85) value of 
the ACF index.

 ●     SARpy results :  Prediction is non-mutagenic but the result may 
not be reliable.     

 The model identifi es nine inactive fragments. Some of these 
fragments are depicted in Fig.  10 .

   Even if the values of similarity and ACF indexes are the same 
than what observed when using CAESAR, the ADI (0.721) value is 
lower because the accuracy does not reach the minimal recommended 
threshold (0.676) ( see  Fig.  11 ).

F

O

O

O

O

O

  Fig. 9    Dexamethasone structure, chemical information, and experimental activity [ 28 ]       

SAi 1 SAi 33 SAi 45 SAi 50

SAi 57 SAi 52 SAi 65 SAi 68

o

O

O

O

O

  Fig. 10    Examples of inactive fragments identifi ed by SARpy       
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 ●      TT-VEGA results :  Prediction is mutagenic but the result may 
not be reliable.     

 The model identifi es the presence of the SA10 as a cause of 
mutagenicity of the target compound ( see  Fig.  12 ).

   Conversely to what observed for Nifuratel, the predictions 
yielded by CAESAR and TT-VEGA are in disagreement since 
CAESAR does not contain the SA10 fragment in its subset of rules 
(see above). 

 The unreliability of the TT-VEGA prediction is highlighted by 
the poor value of its ADI (0) that is determined by low values of 
the concordance, accuracy, and ACF indices (0, 0, and 0.6 
respectively). 

  Fig. 11    The  red circle  indicates the different predictions of CAESAR and SARpy for the second most similar 
compound. Since the prediction computed by SARpy does not match the experimental activity, its accuracy is 
lower than what observed when using CAESAR       

C

R1

R2

R3

C

C O

  Fig. 12    SA10 (α, β unsaturated carbonyl)       
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 Indeed, even if the prediction yielded by TT-VEGA is charac-
terized by a similarity index which is greater (0.922) than the corre-
sponding index of CAESAR and SARpy, the experimental and the 
predicted values are in disagreement for all the similar compounds 
in the output. 

 Difficult cases such as this example could benefit from 
tools such as ToxRead ( see  Chapter   13    ) that can perform read-
across analysis while providing p-values calculated by using the 
Fisher's test and accuracies for each structural alert. In this 
case ToxRead could provide an insight into the analysis of the 
SA10 fragment by showing its low accuracy (0.49) and  p -value 
(0.015). 

 On the contrary, the nine fragments identifi ed by SARpy have 
accuracies ranging from 0.7 to 0.9 and  p -values <10 −6 . 

 The examples detailed in the previous paragraphs highlight 
the fact that a thorough analysis of all the factors that infl uence 
the predictive accuracy of a model should be taken into account 
instead of simply relying on the fi nal prediction. Several potential 
pitfalls can be prevented by analyzing all the sub-indices that 
compose the ADI and by a visual inspection of the input mole-
cule versus all the identifi ed structural analogs. Particularly, the 
pertinence of such a visual inspection can be corroborated by the 
recognition of SA within the query chemical and/or its structural 
analogs. 

 It is also important to point out that QSAR and read-across 
predictions are not mutually exclusive and that such a synergy can 
potentially provide relevant information in diffi cult cases that are 
characterized by fuzzy QSAR predictions (e.g. the case of 
Dexamethasone). Indeed, an expert can always compare the results 
computed by a model with its own read-across prediction on the 
basis of the identifi ed analogs. These concepts will be discussed in 
Chapter   13    .   

4    Notes 

     1.    The predictive models discussed in this chapter do not pre-
dict for a specifi c  S. typhimurium  strain. On the other hand, 
ADMET predictor (Absorption, Distribution, Metabolism, 
Elimination, and Toxicity of chemical substances), a com-
mercial tool, includes ten different models for different 
strains of  S. typhimurium  with and without microsomal acti-
vation [ 29 ]. We notice that the performance of the “gen-
eral” mutagenicity models was superior compared to the 
strain-specifi c models, when tested in a large set of com-
pounds [ 20 ].   
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   2.    There are several commercial or freely available software pro-
grams that can predict mutagenic hazards. In addition to the 
VEGA platform, other examples of free models are T.E.S.T. 
(Toxicity Estimation Software Tool) [ 30 ] and Toxtree 
(Estimation of Toxic Hazard—A Decision Tree Approach) by 
Ideaconsult Ltd. [ 31 ].   

   3.    VEGA calculates the applicability domain through a program 
which is different from the (Q)SAR model predicting the value 
of interest.   

   4.    The ADI measurement within VEGA is composed of a series 
of sub-indices which vary depending on the (Q)SAR model.   

   5.    For the models embedded within the VEGA platform, the 
expression “training set” refers to the set of molecules used dur-
ing the calibration of the models and their internal validation. 
The membership of the most similar structural analogs of the 
query chemical (training or test set) is specifi ed in the output 
provided by the software.         The output format is different for 
TEST. In this case the output shows the most similar structural 
analogs of the query chemical that are found in the test set 
and, if prompted by the user, it also shows the most similar 
compounds identifi ed in the training set.   

   6.    SARpy adopts SAs but these fragments are not based on “a 
priori” knowledge of the biochemical mechanism of action like 
for the rules-based systems (such as Toxtree and DEREK); it is 
more correct to refer to SARpy as a statistical model, which is 
highly transparent and communicates the extracted knowledge 
by means of rules.         Another major difference between SARpy 
and the rule-based models is that SARpy shows rules associated 
with lack of toxicity. These fragments are most frequently pres-
ent in the non- mutagenic compounds of the training set. 
However, considering the SA for mutagenicity there are strong 
similarities with rule-based models.   

   7.    The evaluation on the similar compounds carried out by using 
VEGA can be regarded as a kind of read-across approach. The 
user may also apply VEGA for read across, without considering 
the prediction done by the model.   

   8.    Please notice that each model in VEGA has its own data set. 
Also the ADI is based on this data set. It may be that the same 
chemical is characterized by confl icting properties value (muta-
genic or non-mutagenic) depending on the data set.         
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    Chapter 6   

 In Silico Methods for Carcinogenicity Assessment                     

     Azadi     Golbamaki      and     Emilio     Benfenati     

  Abstract 

   Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally 
induced cancers. A large sequence of alternative predictive models, ranging from short-term biological 
assays (e.g. mutagenicity tests) to theoretical models, have been attempted in this fi eld. Theoretical 
approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote 
the replacement, reduction, and refi nement of animal tests. This chapter reports and describes some of the 
most noted (Q)SAR models based on the human expert knowledge and statistically approach, aiming at 
predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been 
evaluated and the results are interpreted in details by applying these prediction models to some pharma-
ceutical molecules.  

  Key words     Carcinogenicity  ,   Structural alerts  ,   Genotoxicity  ,   Non-genotoxicity  ,   QSAR  ,   In silico  , 
  Toxtree  ,   SARpy  ,   Applicability domain index  

1      Introduction 

 The study of the chemical carcinogenesis mechanisms and deter-
mining the safety of the existing and the new chemicals are of 
increasing importance and necessity to protect human health. 
From the point of view of mechanism of action, the carcinogens 
are classifi ed into: (a) genotoxic carcinogens, which cause damage 
to DNA—many known mutagens are in this category, and often 
mutation is one of the fi rst steps in the development of cancer [ 1 ]; 
and (b) epigenetic or non-genotoxic carcinogens that do not bind 
covalently to DNA, do not directly cause DNA damage, and are 
usually negative in the standard mutagenicity assays [ 2 ]. The uni-
fying feature of all genotoxic carcinogens is that they are either 
electrophiles or can be activated to electrophilic reactive interme-
diates. This fact has been originally proposed by the Miller’s [ 3 ,  4 ]. 
On the contrary, non- genotoxic carcinogens act through a large 
variety of different and specifi c mechanisms. 
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 The mechanisms of action and the metabolic fate of a large 
number of carcinogens have been already investigated. These 
 studies shed light on the structural features that were frequently 
present in carcinogenic compounds. Several chemical functional 
groups and structural alerts (SAs) were identifi ed by researchers 
through analysis of the results of experimental (veterinary labora-
tory) carcinogenicity tests. These compounds were mainly geno-
toxic carcinogens as supported by the specifi c results from tests 
for genotoxicity (Ames test [ 5 ], Micronucleus assay [ 6 ], etc.). 
Diversely, the recognition of SAs for non-genotoxic carcinogens is 
far behind, because no unifying theory provides scientifi c support. 
A number of SAs and characteristics of several types of non-geno-
toxic carcinogens have been summarized by Woo et al. [ 2 ] ( see  
 Notes 1  and  2 ). 

 The long-term carcinogenesis bioassays using animal testing 
methods have played a central role in assessment of chemical’s car-
cinogenicity, however, for ethical and practical reasons their use is 
dramatically declining, and the genotoxicity short-term tests have 
taken the pivotal role in the pre-screening of carcinogenicity. The 
need to reduce animal testing, time, and cost in the process of 
assessment of carcinogenicity of chemicals had lead to an increased 
use of in silico methods as toxicological risk assessment tools. 
Among the in silico methods, the use of (Q)SAR models is sup-
ported by several legislative authorities (REACH [ 7 ]) upon fulfi ll-
ment of the required characteristics of a (Q)SAR model according 
to the indications reported by different legislations. This goes hand 
in hand with the progress made in the fi eld of the computational 
predictive models to date. 

 (Q)SARs are often incorporated into expert systems. An 
expert system is any formalized system that is mostly computer-
based, and that can be used to make predictions based on prior 
information [ 8 ]. 

 There are many (Q)SAR models published in the literature for 
predicting genotoxicity and carcinogenicity. The most commonly 
modeled endpoint for genotoxicity is the Ames test mutagenicity. 
The application of the Ames test to large numbers of chemicals has 
shown that this test has a high predictivity for chemical carcino-
gens (around 80 %) [ 9 ]. Most models are classifi ers that predict a 
chemical compound as genotoxic (and thus carcinogenic) or not. 
Since the recognition of non-genotoxic carcinogenicity SAs is not 
extended compared to genotoxic SAs, few models are available for 
identifying non-genotoxic carcinogens [ 10 ]. While the SAs for 
genotoxic carcinogens have been identifi ed to a high extent and 
used widely within predictive models for genotoxicity, the SAs for 
identifying non- genotoxic carcinogens are still a concern for the 
investigators. Benigni et al. (Toxtree 2.6.0) have recently enhanced 
the set of non- genotoxic SAs that captures carcinogens [ 9 ]. This 
list can provide a considerable insight to the possible variety of 
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mechanism of actions underlying the non-genotoxic carcinogenicity. 
Hence, the approaches for (Q)SAR analysis and identifi cation of 
SAs for non- genotoxic carcinogens differ accordingly to their spe-
cifi c  mechanism of action of these chemicals (interaction with pro-
teins, DNA replication enzymes, etc.) ( see   Note 1 ). A number of 
SAs and characteristics of several types of non-genotoxic carcino-
gens have been summarized and discussed by Woo et al. [ 2 ]. 

 However, statistical-based models will provide predictions that 
are based on the knowledge acquired from the training set that had 
been used to develop the model. In fact, these models are suitable 
in predicting both genotoxic and non-genotoxic carcinogens. For 
unknown non-genotoxic SAs, the statistical-based models can fi ll 
the information gap. In other words, these models may provide 
insight into the recognition of the missing information in the SAs 
list developed by human experts by investigation through experi-
mental results mostly based on the Ames test. 

 In the context of prediction of carcinogenicity by (Q)SAR 
models, it is essential to integrate results from both expert systems 
and statistical-based models. This approach will considerably 
improve the prediction performance of (Q)SARs. 

 There are several commercial and non-commercial expert sys-
tems for predicting genotoxicity and carcinogenicity [ 11 ,  12 ]. 
Freely available models include VEGA-CAESAR [ 13 ], SARpy [ 14 ], 
Toxtree [ 15 ], OncoLogic [ 16 ], OECDE Toolbox [ 17 ], and lazar 
[ 18 ]. Alternately, MultiCASE [ 19 ], TOPKAT [ 20 ], HazardExpert 
[ 21 ], and DEREK [ 22 ,  23 ] are some of the most common com-
mercial expert system. 

 Expert systems are based on three main modeling approaches 
which are rule-based, statistical-based, or hybrid methods [ 24 ]. 
Rule- based methods codify the human rules which identify certain 
potential molecular fragments responsible for carcinogenicity. 
Statistical models extract the information from a set of chemicals 
by using data mining methods [ 25 ]. 

 Rule-based systems combine toxicological knowledge, expert 
judgment, and fuzzy logic. OncoLogic, DEREK, HazardExpert as 
well as implemented modules in Toxtree and the OECD Toolbox 
are rule- based systems. 

 Statistical-based systems use a variety of statistical, rule- 
induction, artifi cial intelligence, and pattern recognition tech-
niques to build models from different databases used as training 
sets. For example, MultiCASE and TOPKAT are commercial sta-
tistical-based models while lazar and VEGA-CAESAR are statisti-
cal-based and publicly available. Additionally, most of the models 
published in the literature but not implemented are statistical-
based ( see   Note 2 ). 

 A description of some of the most common non-commercial 
(Q)SAR models is provided below. Three case studies are given in 
this chapter to illustrate the use and the performance of a number 
of these models.  

In Silico Methods for Carcinogenicity Assessment
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2    QSAR Models for Carcinogenicity 

   CAESAR is a model implemented in the VEGA platform [ 26 ]. 
This model uses a statistical-based approach to generate categorical 
carcinogenicity models. CAESAR is based on the counter-propa-
gation artifi cial neural network (CP ANN) algorithm. Artifi cial 
neural networks (ANNs) as a statistical approach appear to be suit-
able and promising for prediction of carcinogenicity for dissimilar 
data sets of chemicals. One of the main advantages of ANNs is that 
non-linear relationships can be modeled without any assumptions 
about the form of the model.  

   Toxtree is a standalone expert rule-based SAR program. This appli-
cation is a classifi er that places chemicals into categories and pre-
dicts various kinds of toxic effect by applying decision tree 
approaches, including the Begnini-Bossa rule-base for mutagenic-
ity and carcinogenicity [ 27 ]. The Toxtree module applies human 
expert rules developed by Begnini and Bossa to identify SAs for 
mutagenicity and carcinogenicity that may be present in a chemical 
structure. Carcinogenic SAs are functional groups or substructures 
that are mechanistically and/or statistically associated with the 
induction of cancer. Begnini-Bossa SAs for the prediction of muta-
genicity and carcinogenicity are highly correlated with Ames muta-
genicity. The Begnini-Bossa system contains a list of SAs for the 
evaluation of carcinogenicity. Structural features represented in the 
system are easy to understand and interpretable since they have a 
mechanistic foundation. Toxtree offers additional QSAR models 
for aromatic amines and alpha, beta-unsaturated aldehydes. The 
Toxtree output contains “structural alert for genotoxic carcinoge-
nicity” that shows the presence or absence of a SA for Salmonella 
mutagenicity, and “structural alert for non-genotoxic carcinoge-
nicity” that indicates the presence or absence of a non-genotoxic 
(epigenetic) SA.  

   SARpy is a desktop software based on a statistical modeling 
approach. Through a data mining method, SARpy extracts rele-
vant fragments (molecular substructures) from the analysis of the 
correlation between the structure, written with simplifi ed molecu-
lar input line entry system (SMILES) format, and the endpoint. 
Using SARpy, and a data set of chemicals with valid experimental 
results (binary categorical data), users can develop new classifi ca-
tion models. SARpy is able to extract both “ACTIVE” (e.g. carci-
nogenic) and “INACTIVE” (e.g. non-carcinogenic) fragments 
from chemical structures. In order to discover new carcinogenic 
SA, we combined three different carcinogenesis databases as a 
training set and by the aid of SARpy, developed a new carcinoge-
nicity model which consists of a rule set or a collection of SMARTS 
with their likelihood ratio values in the mentioned training set. 

2.1  VEGA-CAESAR 
(Version 1.1.0)

2.2  Toxtree 
(Version 2.6.0)

2.3  SARpy 
(Version 1.0)
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The data gathered for the development of this new rule set are 
carcinogenicity data collections based on studies on different spe-
cies. In particular, the data in the training set are a combination of: 
(1) the carcinogenicity data set (rat) of the EU-funded ANTARES 
project [ 28 ]; (2) the long-term carcinogenicity bioassay on rodents 
(rat and mouse) ISSCAN data set [ 29 ]; and (3) the carcinogenicity 
(rat and mouse) data set provided by Kirkland et al. [ 30 ]. The data 
set (1680 chemicals together with their carcinogenicity data) built 
as described above was used as the training set for the extraction of 
rules. SARpy extracted more than 100 rules from which by apply-
ing a human expert judgment we selected 130 rules. The human 
expert selection aimed to delete the alerts that produced a high 
number of false negative or false positive predictions. The perfor-
mance of this model, as tested on the test set obtained from 
eChemPortal inventory (258 compounds), was as follows: accu-
racy = 0.67, sensitivity = 0.62, specifi city = 0.70.  

   OncoLogic™ [ 31 ] is a desktop computer program released by the 
U.S. Environmental Protection Agency (EPA) [ 32 ] that evaluates 
the likelihood that a chemical may cause cancer. OncoLogic™ pre-
dicts cancer-causing potential by: applying the rules of structure–
activity relationship (SAR) analysis, mimicking the decision logic 
of human experts, and incorporating knowledge of how chemicals 
cause cancer in animals and humans. This version of the software 
has a new CAS/name look-up feature under the “Organics SAR” 
module for approximately 1500 chemicals for which available can-
cer data can be used directly to create a chemical report. This 
removes the need to draw the chemical structure for these sub-
stances as was necessary in the previous versions of the software.  

   Lazy structure–activity relationships (lazar) [ 18 ] is a standalone 
program with k-nearest-neighbor approach which can predict 
chemical endpoints from a training set based on structural frag-
ments. It uses a SMILES fi le and precomputed fragments with 
occurrences as well as target class information for each compound 
as training input. It also features regression, in which case the tar-
get activities consist of continuous values. Lazar uses activity-spe-
cifi c similarity (i.e. each fragment contributes with its signifi cance 
for the target activity) that is the basis for predictions and confi -
dence index for every single prediction.   

3    Case Studies 

   An example of Toxtree (v.2.6.0) carcinogenicity prediction. 
 As it is explained in the Toxtree user manual [ 33 ] for esti-

mating carcinogenicity with Toxtree, the following steps should 
be taken: After launching Toxtree in Windows™ platform, fi rst, 

2.4  OncoLogic™ 
(Version 8.0)

2.5  Lazar

3.1  Case Study 1

In Silico Methods for Carcinogenicity Assessment



112

the chemical structures for analysis may be submitted by inserting 
directly the SMILES, or by using an interactive 2D graphical edi-
tor, or in a batch mode by using CSV, TXT, or SDF fi le formats. 
Second, among the list of decision tree modules the user may select 
“carcinogenicity (genotox and non-genotox) and mutagenicity 
rule-base by ISS” [ 27 ] option from the Method menu. Finally, in 
order to apply the active decision tree on the current compound, 
the Estimate button should be pressed. If one or more genotoxic 
or non-genotoxic SA are found in the molecular structure, the 
name and the identifi cation number of that SA are indicated in 
the graphical user interface, and the chemical is predicted as car-
cinogen. Otherwise, the prediction result will be non-carcinogen. 
Figure  1  shows an example of classifi cation result visualization.

   Captafol is an antibacterial drug and fungicide and is catego-
rized as a carcinogen in the Carcinogenic Potency Database 
(CPDB) [ 34 ]. Toxtree v. 2.6.0 fi nds a SA for genotoxic carcinoge-
nicity (QSA8_gen.Aliphatic halogens) and a SA for non-genotoxic 
carcinogenicity (QSA50_nogen.dicarboximid) in this chemical 
structure. By clicking on the name of these two SAs, they become 
highlighted and the user can see their position in the chemical 
structure (Fig.  2 ). The classifi cation results can be saved as a fi le 
(CSV, SDF, or TXT format), together with the list of applied SAs.

      2-Amino-5-nitrothiazole or aminonitrothiazole is an antiprotozoal 
drug. Antiprotozoal agent is a class of pharmaceuticals used in the 
treatment of protozoan infection. Figure  3  shows the chemical 
structure and Table  1  shows the carcinogenicity test summary report 
as published by the CPDB [ 34 ]. Based on the experimental results 
of TD 50  on rat species, this chemical is considered as a carcinogen.

    VEGA-CAESAR (v. 1.1.0), lazar, Toxtree (v. 2.6.0), and the 
SARpy (v. 1.0) model predicted this chemical correctly as car-
cinogen. Figure  4  shows two genotoxic SAs found in the chemical 
structure of 2-amino- 5-nitrothiazole: “SA_27: Nitro-aromatic” 
and “SA_28: primary aromatic amine, hydroxyl amine and its 
derived esters”. VEGA-CAESAR returned applicability domain 
(AD) index of 0.5 for the prediction of this drug, and the expla-
nation is “the predicted compound is outside the AD of the 
model.” The “measured activity” of lazar given in the output is 
“Experimental result(s) from the training data set,” so the chemi-
cal is inside the AD of the program. Toxtree and SARpy do not 
report any AD index in their predictions.

   Performing prediction with the model constructed by means 
of SARpy for this chemical, an additional fragment is recognized 
as responsible for the carcinogenicity property. Figure  5  shows 
the SA found by this model. Overall, based on these multiple 
predictions, we can see that there is agreement, even though each 
model has a different level of reliability.

   As a conclusion, all evidences point toward a carcinogenic effect.  

3.2  Case Study 2
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   Bemitradine is an antihypertensive, vasodilator agent, and a 
diuretic. Figure  6  shows the chemical structure and Table  2  shows 
the carcinogenicity test summary report as published by the 
CPDB. Based on the experimental results of TD 50  on rat species, 
this chemical is considered as carcinogen.

    Toxtree (v. 2.6.0) and SARpy (v. 1.0) model predicted this 
chemical correctly as carcinogen; conversely, VEGA-CAESAR 
(v. 1.1.0) and lazar prediction for this chemical was non-carcin-
ogen. Figure  7  shows the genotoxic SA found in the chemical 
structure, whereas the model constructed by means of SARpy 
matched another fragment to the molecular structure as respon-
sible for the carcinogenicity property. Figure  8  shows the SA 
found by the SARpy model. Toxtree and SARpy do not have any 

3.3  Case Study 3

  Fig. 1    Toxtree v. 2.6.0 mutagenicity and carcinogenicity prediction for Captafol       
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AD index along with their prediction results. The AD index of 
VEGA-CAESAR for this chemical is equal to zero and in the 
prediction output fi le it is reported that the predicted compound 
is outside the AD of the model. The lazar confi dence index for its 
prediction is 0.02.

  Fig. 2    Genotoxic and non-genotoxic structure alerts found by Toxtree 2.6.0 for Captafol; ( a ) QSA8_gen.Aliphatic 
halogens; ( b ) QSA50_nogen.dicarboximid are highlighted in the molecular structure       

O
N+

N

H2N

S

–O

  Fig. 3    2-Amino-5-nitrothiazole, with CAS number: 121-66-4 and SMILES: 
O=[N+]([O–])c1cnc(N)s1       

   Table 1  
  Cancer test summary reported in the CPDB for 2-amino-5-nitrothiazole   

 Rat target sites  Mouse target sites  TD50 (mg/kg/day) 

 Male  Female  Male  Female  Rat  Mouse 

 No positive  kid lun mgl a   No positive  No positive  44.6  No positive 

    a   kid  kidney,  lun  lung,  mgl  mammary gland  
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  Fig. 4    Genotoxic structure alerts found by Toxtree in the molecular structure of 
2-amino-5-nitrothiazole; SA_27: Nitro-aromatic is shown on the  left  side, while 
SA_28: primary aromatic amine, hydroxyl amine and its derived esters is shown 
on the  right , where Ar stands for any aromatic/heteroaromatic ring and R stands 
for any atom/group       

N

S

  Fig. 5    Carcinogenicity structure alert found by the SARpy model for which the 
chemical is predicted as carcinogen       

N
OH3C

N

N

N NH2

  Fig. 6    Bemitradine chemical structure with CAS number: 88133-11-3 and 
SMILES: n2cnn3c(nc(c1ccccc1)c(c23)CCOCC)N       

   Table 2  
  Cancer test summary reported in the CPDB for Bemitradine   

 Rat target sites  Mouse target sites  TD50 (mg/kg/day) 

 Male  Female  Male  Female  Rat  Mouse 

 liv  liv mgl a   No test  No test  548 m  No test 

    a  liv liver,  mgl  mammary gland  
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    Toxtree (v. 2.6.0) prediction for this chemical was: “Negative 
for non-genotoxic carcinogenicity and positive for genotoxic carci-
nogenicity.” The SA recognized by Toxtree in the molecular struc-
ture is “QSA28_gen. Primary aromatic amine, hydroxyl amine and 
its derived esters (with restrictions).” 

 However, there are two restrictions to this rule. In fact, if the 
following conditions are true then the compound is predicted as 
non-carcinogen:

 ●    Chemicals with  ortho -disubstitution, or with an ortho carbox-
ylic acid substituent are excluded.  

 ●   Chemicals with a sulfonic acid group (–SO 3 H) on the same 
ring of the amino group are excluded.    

 and in this case study, none of them are applied. 
 Overall, on the basis of the results of the different models and 

the low confi dence value of lazar and the fact that it is out of AD 
of VEGA-CAESAR, of course one cannot exclude the possible car-
cinogenic effect. On the contrary, there are elements to support 
the toxic effect which cannot be ruled out by the presence of some 
results going in the opposite direction. Thus, the overall assess-
ment should go for carcinogenicity, but with a higher uncertainty, 
compared to the results for the case study 1.  

   Amobarbital (formerly known as amylobarbitone or sodium 
amytal) is a drug that is a barbiturate derivative ( see  Fig.  9 ). It has 
 sedative- hypnotic properties. On the basis of CPDB it is classifi ed as 
a non- carcinogen ( see  Table  3 ). Toxtree (v. 2.6.0), lazar, VEGA-
CAESAR (v. 1.1.0), and the SARpy (v. 1.0) model predicted this 
molecular structure correctly (i.e. non-carcinogen) as confi rmed by 
the experimental result. In addition, the VEGA-CAESAR predic-
tion result has a reliability feature that for this compound: “the 
predicted compound is into the Applicability Domain of the model.” 

3.4  Case Study 4

  Fig. 7    QSA28_gen. Primary aromatic amine, hydroxyl amine, and its derived 
structure alert found by Toxtree in the molecular structure of Bemitradine       

NN

  Fig. 8    Carcinogenicity structure alert found by the SARpy model for which the 
chemical is predicted as carcinogen       
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In fact, the model has the experimental value of this compound. 
The AD index of this chemical in the VEGA-CAESAR prediction is 
equal to 1 ( see   Note 3 ). The lazar reported this chemical as an 
already existing chemical inside its training set, so we consider it 
inside its AD. As it is mentioned above, Toxtree and SARpy do not 
have any AD index along with their prediction results.

    As a conclusion, all the prediction results of the above- 
mentioned models indicate the non-carcinogenic effect of the 
compound, which are concordant with the experimental value.   

4    Notes 

     1.    The different sources of the data used within the different 
models should always be considered. The CAESAR model is 
closely related to the rat carcinogenicity, while other models 
tend to balance results from different studies. There may be 
differences between the carcinogenicity in animals and in 
humans [ 32 ].   

   2.    It should be noted that the data available for building carcino-
genicity models derive studies which identifi ed in several cases 
effects on different organs (i.e. test for hepatocarcinogenicity, 
polmonarcarcinogenicity). Therefore, building organ-specifi c 
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O O
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CH3

H3C

O

  Fig. 9    Amobarbital with CAS number: 57-43-2 and SMILES: CCC1(CCC(C)C)C(=O)
NC(=O)NC1=O       

   Table 3  
  Cancer test summary reported in the CPDB for Amobarbital   

 Rat target sites  Mouse target sites  TD50 (mg/kg/day) 

 Male  Female  Male  Female  Rat  Mouse 

 No positive  No test  No test  No test  No positive  No test 
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carcinogenicity may be the best approach in order to obtain 
models with higher prediction performance. Nevertheless, the 
number of experimental results on organ-specifi c carcinogenic-
ity is at the time limited making them inadequate for building 
a (Q)SAR model with high performance.   

   3.    VEGA provides the experimental result of the target com-
pound, if available. The experimental value prevails on the pre-
dicted one, and thus the AD index is 1. The predicted value of 
the target compound is also given in the summary page.         
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    Chapter 7   

 VirtualToxLab: Exploring the Toxic Potential 
of Rejuvenating Substances Found in Traditional 
Medicines                     

     Martin     Smieško      and     Angelo     Vedani     

  Abstract 

   Docking and quantifying the binding of small molecules to the 3D structure of a macromolecular bioregu-
lator by computational techniques is a typical task in R&D aimed at the design and optimization of medi-
cally or otherwise active compounds. Much less known is the fact that these methods can be successfully 
applied for the purpose of toxicity prediction—for example, detecting a compound’s potential binding to 
so-called “off-targets” already at the preclinical stage. In this chapter, we provide an overview of such a 
computational approach, discuss its strengths and weaknesses, and include a case study—focused on natu-
ral compounds present in traditional medicines.  

  Key words     Protein-mediated toxicity  ,   Molecular docking  ,   Scoring  ,   Toxicity prediction  ,   Binding 
mode  ,   Binding affi nity  ,   Pharmacokinetic properties  

1      Introduction 

 Toxicology and computational chemistry are two disciplines 
whose synergistic combination has not been explored all too 
often in the past, but an ever growing importance has been wit-
nessed. Their combination follows a concept established in ratio-
nal drug design, where computational chemistry and molecular 
modeling are used for predicting the pharmacological activity of 
a small molecule—mechanistically triggered by its binding at the 
desired target. Analogously in toxicology, computational meth-
ods could be employed for identifying compounds leading to 
undesired effects as a result of their binding to relevant macro-
molecular targets other than the primary bioregulator—the so-
called “off targets.”  
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2    General Concept 

    Before envisioning the computational evaluation of a compound’s 
ability to bind to a protein target, its availability at the site of action 
needs to be addressed. From the possible entry point into the 
human organism (e.g. transdermal, by ingestion or inhalation), the 
oral route has been studied in most detail [ 1 ,  2 ], particularly in 
pharmaceutical R&D, because it is the most convenient (comfort-
able) way of administration for the prospective patient to be treated. 
Knowledge gathered on the oral absorption and availability of small 
drug molecules is of equal importance for toxicology, because com-
pounds associated with a harmful potential might easily reach the 
gastrointestinal tract (GIT) by ingestion, either intendedly (e.g. 
through food ingredients and additives, colorants, drugs) or unin-
tendedly (as an undesired contaminant of any of the former). 

 Exploring the pharmacokinetic properties of a compound may 
provide hints on a compound’s specifi city. In drug-design studies, 
it has been observed that an increasing lipophilicity of a molecule 
(i.e. by adding lipophilic substituents to it) might assist in improv-
ing its binding affi nity, but may thereby jeopardize its specifi city 
and decrease the ligand effi ciency. Therefore, extremely lipophilic 
compounds (featuring a large, positive log  P  value) would show a 
non-specifi c interaction pattern—i.e. possibly affecting multiple 
targets and accumulate in adipose tissues of the body where they 
could persist for a prolonged period of time and possibly causing 
chronic adverse effects. On the other hand, hydrophilic com-
pounds are readily fi ltered in the kidneys, leading to a fast clearance 
from the organism and, consequently, lowering the chance of trig-
gering adverse effects. 

 Obtaining the most common pharmacokinetic characteristics 
of a given compound is quite straightforward. According to the 
widely accepted “Lipinski’s rule of fi ve” [ 1 ], a compound would 
be likely absorbed from the GIT if its molecular weight is lower 
than 500, the number of hydrogen bond donors and acceptors 
is lower than 5 and 10, respectively, and the compound’s water–
octanol partition coeffi cient (log  P ) is lower than 5. The values of 
the fi rst three descriptors can be calculated by analyzing the com-
pound’s 2D structure, while for the log  P  value, many trained 
models exist [ 3 – 7 ], capable to estimate the actual value by interpo-
lation. Lipinski’s rules can be augmented with two additional rules 
(postulated by Veber et al.) [ 2 ] limiting the number of rotatable 
bonds to less than 10 and polar molecular surface area to 140 Å 2 .  

   Toxicity and adverse effects stem from a typically non-covalent 
interaction (for toxicity triggered by covalently bound, i.e. reactive 
chemical species, please refer to ref.  8 ) of a small molecule with a 
bioregulator (receptor, enzyme, ion channel, DNA). Such an 
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interaction can be quite unspecifi c, e.g. a highly lipophilic com-
pound may be accommodated by any (at least partially) hydropho-
bic macromolecular cavity in order to “escape” from its 
interaction-wise unfavorable aqueous environment. Here, the 
compound’s binding would mainly be driven by  desolvation effects 
(releasing unfavorable solvent molecules from hydrophobic cavi-
ties within a protein is benefi cial for the overall binding) and weak 
dispersion interactions lacking any strictly preferred spatial arrange-
ment (surface-to-surface interaction). On the other hand, a specifi c 
interaction of a small molecule with the protein target, e.g. display-
ing a high degree of both shape and volume complementarity to 
one unique protein binding site (or an allosteric or enzyme active 
site) with a well-defi ned and a thermodynamically and kinetically 
stable binding mode, would in addition to hydrophobic contacts 
likely include also several directional interactions such as salt-
bridges and hydrogen bonds. In both cases, the compound’s bind-
ing to a protein may be considered as an interference with the 
fi nely tuned system of hormones, feed-back effectors, and endog-
enous compounds (e.g. displacing a hormone or natural substrate 
from the binding or active site, or transport protein, inhibiting or 
activating an ion channel) that would eventually perturb the physi-
ological homeostasis within the organism and which would possi-
bly manifest itself as adverse effects or toxicity. The impact of such 
effects in vivo cannot (yet) be computationally quantifi ed with a 
desirable accuracy; however, the dose–response relationship would 
suggest that (at the given target) the more affi ne a compound, the 
more severe adverse effects or even toxicity are to be expected. 

 Exploring compound’s potential for protein-mediated toxicity 
using computational methods relies on identifying a specifi c non- 
covalent binding mode of the evaluated molecule at the macromo-
lecular target, a concept widely used for drug design and known as 
molecular docking, and employing a scoring function to estimate 
(quantify) the binding energy.  

   Molecular docking is the most convenient alternative to experi-
mental methods directly determining the compound’s binding 
(e.g. in vitro assay, crystallography). Its main advantage is that it 
can be used also for analyzing hypothetical compounds, i.e. those 
not yet chemically synthesized, which allows for early screening 
and decision making, thus saving time and resources. The key pre-
requisite for application of molecular docking approach is availabil-
ity of a 3D structure of the target macromolecule. This can be 
experimentally determined using any of the standard techniques 
(NMR, X-ray crystallography) or built computationally using 
structural information of related proteins or similar structural sub-
units in homology modeling. In any case, the 3D structure, espe-
cially in the vicinity of the binding site, must be as detailed as 
possible with well-resolved positions of atoms in amino acids, 
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cofactors, ligands as well as solvent (water) molecules, so that the 
spatial arrangement of crucial stabilizing interactions—particularly 
energetically prominent H-bond networks involving also water 
molecules—could be unambiguously determined. Ideally, several 
3D structures of the target macromolecule are at hand, with differ-
ent bound ligands, which can serve as templates for pre-orienting 
and pre-positioning of structures being docked and at the same 
time provide information on target’s local (e.g. amino acid side-
chains fl exibility) and global (e.g. backbone, loop, or large-unit 
rearrangement) fl exibility. 

 When aiming at the prediction of toxicity, molecular docking is 
quite challenging because of typically low similarity to be expected, 
in terms of size, shape, and chemical composition. In addition, no 
template structure (bound small molecule, similar to the one of 
interest) might be available. In the process of lead optimization, 
solving the crystal structure of a lead compound bound to the tar-
get protein is therefore of utmost interest. Based on that structure, 
novel derivatives, typically featuring only conservative structural 
modifi cations triggering small changes in the host structure (e.g. 
introducing H-bond donors/acceptors or lipophilic moieties to 
match the binding-pocket character better), are thought to be 
straightforward to obtain. This implies that the new ligand’s con-
formation and its orientation within the binding site remains iden-
tical or, at least, similar. This fact allows to largely reduce the 
degrees of freedom to be explored in docking. It also simplifi es the 
pose generation, so that even a rigid-docking protocol (keeping the 
macromolecule fi xed) can produce reasonable results. However, 
when docking a compound dissimilar to any of the templates, as 
much structural information as possible, e.g. protein and ligand 
conformation, thermal displacement ( B ) factors, binding site shape 
and volume, pharmacophore assumptions, structural and displace-
able solvent molecules, must be extracted from all known ligand–
target structures and productively combined in order to rationalize 
the generation of binding modes, simultaneously decreasing the 
computational complexity and speeding up the docking. Random-
searching algorithms (i.e. randomly modifying the ligand’s and 
protein’s conformation along with rotation and translation of the 
ligand) have theoretically a potential to identify all feasible binding 
modes, but due to complexity of the mathematical solution would 
need an enormous amount of computational time for an exhaustive 
sampling and therefore fi nd only a limited use. Even thoroughly 
rationalized docking techniques require a rather computationally 
expensive geometry refi nement to produce poses with reasonable 
interaction patterns and therefore molecular docking for predicting 
the off-target binding cannot be generally classifi ed as a high-
throughput method. 

 Binding modes generated by molecular docking allow for a 
mechanistic interpretation of interaction at atomic level and are of 

Martin Smieško and Angelo Vedani



125

great value for further evaluation. For example, the human andro-
gen receptor can be viewed as an anti-target as any interference 
with it could trigger endocrine disruption, but a compound bind-
ing to the androgen receptor identifi ed by the docking procedure 
having a novel non-steroidal scaffold could serve as a basis for 
development of novel anabolic (agonist) or anticancer (antagonist) 
drugs. In case the molecule docked to the off-target would be for 
example a promising drug candidate, with its binding mode in 
hand one could modify its structure at a site that would (e.g. steri-
cally) hinder binding to an off-target and that would be still toler-
ated at the desired (original) target. Such a modifi cation might 
save the compound from being discarded from the development 
pipeline because of risk of adverse effects and even improve its 
selectivity and safety. In case the tested molecule would be a natu-
ral compound binding to a pharmacologically relevant target, the 
binding mode could indicate sites where such a structure could be 
simplifi ed (e.g. removing of functional groups not involved in a 
favorable interaction with the target) or extended (e.g. adding a 
lipophilic group fi lling an otherwise empty part of the binding 
pocket) by methods of the synthetic chemistry in order to obtain a 
novel ligand.  

   While the main task of molecular docking is to identify binding 
modes with the most favorable ligand–target interaction energy, 
the scoring procedure is used to put obtained binding modes into 
context of a complete thermodynamic cycle, whose equilibrium is 
defi ned by the difference of free energy of the ligand and target in 
the unbound state and after they form a non-covalent complex. 
Therefore a typical scoring function, besides including enthalpic 
terms (electrostatic, van der Waals, H-bonding, and metal interac-
tions), should account also for entropic terms, e.g. desolvation 
costs of both ligand as well as binding site at the target macromol-
ecule, contributions stemming from solvent displacement, and 
penalties associated with the loss of degrees of freedom of the 
bound ligand and interacting amino acids in the target molecule. 
Entropic contributions may be calculated with a satisfactory accu-
racy without knowing more about dynamic properties of the inter-
acting partners, therefore such terms are frequently approximated 
by summing up averaged contributions, e.g. averaged gain per dis-
placed solvent molecules or immobilized rotatable bond, or by 
using empirical values [ 9 ,  10 ]. 

 A scoring function might be trained in order to reproduce as 
closely as possible experimentally determined binding affi nities of a 
set of compounds. However, training automatically reduces the 
applicability domain of a scoring function to a set of compounds 
similar to those in the training set. As mentioned above, the off-
target binding is usually examined for compounds substantially dif-
ferent from those used for training (e.g. experimental binding 
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affi nities of a set of congeneric compounds from a classical medici-
nal chemistry lead optimization were used to train the scoring 
function, but a structurally dissimilar agrochemical is being evalu-
ated), prediction based on a trained scoring function would there-
fore be extrapolated and very uncertain. 

 Despite rapid development in the fi eld and growing complex-
ity, there is (up-to-date) no scoring function available that would 
produce satisfactory results for a whole range of biologically rele-
vant targets. Therefore, further analyses reaching beyond simple 
scoring, e.g. inspection of the dynamic stability of binding modes 
using molecular dynamics (MD) simulations or the consensus 
scoring employing conceptually different techniques, are highly 
recommended.  

   The  VirtualToxLab  is an in silico technology for estimating the 
toxic potential—endocrine and metabolic disruption, some aspects 
of carcinogenicity and cardiotoxicity—of drugs, chemicals, and 
natural products [ 11 ]. The technology is based on an automated 
protocol that simulates and quantifi es the binding of small mole-
cules toward a series of currently 16 proteins, known or suspected 
to trigger adverse effects: ten nuclear receptors (androgen, estro-
gen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, per-
oxisome proliferator-activated receptor γ, progesterone, thyroid α, 
thyroid β), four members of the cytochrome P450 enzyme family 
(1A2, 2C9, 2D6, 3A4), a cytosolic transcription factor (aryl hydro-
carbon receptor) and a potassium ion channel (hERG). The toxic 
potential of a compound—its ability to trigger adverse effects—is 
derived from its computed binding affi nities toward these very 
proteins (reference). The computationally demanding simulations 
are executed in client–server mode on a Linux cluster of the 
University of Basel. The graphical-user interface supports all com-
puter platforms, allows building and uploading molecular struc-
tures, inspecting and downloading the results and, most important, 
rationalizing any prediction at the atomic level by interactively ana-
lyzing the binding mode of a compound with its target protein(s) 
in real-time 3D/4D. Access to the  VirtualToxLab  is available free 
of charge for universities, governmental agencies, regulatory bod-
ies, and non-profi t organizations.   

3    Estimating the Toxic Potential of Compounds from Traditional Medicines 

   We performed a study exploring compounds occurring in rejuve-
nating or anti-aging preparations present in various traditional 
medicines. The latter enjoy a large popularity especially on the 
Asian and African continent and whether explicable or not, are 
used in the maintenance of health as well as in the prevention, 
diagnosis, improvement, or treatment of physical and mental 
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illnesses. Such herbal and fungal preparations contain highly spe-
cies-specifi c secondary metabolites—compounds which might help 
in fi ghting the various symptoms of aging, such as overall weakness 
and decreased metabolism, reduced immunity, cognition, fertility, 
or muscle strength, decline in memory functions or loss of skin 
elasticity. Some of these symptoms can be associated with an age-
related natural ligand (hormone) depletion followed by insuffi cient 
activation of associated bioregulators. For example, a low testoster-
one level would prevent from the androgen receptor activation and 
result in decreased transcription of AR-regulated genes for muscle 
growth. The VirtualToxLab with its target portfolio covering sev-
eral nuclear receptors seems to be the right tool for screening of 
potential rejuvenating compounds. 

 The use of preparations (or single compounds isolated there-
from) recommended by traditional medicines is sometimes docu-
mented by medicinal studies—for example, antioxidants (vitamins, 
fl avonoids) have been shown to scavenge free radical thus prevent-
ing DNA and protein from being damaged by such reactive chemi-
cal species [ 12 ], but frequently little or no evidence exists, which 
poses potential risks (side effects, toxicity) of “blind” usage of not 
properly explored and standardized preparations. On the other 
hand, a substantial number of modern drugs has been inspired by 
natural (and traditional) medicines, therefore screening such com-
pounds by modern techniques (including in silico methods) may 
lead to benefi cial discoveries and perhaps new drugs. 

 From the safety point of view, all chemical entities including 
natural compounds (or products of plant or animal origin contain-
ing secondary metabolites), which might occur within the human 
gastrointestinal tract (intended or unintended, e.g. trough food 
contaminants with agricultural origin) should be characterized and 
analyzed to the extent that we apply for pharmaceuticals.  

   Scientifi c (Pubmed, ScienceDirect) as well as general purpose 
(Google) electronic search engines were used along with keywords: 
“rejuvenat*”, “anti-ag(e)ing”, “traditional”, “medicine” to 
retrieve information about biological organisms and their second-
ary metabolites that could be associated with supposed or described 
biological effects. In matching publications from peer-reviewed 
journals, names and structure formulas of 35 unambiguously char-
acterized secondary metabolites from seven plant and three mush-
room species were identifi ed (Table  1 ). Compounds with already 
known benefi cial properties (e.g. fl avonoid antioxidants, vitamins), 
well-researched (e.g. cardioglycosides), or acting at a different tar-
get organism (e.g. anti-infectives) were excluded from our analysis. 
If available, the 3D structures of the underlying compounds were 
retrieved from the Cambridge Structure Database (CSD) [ 13 ]. 
Using small-molecule crystal structure geometries as input struc-
tures when dealing with natural compounds featuring extremely 

3.2  Compound 
Identifi cation 
and Modeling
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    Table 1  
  Summary of pharmacokinetic parameters for analyzed compounds   

 Organism  Compound 
 Rule of fi ve 
violations  MW  Log  P  o/w  

 PSA 
(Å 2 ) 

 Rot. 
bonds 

  Withania somnifera  

 Anaferine  0  224  1.3  51  4 

 Anahygrine  0  224  1.4  44  4 

 Cuscohygrine  0  224  1.5  34  4 

 Isopelletierine  0  141  0.7  41  2 

 Withaferin A  0  471  2.6  112  3 

 Withanone  0  471  3.0  104  3 

 14β-Hydroxywithanone  0  487  2.0  116  2 

 Withadienolide  0  487  1.9  126  2 

 Withanolide A  0  471  2.6  101  2 

 Withasomnine  0  184  2.4  19  1 

  Ginkgo biloba  

 Ginkgolide A  0  408  1.2  143  1 

 Ginkgolide B  0  424  0.5  169  1 

 Ginkgolide C  1  440  0.2  186  1 

 Ginkgolide J  0  424  0.2  170  1 

 Ginkgolide P  0  424  −0.3  159  2 

 Bilobalide  0  326  0.2  142  1 

  Pueraria mirifi ca  

 Miroestrol  0  358  0.6  116  0 

 Deoxymiroestrol  0  342  1.7  96  0 

 Isomiroestrol  0  358  1.2  118  0 

  Panax ginseng  

 Panaxadiol  1  461  5.5  41  1 

 Falcarinol  1  244  5.8  23  11 

 Panaxicol  0  278  3.6  69  12 

 Panaxatriol  1  477  4.6  58  1 

 Protopanaxadiol  1  461  5.4  56  4 

  Centenella asiatica   Asiatic acid  0  489  4.8  104  2 

  Rosmarinus 
communis  

 Carnosic acid  0  332  4.4  74  2 

  Hypericum 
perforatum  

 Hyperforin  2  537  6.3  68  11 

(continued)
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complex ring systems (e.g. multiply fused and/or spiro) would 
seem to be appropriate as this facilitates identifying the correct ring 
puckering as well as correct assignment of asymmetric centers in 
the molecule.

   The calculation of descriptors related to pharmacokinetics was 
performed using the Schrodinger’s QikProp program (rule-of-fi ve 
violations, molecular weight [MW], polar surface area [PSA]) [ 14 ] 
and the VCC Lab AlogPs algorithm (Log  P  o/w ) [ 7 ]. Finally, all 
structures were submitted to the VirtualToxLab for an automated 
simulation of the binding mode(s) and estimation of the associated 
affi nities toward all 16 targets (cf. above). For selected ligand–tar-
get complexes, molecular dynamics simulations using the Desmond 
software [ 15 ] were performed to examine the dynamic stability of 
intermolecular interactions.   

4    Results and Interpretation 

   The values for the pharmacokinetic descriptors are summarized in 
Table  1  with favorable properties highlighted in green, potentially 
problematic in orange and unfavorable ones in red. With a few 
exceptions (e.g. panaxicol, falcarinol, and hyperforin), the studied 
compounds are quite rigid, lipophilic, and of low-molecular 
weight, thus fulfi lling most of criteria defi ned by the Lipinski's 
rule-of-fi ve. This suggests that they could be absorbed from the 
gastrointestinal tract after oral intake and, therefore, would be 
available in the systemic circulation. As a consequence of the very 
low PSA (<90 Å 2 ), some of the compounds (e.g. withasomnine, 
carnosic acid) could even cross the blood–brain barrier and interact 

4.1  Pharmacokinetic 
Properties

Table 1
(continued)

 Organism  Compound 
 Rule of fi ve 
violations  MW  Log  P  o/w  

 PSA 
(Å 2 ) 

 Rot. 
bonds 

  Ganoderma lucidum  

 Ganoderol A  1  439  7.6  46  5 

 Ganoderol B  1  441  7.4  40  5 

 ( R )-Ganodone  0  328  3.0  111  4 

 ( S )-Ganodone  0  328  3.0  110  4 

 Lucidone  0  403  2.7  106  1 

 Ganoderenic acid A  1  515  3.3  149  5 

  Tremella fuciformis   Oosporein  0  306  −0.2  186  1 

  Phellinus linteus   Hispidin  0  246  1.1  105  2 
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with bioregulators in the central nervous system. Secondary 
metabolites from  Ginkgo biloba , despite the low number of rotat-
able bonds, have a rather low lipophilicity (Log  P  ~ 0) and a large 
PSA (just at, or above the limit of 140 Å 2 ) rendering them less 
feasible for passive permeation and therefore less orally available. 
On the other hand, some compounds, e.g. panaxadiol, ganoderol 
A and B—due to their pronounced lipophilicity—might be quite 
insoluble in water and, therefore, orally available in very limited 
amounts, but at repeated exposure, could accumulate in the adi-
pose tissues, where they could persist over longer periods of time. 

 In general, with the exception of hyperforin (which differs sub-
stantially from typical orally available molecules in molecular weight, 
fl exibility, and lipophilicity), all studied compounds have a good 
chance of being absorbed after oral intake, e.g. as an extract in tonic 
or as a part of food. The Lipinski's rule-of-fi ve is by no means exclu-
sive; it solely defi nes descriptor ranges where there is an increased 
likelihood for a compound of being orally available. Therefore, a 
slight deviation in one or two of Lipinski’s or Veber’s descriptors 
from recommended values observed for a few of studied compounds 
does not imply that, after all, they could not be orally available.  

   Binding-mode hypotheses and toxic-potential values obtained by 
the automatic docking and scoring protocol as implemented in the 
VirtualToxLab are summarized in Table  2 . The color intensity cor-
relates with the predicted affi nity: dark gray cells indicate hits, i.e. 
computationally identifi ed complementarity of the compound with 
a particular binding pocket (having at least one feasible binding 
pose) and favorable thermodynamics of transfer from aqueous 
environment to the binding site. For a better understanding of the 
following paragraphs, selected compounds discussed in detail are 
depicted in Fig.  1 .

    Compounds with low molecular weight (e.g. anaferin, ana-
hygrine, cuscohygrine, isopelletierine withasomnine, hispidin, and 
oosporein) would seem to be too small for effectively occupying 
the binding site of any of the screened targets. In the VirtualToxLab, 
these compounds do not display any signifi cant binding affi nity 
and, consequently, their computed toxic potential is low. No favor-
able binding mode could be computationally identifi ed for the 
topologically complex and pronouncedly hydrophobic hyperforin. 
The rigid pharmacophore—the spatial arrangement of functional 
groups attached to complex polycyclic scaffolds—of all ginkgolides, 
bilobalide, Asiatic, and carnosic acid is not complementary to any 
binding site of the targets currently implemented in the 
VirtualToxLab—even though explicitly allowing for ligand fl exibil-
ity and local induced-fi t in our simulations. No favorable interac-
tion with any of the 16 targets could neither be identifi ed for 
( R )-ganodone, nor for ( S )-ganodone. Thus, for all compounds 
mentioned above, no effect on the symptoms of aging could be 

4.2  VirtualToxLab 
Binding Profi les

Martin Smieško and Angelo Vedani



131

 

β1

    Table 2  
  Color-coded binding profi les and toxic potential values for studied compounds from the VirtualToxLab       

VirtualToxLab – Exploring Substances from Traditional Medicines



132

deducted based on the results from the VirtualToxLab. This, how-
ever, does not exclude other modes of action, i.e. effects triggered 
through binding to targets other than nuclear receptors, enzymes 
of the cytochrome P450 family, and the hERG potassium channel. 

 Several rings as well as H-bond donor and acceptor function-
alities of the essentially rigid (according to Veber “completely 
rigid” as terminal methyl and hydroxyl groups are not counted as 
rotatable in that very concept) miroestrol derivatives closely resem-
ble the  pharmacophore of the naturally occurring female hormone 
17β-estradiol. This results in an increased affi nity toward nuclear 
 receptors having steroidal structures as natural ligands, especially 
toward α and β estrogen receptors (Table  2 ). Upon binding to the 
estrogen receptor β (ERβ; Fig.  2 ), some of the polar atoms of 
miroestrol derivatives (carbonyl, ring oxygen atom, hydroxyl 
group) are not involved in any favorable interaction and offer pos-
sibilities for modifi cation, while hydroxyl groups corresponding to 
ones at polar ends of the estradiol should be preserved, if binding 

  Fig. 1    Structural formulas of selected representative compounds       
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to ERβ is desired. A short molecular-dynamics simulation using 
the ligand–protein complex from the VirtualToxLab as the starting 
structure confi rmed that these hydroxyl groups form stable 
H-bonds to the receptor (Fig.  3a ). The hydroxyl group attached to 
the aromatic ring (corresponding to position 3 in ring A of estra-
diol) forms a direct H-bond with Glu305 (present during 99 % of 
the entire simulation time) and a water-mediated H-bond with 
either Arg346 (55 %) or Leu339 (15 %). The hydroxyl group mim-
icking the one at the 17β-position in the ring D of estradiol donates 
an H-bond to His475 (45 %) or Gly472 (36 %). As all three miro-
estrol derivatives are of comparable shape and size with estradiol, 
an agonistic effect is to be expected, which would seem to support 
the idea of administering a preparation from  Pueraria mirifi ca  
containing miroestrols as estradiol mimicking molecules for reliev-
ing from symptoms associated with low estrogen levels in aging 
women. Obviously, instead of a rejuvenation, in men such com-
pounds would cause an undesired feminization.

    The steroidal scaffold of compounds from  Withania somnifera  
(withanolides and similar),  Panax ginseng  (panaxadiol, panaxatriol, 
protopanaxadiol), and  Ganoderma lucidum  (ganoderol A and B, 
lucidone, ganoderenic acid A) suggests that such compounds may 

  Fig. 2    17β-Estradiol ( left , PDB entry 2J7X) and deoxymiroestrol ( right , docked pose) bound to the estrogen 
receptor β       
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bind to nuclear receptors. However, most of them differ from typi-
cal natural steroidal agonists, because they feature a bulky and at 
least partially rigid substituent (6-membered lactone or pyran ring) 
at the position 17 of the cyclopentanoperhydrophenanthrene scaf-
fold, which requires certain space for a proper accommodation and 
therefore could trigger induced-fi t changes in the binding site 
leading to destabilization of the receptor structure—in this con-
text, only partial agonistic or even antagonistic effects could be 
expected. In addition, the scaffold of these compounds is deco-
rated with polar hydroxyl groups at positions different from those 
in natural ligands, which cannot form H-bonds with the same ther-
modynamic effi ciency like those of latter do. Molecular- dynamics 
simulations of ligand–protein complexes using the highest- ranked 
binding pose from the VirtualToxLab as input structures showed 
that such hydrogen bonds have either a transient character (fre-
quent interchange) or completely disappear early in the course of 
simulation (Fig.  3b ), which greatly reduces their contribution 
toward the binding free energy (enthalpic terms). Such an unstable 
intermolecular interaction has been observed also for extremely 
fl exible compounds like falcarinol and panaxicol. The computed 
data suggest that any potential benefi cial effects of this subgroup of 
compounds in the context of rejuvenation might stem from weaker 
and not too specifi c binding, possibly at multiple nuclear receptors. 
The interactive analysis of the 4D ensemble of predicted binding 
modes used for scoring usually shows multiple poses with signifi -
cant contributions toward the binding free energy, but with largely 
different orientation within the binding site accompanied by 
changes of side-chain conformations (local induced-fi t; Fig.  4 ). 

  Fig. 3    Stability of protein–ligand interactions in MD simulations of ( a ) deoxymiroestrol and ( b ) ganoderol B at 
the estrogen receptor β (x-axis: simulation time, y-axis: number of protein-ligand contacts/interactions)       
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Some compounds from the  Panax  species showed binding also to 
cytochromes (e.g. protopanaxadiol at CYP450 2D6), which might 
cause an enzyme inhibition and thus interfere with metabolic func-
tions in liver cells.

   At this place, we would like to point out that any outcome of 
an in silico screening in predictive toxicology, but especially the 
negative one, has to be interpreted with caution, as the applied 
methods and approximated model systems simply cannot provide 
a completely realistic answer to our scientifi c problem (e.g. due to 
a non-exhaustive conformational sampling, limited simulation 
time, and incomplete support for global conformational changes 
of target molecules, inaccuracies, or complete absence of force-
fi eld parameters).   

5    Concluding Notes 

 In silico analyses of compounds, which are associated with rejuve-
nating effects based on traditional medicines, showed that a large 
majority of them fulfi ll the criteria for oral availability. This means 

  Fig. 4    Multiple binding modes (4D view with Boltzmann-scaled color intensities) observed for ganoderol B 
bound to the glucocorticoid receptor.  Left : all 12 poses;  right : top three poses contributing 58 %, 23 %, and 
13 % to the total binding energy, respectively       
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that after ingestion they would be able to reach the systemic circu-
lation, while some of them could even cross the blood–brain bar-
rier and exert their effects in the central nervous system. 

 Computed data—in the form of binding modes at the atomic 
level featuring favorable H-bonding as well as hydrophobic inter-
action patterns with associated binding free energies obtained by 
state-of-the-art methodologies—seem to provide some support for 
potential natural hormone-mimicking effects, particularly the 
group of miroestrol derivatives and to a smaller extent also for 
some steroid-like secondary metabolites occurring in the species 
 Withania ,  Panax , and  Ganoderma , but also uncover the risk asso-
ciated with compound's inappropriate use, lack of selectivity, and 
possible interference with cytochromes. 

 The dynamic stability of interactions between ligand and target 
obtained by the automated docking was explored by means of MD 
simulations: while a few compounds exhibit stable and well-defi ned 
binding modes to some nuclear receptors further confi rming their 
predicted binding potential, the others form only labile interac-
tions suggesting that the scoring function might have overesti-
mated their binding potential. 

 Positive fi ndings regarding potential biological effects described 
in this study highlight the importance of a proper toxicological 
characterization of natural compounds occurring in preparations 
recommended by the traditional medicine, as their uncontrolled or 
excessive application or unintended use might affect human health 
negatively.     
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    Chapter 8   

 In Silico Model for Developmental Toxicity: How to Use 
QSAR Models and Interpret Their Results                     
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    Tara     S.     Barton- Maclaren    , and     Emilio     Benfenati     

  Abstract 

   Modeling developmental toxicity has been a challenge for (Q)SAR model developers due to the complexity 
of the endpoint. Recently, some new in silico methods have been developed introducing the possibility to 
evaluate the integration of existing methods by taking advantage of various modeling perspectives. It is 
important that the model user is aware of the underlying basis of the different models in general, as well 
as the considerations and assumptions relative to the specifi c predictions that are obtained from these dif-
ferent models for the same chemical. The evaluation on the predictions needs to be done on a case-by-case 
basis, checking the analogs (possibly using structural, physicochemical, and toxicological information); 
for this purpose, the assessment of the applicability domain of the models provides further confi dence in 
the model prediction. In this chapter, we present some examples illustrating an approach to combine 
human-based rules and statistical methods to support the prediction of developmental toxicity; we also 
discuss assumptions and uncertainties of the methodology.  

  Key words     Developmental toxicity  ,   OECD  ,   QSAR  ,   Predictive reliability  ,   Similarity  

1      Introduction 

 The assessment of information on developmental and reproduc-
tive toxicity (DART) ( see   Note 1 ) represents an important analysis 
for understanding the toxicological characteristics of chemicals 
and their effects during pregnancy, as well as on male and female 
fertility [ 1 ]. For instance, in the fi eld of drug discovery it is impor-
tant to discriminate drugs that are safe for mother and child in 
gestation or conversely, that are safe for mother but toxic for child 
in gestation. In addition, in Europe the characterization of DART 
is a mandatory requirement for all the different tonnage bands 
defi ned by the REACH regulation [ 2 ]. For regulatory agencies, 
the evaluation of a chemicals potential to induce DART is an 
important consideration when carrying out human health risk 
assessments. 
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 The various effects related to the DART potential of chemi-
cals are apically defi ned by different in vivo tests that follow the 
OECD Test Guidelines (TG) [ 3 ] as outlined below and described 
in Table  1 . These include:

    OECD TG 414 [ 4 ]: Prenatal Development Toxicity Study.  
  OECD TG 416 [ 5 ]: Two-Generation Reproduction Toxicity.  
  OECD TG 421 [ 6 ]: Reproduction/Developmental Toxicity 

Screening Test.  
  OECD TG 422 [ 7 ]: Combined Repeated Dose Toxicity Study 

with the Reproduction/Development Toxicity Screening Test.  
  OECD TG 426 [ 8 ]: Developmental Neurotoxicity Study.  
  OECD TG 443 [ 9 ]: Extended One-Generation Reproductive 

Toxicity Study.    

 One of the in vivo protocols most commonly used to test 
developmental toxicity is OECD TG 414 (Prenatal Development 
Toxicity Study) [ 4 ]. This guideline test is conducted using female 
rats or rabbits. Route of exposure may vary with the chemical and 
may be modifi ed to incorporate the relevant human route of pre-
dominant exposure, however the substance is usually administered 
orally. Exposure to the test substance starts at the beginning of 
implantation and fi nishes at either the end of organogenesis or the 
end of the period of gestation. At completion of the selected treat-
ment period, dams are sacrifi ced and fetuses are weighed, sexed, 
and examined in detail for external, visceral, and skeletal altera-
tions. OECD TG 421 [ 6 ] is a screening test guideline designed to 
provide initial toxicological information on reproductive and 
developmental effects such as gonadal function, mating behavior, 
conception, and development of the conceived and parturition. 
Female rats are administered the chemicals from 2 weeks before 
mating, through the pregnancy until 4 days after delivery; males 
are treated at least 2 weeks before mating, throughout the mating 
period and until approximately 2 weeks after mating. The same 
method is used within OECD TG 422 [ 7 ], but it is a repeated dose 
toxicity study. The main differences between the two guidelines 
are that TG 421 is a reduced one-generation reproduction study, 
and TG 422 is a combination of a 28-day toxicity study and a 
reduced one-generation reproduction study. OECD TG 416 [ 5 ] is 
the most comprehensive evaluation of the effects of chemicals on 
the male and female reproductive systems and on offspring devel-
opment. It is a two-generation study in rats and consists of an 
exposure to chemicals for two generations until the third week of 
age of the second generation (F2). During this experiment a large 
number of endpoints are evaluated including: reproductive perfor-
mance and fertility, growth and survival of offspring, achievement 
of developmental landmarks, potential endocrine-mediated effects, 
and developmental neuro- and immuno-toxicity. OECD TG 443 
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   Table 1  
  Overview of the different test guidelines for DART   

 Test guideline  Design  Endpoints 
 Advantage (+)/limitation 
(−) 

 OECD TG 414: Prenatal 
Development Toxicity 
Study 

 At least from 
implantation to 1 
or 2 days before 
expected birth 

 3 dose levels plus 
control  N  = 20 
pregnant females 

 An implantation, 
resorptions, fetal 
growth, 
morphological 
variations, and 
malformations. 

 + Malformations are 
assessed in all fetuses. 

 − The dosing period 
includes only the 
prenatal period. 

 − The effects assessment 
includes only effects in 
fetus. 

 OECD TG 416: Two-
Generation 
Reproduction Toxicity 

 Exposure before 
mating for at least 
one spermatogenic 
cycle until of 
second generation. 
Three dose levels 
plus control  N  = 20 
pregnant females 

 Fertility, estrus 
cyclicity and sperm 
quality, growth, 
developmental and 
viability, anogenital 
distance if 
triggered, sexual 
maturation, 
histopathology 
organs, brain, and 
target organs. 

 + Exposure covers all 
sensitive periods. 

 + Effect assessment in F1 
and F2. 

 + Includes assessment of 
semen quality and estrus 
cyclist. 

 − Anogenital distance only 
assessed in F2 if 
triggered. 

 − Malformations of 
reproductive organs only 
investigated in 1 per sex 
litter. 

 OECD TG 421 and 422: 
Reproduction/
Developmental Toxicity 
Screening Test and 
Combined Repeated 
Dose Toxicity Study 
with the Reproduction/
Development Toxicity 
Screening Test 

 From 2 weeks prior 
to mating until at 
least day 4 
postnatally. Three 
dose levels plus 
control.  N  = 8–10 
pregnant females 

 Fertility, pregnancy 
length and birth, 
fetal and pup 
growth, and 
survival until day 3. 

 + Short-term test. 
 − Limited exposure period. 
 − Limited number of 

endpoints. 
 − Limited sensitivity due to 

number of animals. 

 OECD TG 426: 
Developmental 
Neurotoxicity Study 

 At least from 
implantation 
throughout 
lactation. Three 
dose levels plus 
control.  N  = 20 
recommended, less 
than 16 not 
appropriate 

 Birth and pregnancy 
length, growth, 
developmental and 
viability, physical 
and functional 
maturation. 
Behavioral changes, 
brain weight, and 
neuropathology. 

 + Exposure covers most of 
the sensitive periods. 

 − No exposure before 
mating and from 
weaning to sexual 
maturation. 

 − Mating and nursing 
behavior is not assessed. 

(continued)
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 Test guideline  Design  Endpoints 
 Advantage (+)/limitation 
(−) 

 OECD TG 443: 
Extended One- 
Generation 
Reproductive Toxicity 
Study 

 Exposure from 2 
weeks before 
mating to 6 weeks 
post- mating. If 
test continues on 
F2, the same 
treatment it will 
do at the F1 

 Three cohort and 
three dose levels 
plus control 

  N  = 20 pregnant 
female 

 Fertility, dystocia, 
gestation length, 
fetal survival, 
viability, post- 
implantation loss, 
litter size and 
weight, sex ratio, 
litter. 

 + Systemic evaluation of 
repro and developmental 
toxicity. 

 + Sensitive to endocrine 
infl uence. 

Table 1
(Continued)

[ 9 ] is a variation of OECD TG 416 [ 5 ]. TG 443 does not take into 
consideration the F2 generation, but does a complete analysis of 
the F1 generation to assess development of immune system func-
tion, developmental neurotoxicity, as well as reproductive function 
and additional endocrine-sensitive endpoints. Finally, OECD TG 
426 [ 8 ] is focused on developmental neurotoxicity. This test guide-
line study consists of administering the test substance to the female, 
preferably rats, from mating to lactation and analyses are carried 
out on both dams and pups. Litters are evaluated for different neu-
rotoxicity effects. The evaluation consists of observations to detect 
gross neurologic and behavioral abnormalities, including the 
assessment of physical development, behavioral ontogeny, motor 
activity, motor and sensory function, and learning and memory; 
included is also the evaluation of brain weights and neuropa-
thology during postnatal development and adulthood. Dams are 
tested to assess effects in pregnant and lactating females and may 
also provide comparative information between dams and their 
offspring. 

 As refl ected by the complexity of the various test guidelines 
designed to examine the potential for a chemical to induce repro-
ductive and developmental effects, it is clear that there are numer-
ous possible in vivo responses to chemicals related to the assessment 
of DART including fetal growth (fetal growth retardation, fetal 
weight decrease), fetal survival (fetal death, post-implantation 
loss, pre- implantation loss), structural dysmorphogenesis, visceral 
organ toxicity, neuropathology, and immunology. Given the need 
for an assessment of DART to account, with fi delity, for this broad 
spectrum of in vivo effects, an in silico approach to support the 
assessment of DART is consequently also a complex process. 
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 Chemical inventories across various jurisdictions including 
Canada, EU, and US are populated with substances that have lim-
ited or no experimental toxicological data. As such, this poses a 
major challenge globally to regulatory agencies committed to 
addressing the potential to impact human health. The European 
legislation REACH requires specifi c assessment of DART [ 2 ] for 
substances present in the European market; the large numbers of 
these substances requiring evaluation supports the need for the 
development of new in silico models to address existing gaps in the 
empirical data. Currently, predictive models for DART are very few 
owing to the problems previously described which are essentially 
related to the high number of poorly understood complex biologi-
cal processes producing DART effects that in silico methods cur-
rently cannot mimic. In addition, few experimental data are 
available and this is also an issue, since in silico models and the 
reliability of the predictions are based on validation with experi-
mental biological data. 

 In this chapter, two publicly available in silico models present 
in the VEGA (Virtual models for Evaluating the properties of 
chemicals within a Global Architecture) platform [ 10 ] and two sta-
tistically based commercial in silico models are described with 
respect to their predictive application for developmental toxicity. 
Within the VEGA platform [ 10 ], Computer-Assisted Evaluation of 
industrial chemical Substances According to Regulations 
(CAESAR)—which addressed REACH—and Procter & Gamble 
(PG) models are considered; CAESAR is a statistical model made 
by descriptor, PG is a model made “by experts” that is an adapta-
tion of the Proctor & Gamble (P&G) model. The two commercial 
models include the Leadscope Model Applier and Multicase CASE 
Ultra.  

2    Materials and Methods 

   The guide to the VEGA software is described in Subheading   2.4     of 
Chapter   5    . For the developmental toxicity models (the CAESAR 
and P&G implemented in VEGA), if the applicability domain 
index (ADI) value is lower than 0.7 the result of the QSAR is not 
supported by the evaluation done by VEGA on the similar chemi-
cals and as a result the uncertainty of the prediction is higher. In 
this case, higher reliability of the result can only be achieved using 
a second QSAR model to confi rm the assessment ( see   Note 2 ). 
Indeed, it is always recommended to have an independent support 
to the prediction done by a model. This is a general rule, and in the 
case of the models implemented within VEGA, the software pro-
vides an evaluation of the likeliness of the prediction based on the 
results for substances similar to the target compound. In addition, 
another independent support of the prediction can be the result of 
a second model, if in agreement with the result of the fi rst model. 

2.1  Applicability 
Domain
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 The ADI for developmental toxicity model also determines if 
the descriptors of the target compounds are inside the model 
descriptor range. This specifi c check on the descriptors does not 
apply to the PG model which is based on fragments. We also notice 
that, compared to mutagenicity models, the developmental toxic-
ity models are based on smaller data sets, hundreds of compounds 
versus thousands of them. Thus in general, it is more diffi cult to 
fi nd similar compounds, and the ADI values are lower for develop-
mental toxicity models.  

   The CAESAR model has been described in detail [ 11 ]. It is now 
implemented also within VEGA, offering a better assessment of 
the applicability domain; this platform is recommended for using 
the model. 

   The CAESAR data set is composed of 292 compounds that include 
201 that are positive and 91 that are negative. The compounds 
were extracted from Arena et al. [ 12 ] and subsequently assessed by 
human experts on the basis of their experience within the CAESAR 
project (  http://www.caesar-project.eu/    ). In practice, classifi cation 
of these compounds was conducted using U.S. Food and Drug 
Administration (FDA) categories, as adopted within the original 
paper from Arena et al. [ 12 ], and then merging the categories into 
two: FDA categories A and B are considered as non-toxicant, 
whereas categories C, D, and X are considered toxicant. This data 
set was then split into two distinct data sets: one data set of 234 
compounds which was used as the training set, and the other data 
set of 58 compounds which was used as the test set.  

   The CAESAR model is based on descriptors. The model is a QSAR 
classifi cation model based on a Random Forest method imple-
mented using WEKA open-source libraries ( see   Note 3 ).  

   Cooper statistics for the CAESAR model on its training set are 
[ 11 ]: accuracy = 1.00; specifi city = 1.00; and sensitivity = 1.00. The 
meaning of these parameters has been described within Chapter   5    . 
The performance of the model using the test set of 58 compounds 
was found to be: accuracy = 0.84; specifi city = 0.59; sensitiv-
ity = 0.95. These fi gures are surely closer to the practical situation, 
compared to the much better results described on the training set.  

   CAESAR developmental toxicity model classifi es chemicals as toxi-
cant or non-toxicant. The evaluation of the output is done on the 
basis of the applicability domain index (ADI), provided by VEGA. 
The basis of this, and the different components of the ADI, shown 
to the user, have been described in Chapter   5    , and will be discussed 
with examples below in this chapter.   

2.2  CAESAR-VEGA

2.2.1  Toxicity 
Data Source

2.2.2  Description 
of the Model

2.2.3  Model Statistics

2.2.4  Interpretation 
of the Output
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     The PG data set is composed of 716 compounds that include 665 
compounds that are positive, 16 that are negative for DART, and 
35 have insuffi cient or incomplete data. This data set was compiled 
by Wu et al. [ 13 ] and authors used values from different sources: 
they took 260 chemicals that were originally used in the develop-
ment of a DART approach for Threshold of Toxicological Concern 
(TCC) for DART [ 14 ]; all these values meet the criteria of the 
TTC approach described by Kroes et al. [ 15 ] and have reliable 
NOAELs for DART endpoints. Other data were taken from the 
works of Maślankiewicz et al. [ 16 ] and Schardein [ 17 ]; in the case 
of pharmaceutical chemicals values were obtained from the 
ReproRisk ®  database. Data present in the P&G data set are primar-
ily from studies that show one or more positive in vivo testing 
results in a mammalian species. When data on in vivo mammalian 
studies were not available, authors used a weight of evidence 
approach using data from in vitro assays or non-mammalian in vivo 
tests. For more details on the empirical data included in this data 
set consult appendix I of Wu et al. [ 13 ]. To develop the PG model 
in VEGA, only data for developmental toxicity was taken into 
account; this resulted in a training set of 641 compounds with the 
related information about each compound category for the devel-
opmental toxicity property.  

   VEGA implements the P&G decision tree [ 13 ]. From the original 
data set of 716 chemicals, only 641 compounds were included in 
the training set that have experimental data for developmental tox-
icity; remaining compounds having data only for reproductive tox-
icity were excluded in order to have a separate model only for 
prediction of developmental toxicity. It is composed of 25 catego-
ries and six nodes. Each category is composed of one or more 
groups of  chemicals; 5 categories are specifi c for receptor-binding 
(in total ten receptors are involved), and the other 20 are chemical 
structural-related categories, whereas the “nodes” discriminate 
query compounds on the basis of general chemical features. If a 
compound belongs to a category, it is classifi ed as toxic for devel-
opmental toxicity; if it is not associated with any category then it is 
classifi ed as non-toxic for developmental toxicity. The PG model 
has scaffolds for each category that describe groups of chemicals 
that compose each category. Using the scaffold and the possible 
substituents, it is possible to generate a list of virtual chemicals that 
can be toxic compounds taking into account the mode of action 
(as indicated by Wu et al. [ 13 ]) of positive compounds. The VEGA 
model implements a virtual library of 185,950 structures gener-
ated in this way. This model tries to fi nd an exact match between 
the given compounds and any of the virtual compounds in the 
library. If a match is found, a prediction of “toxicant” is given, 
otherwise a “non-toxicant” prediction is provided.  

2.3  PG-VEGA

2.3.1  Toxicity 
Data Source

2.3.2  Description 
of the Model
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   Cooper statistics (as described in Chapter   5    ) for the developmental 
toxicity on this training set are: accuracy = 0.85, specifi city = 0.44, 
sensitivity = 0.89.  

   PG model classifi es chemicals as toxicant or non-toxicant ( see   Note 4 ). 
The evaluation of the output is done on the basis of the applicabil-
ity domain index (ADI), provided by VEGA. The basis of this, and 
the different components of the ADI, shown to the user, have been 
described in Chapter   5    , and will be discussed with examples below 
in this chapter.   

   There are several CASE Ultra models designed for predicting 
developmental toxicity of chemicals to a variety of mammals includ-
ing humans. For the purpose of this paper, the CASE Ultra model 
that predicts the developmental toxicity to mammals is being 
considered. 

   The training set of the model is composed of 275 chemicals. The 
empirical toxicity data on these chemicals were obtained from the 
Chemical Informatics Program (CIP) reprotox database [ 18 ,  19 ]. 
The majority of these data were created using fi ve publicly available 
reprotox sources: (1) Reproductive Toxicology Center System 
(REPROTOX), (2) Shepard’s Catalog of Teratogenic Agents, (3) 
Teratogen Information System (TERIS), (4) The Registry of Toxic 
Effects of Chemical Substances (RTECS), and (5) The Physicians’ 
Desk Reference (PDR). In addition, a small portion of the repro-
ductive toxicity data were obtained from International Agency for 
Research on Cancer (IARC) monographs and from original litera-
ture articles cited in RTECS.  

   CASE Ultra is a fragment-based QSAR model that uses machine 
learning techniques to learn automatically from training data. It is 
infl uenced primarily by the Multiple Computer Automated 
Structure Evaluation (MCASE) methodology [ 20 ,  21 ]. On the 
basis of a hierarchical algorithm, MCASE uses Simplifi ed Molecular-
Input Line-Entry System (SMILES) codes to generate all possible 
2–10 consecutive atom-molecular fragments (hydrogen atoms 
excluded) of preloaded training compounds with associated toxic-
ity data. The program then statistically compares the fragments of 
active and inactive chemicals in the training set. Fragments that are 
primarily associated with active chemicals are identifi ed as “positive 
alerts” (biophores). Conversely, the program also identifi es molec-
ular fragments primarily associated with inhibition of activity or 
“deactivating alerts” (biophobes). Further, the program identifi es 
modulating factors based on physiochemical descriptors, calculated 
parameters such as highest occupied molecular orbital and lowest 

2.3.3  Model Statistics

2.3.4  Interpretation 
of the Output

2.4  Multicase 
CASE Ultra

2.4.1  Toxicity 
Data Source

2.4.2  Description 
of the Model
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unoccupied molecular orbital energies, octanol–water partition 
coeffi cient, and presence of certain molecular (sub)structures that 
correlate with enhanced or diminished activity. These parameters 
are combined to develop a QSAR that generates an estimate of the 
potential toxicity of the query compound.  

   The ratio of positive to negative in the model training set is 
166:59. Cooper statistics for this model are: specifi city = 0.50, 
sensitivity = 0.85.  

   The CASE Ultra model reports prediction as percent probability of 
being positive. Generally, probabilities lying below 40 % are con-
sidered as non-toxic and those above 60 % as toxic. The zone lying 
between 40 % and 60 % is designated as the gray zone and proba-
bilities in that area are considered inconclusive. The model also 
assesses query chemical for presence of contributing positive alerts 
as well as for presence of unknown fragments; that is fragments not 
present in any of the training set chemicals used in building the 
model. In addition to this, the model algorithm also looks for pres-
ence of positive modulators (i.e. fragments that support activity) 
and presence of negative modulators (i.e. fragments that reduce 
activity). The overall percent probability is computed based on this 
entire analysis.   

   There are several models available within the Leadscope Model 
Applier suite that are designed for predicting a number of different 
developmental toxicity effects caused by exposure of mammals to 
chemicals. For the purpose of this paper, the model that predicts an 
effect related to “fetal survival,” i.e. “fetal death mouse” is being 
considered. 

   The training set of the model contains 978 chemicals. It is com-
posed of data obtained from the Chemical Informatics Program 
(CIP) reprotox database [ 18 ,  19 ].  

   The developmental toxicity model pertaining to fetal survival (i.e. 
fetal death mouse) was built using the Leadscope Prediction Data 
Miner software. It considers molecular descriptors that include 
structural features and eight calculated properties [ 22 ]. The struc-
tural features include Leadscope default hierarchy features plus the 
predictive scaffolds generated with default settings, whereas the 
eight calculated properties are parent molecular weight, Log  P , 
polar surface area, hydrogen bond acceptors, hydrogen bond 
donors, number of rotational bonds, and Lipinski score (rule viola-
tion). The developmental toxicity was modeled for study calls (e.g. 
fetal death in mouse), where the positive calls were trained as 
binary 1 and negative calls as binary 0.  

2.4.3  Model Statistics

2.4.4  Interpretation 
of the Output

2.5  Leadscope 
Model Applier

2.5.1  Toxicity 
Data Source

2.5.2  Description 
of the Model
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   The ratio of positive to negative chemicals in the model training set 
is 406:572. Cooper statistics for this model on its training set are: 
accuracy = 0.68, specifi city = 0.94, sensitivity = 0.41. The cross- 
validation statistics are: accuracy = 0.64; specifi city = 0.90; 
sensitivity = 0.37.  

   The outcome of the Leadscope Model Applier QSAR prediction is 
given as the probability of being a developmental toxicant on a 
scale of 0 (non-toxic) to 1 (toxic). The prediction results are pre-
sented as the “prediction status” and the “positive prediction 
probability.” The prediction status can be “positive,” “negative,” 
and “not-in- domain.” The higher the probability is, the greater 
chance there is of the test chemical being toxic for the given end-
point. The model domain is defi ned for two factors: (1) containing 
structural model features in addition to property descriptors; (2) 
being within a similar structure group with at least 30 % similarity 
(this is set by the model developer). Additionally, the Model 
Applier allows analog browsing in these databases after a predic-
tion has been made on a test set of compounds which is an added 
value because it provides an expert user the ability to also look at 
available empirical/mechanistic data to support the prediction.    

3    Interpreting the Results 

 A comprehensive assessment of predictions is the most critical 
aspect related to the interpretation of results estimated by (Q)SAR 
models. VEGA facilitates the interpretability of (Q)SAR predic-
tions by breaking down several critical aspects of the applicability 
domain as described in Chapter   5    . Nevertheless, possible misinter-
pretations can still take place; the following examples will provide 
further insights into the application of (Q)SAR models as well as 
into the analysis and interpretation of (Q)SAR results ( see   Note 5 ). 

      Systematic Name: 1,2-Dichlorobenzene. 
 CAS Registry Number: 95-50-1. 
 SMILES: c1ccc(c(c1)Cl)Cl. 
 Experimental value: Not available. 
 CAESAR results: Prediction is non-toxic, but the result may 

not be reliable. 

2.5.3  Model Statistics

2.5.4  Interpretation 
of the Output

3.1  Case Study 1: 
Dichlorobenzene 
(Fig.  1 )

  Fig. 1    The structure of dichlorobenzene       
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 In the CAESAR model, the query molecule is not present in 
the training set. Even though the compounds identifi ed as simi-
lar by the model have a relatively high similarity index of 0.729 
(Fig.  2 ), it can be observed that the molecular structure is too 
different compared to the query molecule. The most similar 
compounds found in the training set have two substituents 
linked at the benzene, but substituents are in different positions 
with respect to the query compound and they are oxygen atoms 
instead of chlorine atoms. This difference may be quite important 
for the specifi c endpoint. The second most similar compound 
(Fig.  3 ) is a molecule that has two chlorine atoms, but also a more 
complex chain. From a chemical point of view, the second chemical 
is surely more complex than the fi rst one. This can directly infl u-
ence the toxicity profi le of the chemical.

    The accuracy index is low (0.527) because the model was not 
able to predict the property correctly for one of the two most simi-
lar compounds found in the training set. 

 Accordingly, the ADI is 0.714 and the prediction may not be 
conclusive. 

 Model PG results: prediction is toxic, and the result appears 
reliable. 

 In the library of the PG model there is no experimental value 
for the query compound. However, in the training set of the model 
there are some similar structures with benzene rings and chloride 
substituents in different positions (Figs.  4 ,  5 , and  6 ). The three 
most similar compounds (Figs.  4 ,  5 , and  6 ) are experimentally all 

  Fig. 2    The structure of the most similar chemical within the CAESAR model for 
the case study 1       

  Fig. 3    The structure of the second most similar chemical within the CAESAR 
model for the case study 1       
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developmental toxicant, and they have two or more chlorine atoms 
linked to the benzene ring. Therefore, we can deduce that the 
presence of chlorine substituents on the benzene ring makes the 
molecule toxic for developmental toxicity. The ADI is high (0.974) 
and indeed the prediction of the model for the fi rst two similar 
molecules is in accordance within the experimental value. As such, 
the prediction is considered reliable.

     Model CASE Ultra results: prediction is toxic, and there is 
high confi dence in the result. 

 The compound was not used to build the model, and it lies 
within the applicability domain of the model. The model identifi ed 
one positive alert and 86.4 % of the molecules (19 out of 22) in the 
training set that contained this alert and were found to be positive 
for this endpoint (i.e. developmental toxicity to mammals). 
Moreover, one positive modulator was also identifi ed in the query 
chemical structure. No negative modulators of this alert or 
unknown fragment were found in the query chemical. Based on 
this analysis, a high confi dence can be assigned to the computed 
probability of 0.72 indicating potential toxicity. 

 Model Applier results: prediction is non-toxic, but there is 
low–moderate confi dence. 

  Fig. 4    The structure of the most similar chemical within the PG model for the 
case study 1       

  Fig. 5    The structure of the second most similar chemical within the PG model for 
the case study 1       

  Fig. 6    The structure of the third most similar chemical within the PG model for 
the case study 1       
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 The compound was not used to build the model, however 
there are some similar structures in the training set, i.e. a benzene 
ring with one or more chlorine (and other) substituents in differ-
ent positions (Figs.  7 ,  8 ,  9 , and  10 ). The compounds shown in 
(Figs.  7  and  8 ) are reported non-toxic whereas compounds shown 
in (Figs.  9  and  10 ) are reported toxic for this endpoint. In this 
case, the model  predicted correctly only the compounds (7) and 
(8). The analogs do not match structurally that well with the query 
structure and the query chemical shows only three matching struc-
tural features with the training set chemicals. Therefore, there is 
low–moderate confi dence in the model computed prediction prob-
ability of 0.32 indicative of potential non-toxicity.

  Fig. 7    The structure of the most similar chemical within the Model Applier pro-
gram for the case study 1       

  Fig. 8    The structure of the second most similar chemical within the Model Applier 
program for the case study 1       

  Fig. 9    The structure of the third most similar chemical within the Model Applier 
program for the case study 1       
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      Final assessment: The tested models do not contain the 
experimental value for the target compound in their databases, 
thus only predictions can be used. The CAESAR model predicts 
the query compound as non-toxic but with low ADI. The 
reported analogs are also not very similar to dichlorobenzene. 
Similarly, Leadscope Model Applier predicts the query compound 
non-toxic but, due to the absence of good analogs and fewer 
matching features, a low–moderate confi dence is assigned to the 
prediction. Conversely, the CASE Ultra model predicts the query 
chemical as toxic. In addition, the PG model predicts the mole-
cule as toxic and there are some similar compounds in agreement 
with this assessment. The overall analysis based on the available 
information suggests that this compound has the potential to 
induce developmental toxicity with moderate certainty as predic-
tions obtained from both the PG model and the CASE Ultra 
model have high confi dence.  

  
    Systematic Name: 2-Methyl-1,3-benzenediol. 

 CAS Registry Number: 23-22-3. 
 SMILES: Oc1cccc(O)c1C. 
 Experimental value: Not available. 
 CAESAR results: Prediction is non-toxic; the result appears 

reliable. 
 In the CAESAR model the query compound is not present in 

the training set, but there is a molecule quite similar to the query 
compound (similarity index (SI) 0.928) (Fig.  12 ). The model pre-
diction for the most similar molecule is correct, but for the second 
most similar structure (Fig.  13 ) the prediction is wrong; accord-
ingly, the model has a low accuracy index (0.518). The second 
structure (Fig.  13 ) is quite different compared to the query com-
pound based on the presence of an amide group; this affects the 
overall ADI of the target compounds: 0.803. The prediction of 
query compounds has an ADI of 0.803 which is considered to be 
quite high.

    Model PG results: prediction is non-toxic, but the result 
appears to be unreliable. 

3.2  Case Study 2: 
2-Methylresorcinol 
(Fig.  11 )

  Fig. 10    The structure of the fourth most similar chemical within the Model Applier 
program for the case study 1       
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 The library of the PG model does not have an experimental 
value for the query compounds and there are not many similar 
compounds in the training set; the most similar compound has a 
similarity index (SI) of 0.846, which is considered to be acceptable 
(Fig.  14 ). This similar compound has two phenolic groups as the 
target, however it also has a propilamine which can change the 
assessment of the compound. Moreover, fi ve similar compounds 
out of six are experimentally reported as developmental toxicants 
(i.e. toxic), and only one similar compound is reported as non-
toxic, but the model predicts it as toxic. As such, there is disagree-
ment between the prediction for the query compound and this 
similar compound. Hence, ADI is very low: 0.639.

  Fig. 11    The structure of 2-methylresorcinol       

  Fig. 12    The structure of the most similar chemical within the CAESAR model for 
the case study 2       

  Fig. 14    The structure of the most similar chemical within the PG model for the 
case study 2       

  Fig. 13    The structure of the second most similar chemical within the CAESAR 
model for the case study 2       
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   Model CASE Ultra results: prediction is inconclusive. 
 The compound was not used to build the model. The com-

pound lies within the applicability domain of the model. No con-
tributing positive alerts and no unknown fragments were found by 
the model. However, model computed probability of 0.49 fell 
inside the gray zone (0.40–0.60) around the model's current clas-
sifi cation threshold (50.0 %), therefore, the results of activity pre-
diction were considered inconclusive. 

 Model Applier results: prediction is non-toxic, and there is 
high confi dence in the result. 

 The compound was not used to build the model, however 
there are some similar structures in the training set, i.e. a benzene 
ring with hydroxyl substituents in different positions as illustrated 
in Figs.  15 ,  16 ,  17 , and  18 . The compounds (Fig.  15 ) to (Fig.  17 ) 
are reported non-toxic for the endpoint, whereas compound 
(Fig.  18 ) was reported toxic. When compared with their empirical 
data, compounds (Fig.  15 ) to (Fig.  17 ) were found to be correctly 
predicted by the model whereas compound (Fig.  18 ) was found to 
be incorrectly predicted. The query chemical shows seven match-
ing structural features with the training set chemicals. From the 
perspective of the presence of similar functional groups and match-
ing features, there is enough justifi cation for the prediction. 
Therefore, a high confi dence is assigned to the model computed 
prediction probability of 0.24, which is indicative of potential 
non-toxicity.

  Fig. 15    The structure of the most similar chemical within the Model Applier pro-
gram for the case study 2       

  Fig. 16    The structure of the second most similar chemical within the Model 
Applier program for the case study 2       
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      Final assessment: Models do not have an experimental value 
for methyl resorcinol. The ADI for CAESAR is quite high and the 
compound is predicted as non-toxic. Similarly, Leadscope Model 
Applier predicted the compound as non-toxic with high confi -
dence. Model PG has diffi culty to predict this compound based on 
(partially) related compounds. Similarly, CASE Ultra was not able 
to predict the activity. Therefore, in the fi nal assessment, predic-
tions by Leadscope and CAESAR are taken into account. Thus, 
CAESAR and Leadscope models illustrate how the information on 
structural analogs of query chemical can contribute to the overall 
assessment and in this particular example to make an overall con-
clusion of non-toxic.  

      Systematic Name: 4-(2-Amino-1-hydroxyethyl)-1,2-benzenediol. 
 CAS Registry Number: 138-65-8. 
 SMILES: Oc1ccc(cc1(O))C(O)CN. 
 Experimental value: Not available. 
 CAESAR results: Prediction is toxic, the result appears reliable. 
 The CAESAR model does not have an experimental value for 

the query compound. The most similar structure found in the 
training set (Fig.  20 ) is very similar to the query compound and is 
toxic. The only structural difference between the query compound 
and similar compound is at the terminal nitrogen where an extra 
methyl group is present. All the other compounds have a good SI 

3.3  Case Study 3: 
 dl - Norepinephrine 
(Fig.  19 )

  Fig. 17    The structure of the third most similar chemical within the Model Applier 
program for the case study 2       

  Fig. 18    The structure of the fourth most similar chemical within the Model Applier 
program for the case study 2       
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and are almost all toxic except one that is non-toxic. In this case, 
the CAESAR model is able to predict all the similar compounds 
correctly, so the prediction has a very high ADI (0.97).

   Model PG results: prediction is toxic, and the result appears 
reliable. 

 The library of the PG model does not have an experimental 
value for the query compound. Structures similar to the query 
compound were found, however unlike the CAESAR model, the 
PG library makes more errors in the prediction of the similar 
compounds. Notably, the model is able to correctly predict struc-
tures that are most similar to the query compound. Their similar-
ity was greater than 0.94, as defi ned by the VEGA software [ 23 ] 
( see   Note 2   for values of the similarity and thresholds applied ). For 
this reason, the prediction by PG is considered to be relatively 
less reliable than that obtained by the CAESAR model, yet 
acceptable. 

 Model CASE Ultra results: prediction is inconclusive. 
 The compound was not used to build the model. No contribut-

ing positive alerts were detected. However, one unknown fragment 
was identifi ed in the chemical. Moreover, the prediction was found 

  Fig. 19    The structure of  dl -norepinephrine       

  Fig. 20    The structure of the most similar chemical within the CAESAR model for 
the case study 3       
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to fall inside the gray zone (0.40–0.60) and therefore the results of 
activity prediction were considered inconclusive. 

 Model Applier results: prediction is non-toxic, and there is 
low–moderate confi dence in the result. 

 The compound was not used to build the model, however 
there are some similar structures in the training set (Figs.  21 ,  22 , 
 23 , and  24 ). Based on the empirical information, compounds 
(Fig.  21 ) and (Fig.  22 ) are non-toxic and compounds (Fig.  23 ) 
and (Fig.  24 ) are toxic. When using Model Applier, compounds 

  Fig. 21    The structure of the most similar chemical within the Model Applier pro-
gram for the case study 3       

  Fig. 22    The structure of the second most similar chemical within the Model 
Applier program for the case study 3       

  Fig. 23    The structure of the third most similar chemical within the Model Applier 
program for the case study 3       
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(Fig.  21 ) and (Fig.  22 ) are correctly predicted and compounds 
(Fig.  23 ) and (Fig.  24 ) are incorrectly predicted. Like the query 
structure, compounds (Fig.  23 ) and (Fig.  24 ) have a free amino 
group which in structures (Fig.  23 ) and (Fig.  24 ) is substituted 
with a  N -methyl group. From the perspective of analogous struc-
tures and their predictions, there is insuffi cient justifi cation for the 
prediction on the query chemical. Chemicals which are apparently 
quite similar have different toxicity, and the reason for the differ-
ent property values is not clear. Therefore, there is low to moder-
ate confi dence in the model computed prediction probability of 
0.17, which is indicative of potential lack of toxicity for the query 
chemical.

      Final assessment: Model training sets do not have experimental 
value for norepinephrine. Both the CAESAR and PG models pre-
dict the target chemical as toxic with high reliability. The CAESAR 
model has more similar structures than the PG Model and predicts 
correctly almost all similar structures found in the training set. We 
clarify that the ADI algorithm within CAESAR uses the fi rst two 
similar molecules (however, we always recommend the user to con-
sider all six similar substances). Since these two models are in 
agreement, this compound can be considered as a toxic prediction 
with higher certainty. Conversely, the results obtained from CASE 
Ultra were found to be inconclusive. The non-toxic prediction 
obtained from Leadscope Model Applier has only low to moderate 
confi dence for this endpoint, and further investigation of similar 
compounds suggests that they are toxic. This result obtained from 
Leadscope model introduces uncertainty in the overall assessment 
based on CAESAR and PG library. The inconclusive results 
obtained from CASE Ultra do not help in this case. Thus, the 
chemical may be assumed toxic, but with a moderate margin of 
uncertainty.   

4    Conclusions 

 Developmental toxicity is one of the most challenging endpoints 
in the area of QSAR-based predictive toxicology. Some models 
on this complex endpoint are available. For molecules that fall 
within the model’s applicability domain the predictions can be 
moderately reliable, when the criteria, defi ned by each model, are 

  Fig. 24    The structure of the fourth most similar chemical within the Model Applier 
program for the case study 3       
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met, such as high ADI value (as explicitly indicated in the sum-
mary cover page). Even though read across can be used for data 
gap fi lling for this type of endpoint, the QSAR models discussed 
above when applied with expert judgment may potentially sup-
port chemical screening as an initial starting point for exploring 
the potential for developmental toxicity of query compounds. In 
fact, the case studies presented in this chapter illustrate that in 
absence of experimental data, the potential for toxicity of a query 
compound may be projected by expertly weighing the predic-
tions from multiple QSAR models and data from compound’s 
analogs, provided that there is suffi cient agreement on the results 
provided by the different models ( see   Note 5 ). If there are rea-
sons for moderate to high uncertainty, due to the limited number 
of chemicals with experimental data, and of the limited perfor-
mance of the models, no fi nal conclusion can be achieved.  

5    Notes 

     1.    Please notice that DART includes a wide series of effects. The 
models illustrated in this chapter are based on a single defi ned 
endpoint (e.g. Leadscope Model Applier) or refl ect the analysis 
of the many different effects that exist within a broad spectrum 
of possible DART endpoints (CaseUltra, CAESAR, P&G). 
Hence, it is important to interpret (especially) a negative/non-
toxic with diligence/supplement with further empirical data 
from analogs/read across.   

   2.    Threshold values for different properties of the applicability 
domain could change for different models. In particular in 
CAESAR model for mutagenicity, threshold values for similar-
ity are 0.85 and 0.7, while CAESAR developmental toxicity 
model values are 0.8 and 0.7. If the similarity value is below 
0.7, the two substances should not be considered similar. 
Accuracy and concordance thresholds for CAESAR mutagen-
icity model are 0.9 and 0.5, for developmental toxicity model 
are 0.8 and 0.5 and thresholds for ADI in mutagenic model are 
0.9 and 0.7 and for developmental toxicity model are 0.8 and 
0.7. These values are infl uenced by the number of compounds 
of the training set.   

   3.    A very similar model is also implemented within T.E.S.T. [ 24 ]. 
Indeed, there are some similarities between T.E.S.T. and 
VEGA models. The few differences between them pertain to 
(1) difference in algorithm that is used to represent the chemi-
cal structures, and this may cause minor alterations in the 
results for some chemicals, (2) difference in the approach to 
refer to similar chemicals and calculation of the applicability 
domain. For instance, T.E.S.T. shows similar compounds and 
the relative statistics for the training and test sets separately, 
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providing information useful to evaluate the performance 
inside and outside the training set. Conversely, the approach of 
VEGA is to provide an overall evaluation on the reliability of 
the model for the specifi c chemical,  showing the sub-indices as 
described in Chapter   5    , using all chemicals of the training and 
test sets.   

   4.    Even if PG model does not use the decisional tree present in 
Wu et al. [ 13 ], the reference at the category described in Wu 
et al. [ 13 ] output is present in VEGA.   

   5.    There are some commercial or freely available software pro-
grams that can predict developmental toxicity. In addition to 
the models described here, other examples of freely available 
models are T.E.S.T. (Toxicity Estimation Software Tool) [ 24 ] 
and OECD QSAR Toolbox [ 25 ].         
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    Chapter 9   

 In Silico Models for Repeated-Dose Toxicity (RDT): 
Prediction of the No Observed Adverse Effect Level 
(NOAEL) and Lowest Observed Adverse Effect Level 
(LOAEL) for Drugs                     

     Fabiola     Pizzo      and     Emilio     Benfenati     

  Abstract 

   The preclinical stage in drug development requires the determination of repeated-dose toxicity (RDT) in 
animal models. The main outcome of RDT studies is the determination of the no observed adverse effect 
level (NOAEL) and the lowest observed adverse effect level (LOAEL). NOAEL is important since it serves 
to calculate the maximum recommended starting dose (MRSD) which is the safe starting dose for clinical 
studies in human beings. Since in vivo RDT studies are expensive and time-consuming, in silico approaches 
could offer a valuable alternative. However, NOAEL and LOAEL modeling suffer some limitations since 
they do not refer to a single end point but to several different effects and the doses used in experimental 
studies strongly infl uence the fi nal results. Few attempts to model NOAEL and LOAEL have been reported. 
The available database and models for the prediction of NOAEL and LOAEL are reviewed here.  

  Key words     Repeated-dose toxicity  ,   NOAEL  ,   LOAEL  ,   Drug safety  ,   In silico models  ,   Chronic toxicity  

1       Introduction 

 Repeated-dose toxicity (RDT) studies are designed to determine the 
effects of repeated oral, dermal, or inhalation exposure to a substance 
over a specifi c period of time [ 1 ]. Characterization of the toxicological 
profi le of the test substance after repeated exposure is the primary goal 
of RDT study. RDT tests provide detailed information to identify the 
adverse effects, the potential target organs or systems (reproductive 
system, liver, kidney, central nervous system, endocrine system), 
and the persistence or reversibility of the effects [ 2 ]. 

 Toxicity after repeated dosing must also be tested to contribute 
to the development of safe medicinal products that are to be given 
repeatedly [ 3 ]. 

 Drug development is a long, complex, and expensive process. 
The typical procedure comprises three major steps: discovery, 
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 preclinical development, and clinical trial [ 3 ,  4 ] (Fig.  1 ). Clinical 
trials involving daily chronic dosing require RDT studies on animal 
models (two species, one non-rodent) in the preclinical stage [ 3 ]. 
The no observed adverse effect level (NOAEL) and the lowest 
observed adverse effect level (LOAEL), the main outcomes of 
these studies, are of the utmost importance in the non-clinical risk 
assessment. Although the defi nitions of NOAEL and LOAEL are 
debated [ 5 ], generally, NOAEL is the highest dose without any 
biologically signifi cant adverse effects, while LOAEL refers to the 
lowest exposure at which adverse effects are seen (Fig.  2 ). NOAEL, 
determined in non-clinical safety studies in the most appropriate 
animal species, gives important information for the fi rst dose in 
humans [ 6 ]. NOAEL is essential to calculate the maximum recom-
mended starting dose (MRSD), the dose used in the fi rst human 
study (clinical trial) [ 7 ] (Fig.  1 ).

    Besides pharmaceuticals [ 8 ,  9 ], other regulatory contexts 
require RDT testing to assess the potential risks of a substance: 
industrial chemicals [ 10 ], agrochemicals [ 11 ,  12 ], biocides [ 13 ], 
and cosmetics [ 1 ,  14 ]. 

  Fig. 1    Scheme of the typical drug development       
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 Considering the high cost of drug failure and withdrawal due 
to toxicity found in the development process, the potential toxicity 
of a drug needs to be determined as soon as possible [ 15 ]. The 
importance of the results of RDT studies for the evaluation of the 
safety of chemicals is undeniable, but the in vivo tests are time-
consuming and very expensive [ 16 ]. The possibility of obtaining 
the same information using non-testing methods is tempting, 
though considering the peculiar nature of NOAEL and LOAEL, 
their computational modeling is a challenge. Few attempts have been 
made to model NOAEL and LOAEL. A review of the software, 
databases available, and published models is presented here.  

2     LOAEL and NOAEL Databases 

 Databases containing NOAEL and LOAEL values are available, 
with a high percentage of overlap between the different sources 
(Table  1 ). Generally, for NOAEL and LOAEL, the measurement 
unit is expressed as mg/kg body weight/day. In order to build 
accurate computational models, the quality of the chemical struc-
tures and data is crucial [ 17 ]. In addition, for LOAEL and NOAEL, 
not only is the fi nal number important but other supporting infor-
mation is too, such as route and duration of exposure, species and 
strain used, space between doses, and organ level effects, in order 
to properly assess the quality and the potential use of these data for 
modeling.

   The RepDose database, developed by Fraunhofer ITEM as 
part of a project funded by the European Chemical Industry 
Council (CEFIC), contains experimental NOAEL and LOAEL 
values for 655 chemicals related to oral (gavage, feeding, and 
drinking water) or inhalation studies in rodents exposed to the 
substance over at least 14 days. The chemicals in the database have 
a limited number of functional groups since complex and multi-
functional chemical structures such as pharmaceuticals, inorganic 

  Fig. 2    Identifi cation of the lowest observed adverse effect level (LOAEL) and no observed adverse effect 
level (NOAEL)       
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or metal compounds, and mixtures were eliminated [ 18 ]. A score 
(A, B, C, D) indicating the data quality is also provided. Details on 
the animals used (strain, sex, number per dose group) and the 
exposure (duration and route, postexposure observation period, 
and dose groups) are also provided. The database includes toxico-
logical (effect data include all target organs with all associated 
effects and corresponding LOAEL) and physicochemical (molecu-
lar weight, solubility in water, physical state, boiling point, disso-
ciation constant, octanol-water partition coeffi cient, and vapor 
pressure) data. The RepDose database is available at   http://
fraunhofer-repdose.de/    , and access is free on registration by the 
user. A user-friendly query screen (Fig.  3 ) puts several questions 
regarding the infl uence of structural features and physicochemical 
data on LOAEL, target organs, and effects [ 18 ]. Although all the 
data in the database are displayed, their use is restricted.

   Munro et al. [ 19 ] provide NOAEL and LOAEL values for 613 
organic compounds related to sub-chronic, chronic, reproductive 
toxicity, and teratogenic studies in rodents and rabbits. For each 
compound the chemical name, CAS number, structural classifi ca-
tion using the decision tree of Cramer et al. [ 20 ], species, sex, 
route of exposure, doses tested, study type, duration, end points, 
NOAEL, and LOAEL references are reported. The data come 
from four sources: US National Toxicology Program (NTP) tech-
nical reports (post-1984), the toxicological monographs prepared 
by the Joint FAO/WHO Expert Committee on Food Additives 
(JECFA), the Integrated Risk Information System (IRIS) data-
base, and the Developmental and Reproductive Toxicology 
(DART) database. The compounds in the Munro database repre-
sent a variety of chemicals (e.g., pesticides, food additives, indus-
trial chemicals). To demonstrate that a study is rigorous enough to 
detect toxic effects, a compound needs to have both NOAEL and 
LOAEL to be included in the database; however, in some cases, 
the LOAEL is not available because the substances are major food 
ingredients and had no toxicity at the highest dose tested in well-
conducted studies [ 19 ]. The database is downloadable from the 
QSAR OECD Toolbox; otherwise, the publication provides a 
paper version of the database. 

  Fig. 3    Query form of the RepDose database       
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 The Hazard Evaluation Support System (HESS) database 
comprises 500 chemicals for which RDT data were obtained from 
test reports of Japanese CSCL by the Ministry of Health, Labour 
and Welfare, the National Institute of Technology and Evaluation 
(NITE), and the Ministry of Economy, Trade and Industry 
(METI) and from reports produced by the US NTP [ 21 ]. All these 
tests were conducted in compliance with GLP principles. This 
database contains detailed RDT data related to sub-chronic and 
chronic (28–120 days) oral exposure in rats. The HESS database, 
freely downloadable from QSAR OECD Toolbox, provides infor-
mation for the target compounds such as CAS number, chemical 
name, SMILES, exposure route and duration of the studies, animal 
used (strain, sex), toxicological data (organ, tissue, effects, largest 
and smallest doses used) and NOAEL/LOAEL values. 

 The Integrated Risk Information System (IRIS) is a publicly 
available repository, developed by the US Environmental Protection 
Agency (EPA) that contains information on over 500 chemicals. It 
provides descriptive and quantitative chronic health information 
on chemicals found in the environment in order to support risk 
decision- making [ 22 ]. Two main categories of effects are present 
in IRIS database: non-cancer (oral reference doses and inhalation 
reference concentrations: RfDs and RfCs) and cancer effects. 
NOAEL and LOAEL are reported with a detailed summary of the 
studies containing information on the species used, route and 
duration of exposure, concentrations tested, and target organs. 
The user can consult data on the EPA website (  http://cfpub.epa.
gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList    ); 
substances are listed in alphabetical order. 

 The COSMOS database [ 23 ] contains 12,538 toxicological 
studies for 1660 compounds. Two datasets are available: US FDA 
PAFA and oRepeatToxDB. The fi rst contains 12,198 studies across 
27 end points including both repeated-dose (in this case the lowest 
effect level, LEL, is reported) and genetic toxicity data. 
ORepeatToxDB, assembled by the COSMOS consortium, contains 
340 in vivo repeated-dose toxicity studies from different sources 
(EC REACH project, US NTP) for 228 chemicals. It reports 
observed toxicological effects together with the sites at which the 
effect occurred. Figure  4  reports the typical output of a COSMOS 
database query. The user needs to be registered for a free account. 
The COSMOS database was built in the context of the EC project 
SEURAT-1, partly funded by Cosmetics Europe.

   The Toxicity Reference Database (ToxRefDB), developed by 
US EPA [ 24 ], comprises thousands of animal toxicity studies 
(reporting NOAEL and LOAEL) after testing hundreds of differ-
ent chemicals. ToxRefDB is freely downloadable from the QSAR 
OECD Toolbox or can be consulted at the US EPA website 
(  http://actor.epa.gov/toxrefdb/faces/Home.jsp    ). 

 Although none of these databases contains only NOAEL and 
LOAEL data for drugs, some of them cover pharmaceuticals.  
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3     In Silico Models for the Prediction of LOAEL and NOAEL 

 A limited number of in silico models are available for the prediction 
of LOAEL and NOAEL. Published models and software are 
reviewed here. 

   The models described here were not built primarily to predict 
NOAEL and LOAEL for pharmaceuticals; indeed, the compounds 
used for modeling came from different industrial and environmen-
tal contexts. The performances are close to acceptability and do 
offer a good starting point for the development of a reliable model 
that can be used in a multidisciplinary context. Table  2  provides a 
general overview of the literature-based models.

   One of the most recent models for the prediction of RDT is 
described in Toropov et al. [ 25 ]. They modeled NOAEL for 113 
organic compounds using the Monte Carlo method and three 
molecular descriptors. The dataset was split three times and the 
average performances in the training set (97 compounds) in terms 

3.1  Published 
Models

  Fig. 4    Typical output of a query using the COSMOS database. In the toxicity data section ( orange ), the exposure 
duration and the animal used for the in vivo experiment ( green ) are indicated, and the RDT study is reported at 
the bottom of the screen ( red ) as highest no effect level (HNEL)       
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of  R  2  and RMSE were, respectively, 0.52 and 0.61. In the test set 
(16 compounds), the performance in terms of  R  2  and RMSE 
ranged from 0.62 to 0.73 and from 0.44 to 0.52, respectively. 

 Gadaleta et al. [ 26 ] using the  k  nearest neighbors ( k -NN) algo-
rithm, a computational technique based on the concept of similar-
ity, built a model for the prediction of LOAEL. However, to 
improve the performance, the basic algorithm was refi ned by set-
ting additional conditions, and a target chemical must fulfi ll all 
those rules to be considered reliably predicted. The training and 
test sets of the model comprised, respectively, 254 and 174 organic 
compounds, and  R  2  for the two sets ranged from 0.632 to 0.769 
and from 0.552 to 0.682, considering the different  k . This model 
will be implemented in the VEGA (  http://www.vega-qsar.eu/    ) 
platform and will be freely available. 

 Toropova et al. [ 27 ] modeled 218 NOAEL data (28 days of 
oral exposure in the rats) using the Monte Carlo method.  R   2   for 
the training and test sets ranged from 0.679 to 0.718 and from 
0.61 to 0.66, respectively, considering the different splits. 

 Sakuratani et al. [ 28 ] identifi ed 33 chemical categories related 
to individual types of toxicity on the basis of mechanistic knowl-
edge starting from a training set of 500 chemicals with RDT data 
related to oral exposure between 28 and 120 days in rats. Chemicals 
were assigned to a given category, and then the LOAEL was 
derived as the result of a data gap-fi lling approach by read-across 
on other chemicals in the category. This model does not provide 
fi gures for the LOAEL but can be used to identify the target organ 
most likely to be affected by the target chemical. The category 
library has been implemented and is available through the Hazard 
Evaluation Support System (HESS) integrated computational 
platform. 

 A further model for the prediction of LOAEL was developed 
by Mazzatorta et al. [ 29 ], applying an integrated approach of 
genetic algorithm (GA) and partial least squares (PLS). Selected 
descriptors (19 from DRAGON) were used to develop a LOAEL 
predictive model through a leave-one-out stepwise multiple linear 
regression (LOO- SMLR) starting from a set of 445 chronic toxic-
ity data (180 days or more of oral exposure in rats) selected from 
several sources. The fi nal dataset included pesticides, drugs, and 
natural products. This model performed as follows:  R  2  0.570 and 
RMSE 0.700. No external validation was done, so the real predic-
tive model’s power is not known. However, the performances of 
LOO cross-validation were  q  2  0.500 and RMSE 0.727. 

 De Julián-Ortiz et al. [ 30 ] used a dataset of chronic LOAEL 
data for 234 compounds compiled from different sources (US 
Environmental Protection Agency, EPA, and National Cancer 
Institute/National Toxicology Program, NTP) to build a multilin-
ear regression model (MLR). They selected 15 topological descrip-
tors by a Furnival-Wilson algorithm from among those in the 
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DESCRI program. MLR and the Furnival-Wilson algorithm were 
also applied to a smaller but more homogeneous dataset (86 com-
pounds). The results on the fi rst 234 compounds were quite poor 
( R  2  0.524 and RMSE 0.74). However, the performance on the 
second dataset (86 compounds) was signifi cantly better ( R  2  0.647 
and RMSE 0.66). In both cases no external validation was done. 

 García-Domenech et al. [ 31 ] applied the same techniques 
(Furnival-Wilson for descriptor selection and MLR for model 
building) on the same 86 molecules used by De Julián-Ortiz et al. 
[ 30 ]. The model, based on six descriptors, was validated on 16 
external chemicals. Performances in the training set were  R  2  0.795 
and RMSE 0.517;  q  2  0.719 and RMSE 0.564 in LOO cross-vali-
dation and  R  2  0.712 and RMSE 0.853 in external validation. 

 To the best of our knowledge, Matthews et al. [ 32 ], Toropova 
et al. [ 27 ], and Toropov et al. [ 25 ] are the only studies that report 
attempts at NOAEL modeling. 

 Matthews et al. [ 32 ] used Maximum Recommended 
Therapeutic Dose (MRTD) data for 1309 pharmaceutical sub-
stances for classifi cation modeling. The MRTD (or Maximum 
Recommended Daily Dose, MRDD) was determined from clinical 
trials that employed an oral route of exposure and daily treatments, 
usually for 3–12 months. The MRTD is derived from human clini-
cal trials and is an upper dose limit beyond which the effi cacy of a 
drug does not increase and/or adverse effects start to outweigh 
the benefi cial ones [ 33 ]. MRTD and NOEL for drugs are directly 
related in humans [ 32 ]. An analysis of the MRTD database indi-
cated that most drugs do not show effi cacy or adverse effects at a 
dose approximately ten times lower than the MRTD. Based on this 
observation, Matthews et al. [ 32 ] calculated NOEL as MRTD/10. 
Chemicals with low MRTD/NOEL were considered strongly 
toxic, whereas those with higher values were labeled as safe, and 
structural alerts were identifi ed on this basis. The predictive ability 
of this model was evaluated through leave-more-out external vali-
dation (40 compounds were removed from the training data set of 
120 selected test chemicals), and the results showed that the model 
gave good predictions of toxicity for the test chemicals; the positive 
predictivity and specifi city were high, at, respectively, 92.5 % and 
95.2 %, whereas the sensitivity was lower (74.0 %).  

   Two software are available for the prediction of LOAEL, both 
commercial. The fi rst is Toxicity Prediction by Komputer Assisted 
Technology (TOPKAT), developed by Accelrys ® . The TOPKAT 
model aims to predict chronic oral LOAEL in rats (studies lasting 
12 or more months were considered) and has been described in 
Mumtaz et al. [ 34 ]. Starting from a dataset of 234 heterogeneous 
chemicals, the model was built using a stepwise regression analysis 
with 44 descriptors selected from an initial pool of electronic, 

3.2   Software
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topological, symmetry descriptors and molecular connectivity indi-
ces. The performance of the model was tested comparing the pre-
dicted with the experimental LOAEL. About 55 % of the 
compounds were predicted within a factor of 2 and more than 93 
% within a factor of 5 [ 34 ]. 

 Over the years the TOPKAT model for LOAEL prediction has 
been refi ned, including more data in the training set. Using the 
expanded training set (393 chemicals), models for fi ve chemical 
classes were developed (acyclics, alicyclics, heteroaromatics, single 
benzenes, and multiple benzenes). Venkatapathy et al. [ 35 ] tested 
the predictive performance of the fi ve sub-modules using a large 
dataset of 656 substances and the  R  2  ranged between 0.78 
(multiple benzenes) and 0.98 (alicycles). TOPKAT was further 
validated by Tilaoui et al. [ 36 ] using 340 chemicals not included in 
the TOPKAT training set. TOPKAT correctly predicted (with an 
error lower than 1 log unit) only 33 % of these chemicals [ 16 ]. 

 Another software for LOAEL prediction has been developed by 
Molcode Ltd. using RDT data in the rat. Information about this 
model is available from the QSAR Model Reporting Format 
(QRMF) document. The model is proprietary, but the training and 
test sets are available. The model was developed using multilinear 
regression, and the descriptors were chosen through a stepwise 
selection. There were 76 compounds in the training set, and in 
order to validate the real ability of the model to predict LOAEL, an 
external dataset containing 18 compounds was used. In terms of 
 R  2 , the performance of the Molcode model gave, respectively, 0.79 
and 0.725 for the training and test set; a defi nition of applicability 
domain was also provided. 

 These software are not built using only pharmaceutical 
compounds. However, they can be used for the prediction of 
LOAEL for drugs.   

4     Uncertainty of LOAEL and NOAEL Data 

 The development of non-animal testing for RDT is diffi cult mainly 
because the complex underlying processes, which include effects 
on different organs and tissues and different time scales [ 2 ]. 
NOAEL and LOAEL have been criticized as conceptually inap-
propriate for providing quantitative estimates for toxicity, and it 
has been proposed to replace them with the benchmark dose [ 37 ]. 

 Besides the fact that many organs and tissues are involved, 
other aspects make the NOAEL and LOAEL data uncertain. 
NOAEL and LOAEL are not derived or calculated from a dose-
effect curve but can only be identifi ed from the doses. This means 
that they both depend on the study design, particularly the spaces 
between doses. Consequently, different NOAEL and LOAEL 
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values may be obtained for the same substance using different 
study designs or different exposure doses. There is a further intrin-
sic uncertainty in LOAEL experimental data. The “true” LOAEL 
(the real dose of the substance that starts to generate an effect) 
may be anywhere between the NOAEL and the LOAEL. 

 This uncertainly is probably big, but how big cannot be mea-
sured. This is another problem of the NOAEL and LOAEL 
approach, as in risk assessment quantifying the uncertainties 
involved is crucial for establishing protective human exposure limits 
[ 38 ]. The variability of the responses between animals in the dose 
groups, the defi nition of the “adversity” of an effect, and the statis-
tical methods supporting this defi nition are other aspects that raise 
the level of uncertainty of NOAEL and LOAEL [ 39 ].  

5     Conclusion 

 The NOAEL and LOAEL of substances are required for human 
health hazard assessments under different regulatory contexts (phar-
maceutical, biocides, REACH, cosmetics) [ 2 ]. In vivo RDT studies 
are very expensive and time-consuming and involve a large number 
of animals. In vivo RDT has been banned for the safety assessment 
of cosmetics [ 1 ], and REACH legislation [ 10 ] requires to use as few 
animals as possible to evaluate the toxicity of substances. Therefore, 
there is a pressing need to fi nd a valid alternative. 

 However, considering the uncertainty of NOAEL and 
LOAEL values, the in silico models are extremely complex 
because all this uncertainty will be implicitly transferred into the 
data predicted by a model. Moreover, considering the QSAR 
approach, there is a no solid mechanistic basis to support the 
 statistical association between a set of molecular descriptors and 
the systemic effects [ 2 ]. 

 Despite the limitations of each single alternative approach, the 
combination and interpretation of data from different alternative 
techniques, such as QSARs, physiologically based pharmacokinetic 
modeling (PBPK), read-across, threshold of toxicological concern 
(TTC), and in vitro methods, may be useful to gain more reliable 
predictions of NOAEL and LOAEL.     

  Acknowledgments 

 This work was supported by the project HEALTH-F5-2010-
267042 ToxBank (supporting integrated data analysis and servic-
ing of alternative testing methods in toxicology) funded by the 
European Commission and Cosmetics Europe under the Seventh 
Framework Programme.  

Fabiola Pizzo and Emilio Benfenati



175

   References 

      1.   Scientifi c Committee on Consumer Safety 
(SCCS) (2012) The SCCS’s notes of guidance 
for the testing of cosmetic ingredients and their 
safety evaluation.   http://ec.europa.eu/health/
scientifi c_committees/consumer_safety/docs/
sccs_s_006.pdf    . Accessed 08 June 2015  

       2.   Worth A, Barroso J, Bremer S et al (2014) 
Alternative methods for regulatory toxicology-
a state-of the-art review. JRC Science and 
Policy reports. Report EUR 26797 EN  

      3.    Steinmetz KL, Spack EG (2009) The basics of 
preclinical drug development for neurodegen-
erative disease indications. Neurology 9:S2  

    4.    Marchetti S, Schellens JHM (2007) The 
impact of FDA and EMEA guidelines on drug 
development in relation to Phase 0 trials. Br 
J Cancer 97:577–581  

    5.    Dorado MA, Engelhardt JA (2005) The no- 
observed adverse level in drug safety evalua-
tions: use, issue, and defi nition(s). Regul 
Toxicol Pharmacol 42:265–274  

    6.    Bakhtiar R (2008) Biomarkers in drug discov-
ery and development. J Pharmacol Toxicol 
Methods 57:85–91  

    7.   Food and Drug Administration (FDA), 
Department of Health and Human Services, 
Center for Drug Evaluation and Research 
(CDER) (2005) Guidance for Industry. 
Estimating the Maximum Safe Starting Dose in 
the initial clinical trials for therapeutics in adult 
healthy volunteers  

    8.   European Medicines Agency (2010) Guideline 
on repeated dose toxicity. Committee for 
Human Medicinal Products. Reference num-
ber CPMP/SWP/1042/99 Rev  

    9.   International Conference on Harmonisation of 
Technical Requirements for Registration of 
Pharmaceuticals for Human Use (ICH) (2010) 
Guidance on nonclinical safety studies for the 
conduct of human clinical trials and marketing 
authorization for pharmaceuticals M3(R2). 
  http://www.ema.europa.eu/docs/en_GB/
documen t_ l i b r a r y/Sc i en t i f i c _gu ide -
line/2009/09/WC500002941.pdf    . Accessed 
06 June 2015  

     10.    European Commission (2006) Regulation 
(EC) No 1907/2006 of the European 
Parliament and the Council of 18 December 
2006 concerning the Registration, Evaluation, 
Authorisation and Restriction of Chemicals 
(REACH), establishing a European Chemicals 
Agency, amending Directive 1999/45/EC 
and repealing Council Regulation (EEC) No 
793/93 and Commission Regulation (EC) No 
1488/94 as well as Council Directive 76/769/
EEC and Commission Directives 91/155/

EEC, 93/67/EEC, 93/105/EC and 
2000/21/EC. Off J Eur Union L396:1–849  

    11.    European Commission (2009) Regulation 
(EC) No 1107/2009 of the European 
Parliament and of the Council of 21 October 
2009 concerning the placing of plant protec-
tion products on the market and repealing 
Council Directives 79/117/EEC and 
91/414/EEC. Off J Eur Union L309:1–47  

    12.   European Commission (2013) Regulation 
(EU) No 283/2013 of 1 March 2013 setting 
out the data requirements for active substances, 
in accordance with Regulation (EC) No 
1107/2009 of the European Parliament and of 
the Council concerning the placing of plant 
protection products on the market.  

    13.    Union E (2012) Regulation (EU) No 
528/2012 of the European Parliament and of 
the Council of 22 May 2012 concerning the 
making available on the market and use of bio-
cidal products. Off J Eur Union L167:1–116  

    14.   European Commission (2009) Regulation 
(EC) No 1223/2009 of the European 
Parliament and of the Council of 30 November 
2009 on cosmetic products  

    15.    Dearden JC (2003)  In silico  prediction of drug 
toxicity. J Comput Aid Mol Des 17:119–127  

     16.    Tsakovska I, Lessigiarska I, Netzeva T, Worth 
AP (2007) A mini review of mammalian toxicity 
(Q)SAR models. QSAR Comb Sci 27:41–48  

    17.    Przybylak KR, Madden JC, Cronin MTD et al 
(2012) Assessing toxicological data quality: basic 
principles, existing schemes and current limita-
tions. SAR QSAR Environ Res 23:435–459  

     18.    Bitsch A, Jacobi S, Melber C et al (2006) 
RepDose: a database on repeated dose toxicity 
studies of commercial chemicals—a multifunc-
tional tool. Regul Toxicol Pharmacol 
46:202–210  

     19.    Munro IC, Ford RA, Kennepohl E et al (1996) 
Correlation of structural class with 
no-observed- effect levels: a proposal for estab-
lishing a threshold of concern. Food Chem 
Toxicol 34:829–867  

    20.    Cramer GM, Ford RA, Hall RL (1978) 
Estimation of toxic hazard—a decision tree 
approach (and errata sheet). Food Cosmet 
Toxicol 16:255–276  

    21.    Hayashi M, Sakuratani Y (2011) Development 
of an evaluation support system for estimating 
repeated dose toxicity of chemicals based on 
chemical structure. In: Wilson AGE (ed) New 
Horizons in predictive toxicology. Current 
status and application. RSC Publishing, 
Cambridge, UK  

In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed…

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_006.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_006.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_006.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002941.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002941.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002941.pdf


176

    22.    Persad AS, Cooper GS (2008) Use of epide-
miologic data in Integrated Risk Information 
System (IRIS) assessments. Toxicol Appl 
Pharmacol 233:137–145  

    23.    Anzali S, Berthold MR, Fioravanzo E et al 
(2012) Development of computational models 
for the risk assessment of cosmetic ingredients. 
IFSCC Mag 15:249–255  

    24.    Martin MT, Judson RS, Reif DM et al (2009) 
Profi ling chemicals based on chronic toxicity 
results from the U.S. EPA ToxRef Database. 
Environ Health Perspect 117:392–399  

     25.    Toropov AA, Toropova AP, Pizzo F et al (2015) 
CORAL: model for no observed adverse effect 
level (NOAEL). Mol Divers 19:563–575. 
doi:  10.1007/s11030-015-9587-1      

    26.    Gadaleta D, Pizzo F, Lombardo A et al (2014) A 
 k -NN algorithm for predicting OralSub-chronic 
toxicity in the rat. ALTEX 31:423–432  

     27.    Toropova AP, Toropov A, Veselinović JB et al 
(2014) QSAR as a random event. Environ Sci 
Pollut Res Int 22:8264–8271. doi:  10.1007/
s11356-014-3977-2      

    28.    Sakuratani Y, Zhang H, Nishikawa S et al (2013) 
Hazard evaluation support system (HESS) for 
predicting repeated dose toxicity using toxico-
logical categories. SAR QSAR Environ Res 
24:351–363  

    29.    Mazzatorta P, Estevez MD, Coulet M et al 
(2008) Modeling oral rat chronic toxicity. 
J Chem Inf Model 48:1949–1954  

     30.    Julián-Ortiz JV, García-Domenech R, Gálvez 
J et al (2005) Predictability and prediction of 
lowest observed adverse effect levels in a struc-
turally heterogeneous set of chemicals. SAR 
QSAR Environ Res 16:263–272  

    31.    García-Domenech R, de Julián-Ortiz JV, Besalú 
E (2006) True prediction of lowest observed 
adverse effect levels. Mol Divers 10:159–168  

       32.    Matthews EJ, Kruhlak NL, Benz RD et al 
(2004) Assessment of the health effects of 

chemicals in humans: I. QSAR estimation of 
the Maximum Recommended Therapeutic 
Dose (MRTD) and No Effect Level (NOEL) 
of organic chemicals based on clinical trial data 
1. Curr Drug Discov Technol 1:61–76  

    33.    Contrera JF, Matthews EJ, Kruhlak NL et al 
(2004) Estimating the safe starting dose in 
phase I clinical trials and no observed effect 
level based on QSAR modeling of the human 
maximum recommended daily dose. Regul 
Toxicol Pharmacol 40:185–206  

     34.    Mumtaz MM, Knau LA, Reisman DJ et al 
(1995) Assessment of effect levels of chemicals 
from quantitative structure-activity relationship 
(QSAR) models. I. Chronic lowest-observed- 
adverse-effect level (LOAEL). Toxicol Lett 
79:131–143  

    35.    Venkatapathy R, Moudgal CJ, Bruce RM 
(2004) Assessment of the oral rat chronic 
lowest observed adverse effect level model in 
TOPKAT, a QSAR software package for tox-
icity prediction. J Chem Inf Comput Sci 
44:1623–1629  

    36.    Tilaoui L, Schilter B, Tran LA, Mazzatorta P 
et al (2006) Integrated computational meth-
ods for prediction of the lowest observable 
adverse effect level of food-borne molecules. 
QSAR Comb Sci 26:102–108  

    37.    Sand S, Victorin K, Filipsson AF (2008) The 
current state of knowledge on the use of the 
benchmark dose concept in risk assessment. 
J Appl Toxicol 28:405–421  

    38.    Vermeire TG, Baars AJ, Bessems JGM et al 
(2007) Toxicity testing for human health risk 
assessment. In: van Leeuwen CJ, Vermeire 
TG (eds) Risk assessment of chemicals, an 
introduction, 2nd edn. Springer, The 
Netherlands  

    39.    Paparella M, Daneshian M, Hornek-Gausterer 
R et al (2013) Food for thought…uncertainty 
of testing methods-what do we (want to) 
know? ALTEX 30:131–144    

Fabiola Pizzo and Emilio Benfenati

http://dx.doi.org/10.1007/s11030-015-9587-1
http://dx.doi.org/10.1007/s11356-014-3977-2
http://dx.doi.org/10.1007/s11356-014-3977-2


177

Emilio Benfenati (ed.), In Silico Methods for Predicting Drug Toxicity, Methods in Molecular Biology, vol. 1425,
DOI 10.1007/978-1-4939-3609-0_10, © Springer Science+Business Media New York 2016

    Chapter 10   

 In Silico Models for Acute Systemic Toxicity                     

     Julien     Burton    ,     Andrew     P.     Worth     ,     Ivanka     Tsakovska    , 
and     Antonia     Diukendjieva     

  Abstract 

   In this chapter, we give an overview of the regulatory requirements for acute systemic toxicity information 
in the European Union, and we review the availability of structure-based computational models that are 
available and potentially useful in the assessment of acute systemic toxicity. The most recently published 
literature models for acute systemic toxicity are also discussed, and perspectives for future developments in 
this fi eld are offered.  

  Key words     Acute systemic toxicity  ,   Regulation  ,   Organ-specifi c toxicity  ,   In silico model  

1      Introduction 

 Acute systemic toxicity comprises the general adverse effects that 
occur after a single or multiple exposure of an animal to a sub-
stance within 24 h and during an observation period of at least 
14 days. The substance may be administered orally, by inhalation, 
or dermally. 

 Acute mammalian toxicity tests are often the fi rst in vivo tox-
icity tests to be performed on a chemical. In recent years there 
have been considerable efforts to replace, reduce, or refi ne these 
animal tests by applying alternative approaches, including both 
in vitro and in silico models. An increasing number of models are 
available to predict acute mammalian toxicity. This is partly due to 
the fact that a reasonable number of datasets are openly available 
for modeling. However, the reliability of the in vivo data can be 
highly variable, and the metadata provided is often insuffi cient to 
determine the suitability of the data for modeling purposes. 
Another challenge is related to the multiple mechanisms leading 
to this complex effect, which is typically expressed as a single 
numerical value (LD 50  for oral and dermal toxicity; LC 50  for inha-
lational toxicity). In addition there are also differences between 
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the routes of administration and species, and different data should 
be modeled separately [ 1 ]. 

 Target organs, such as the liver, kidneys, heart, lungs, and 
brain, can be affected by exogenous chemicals to the extent that 
they cease to function. Thus, the use of QSAR models for organ/
system specifi c toxicity would be extremely helpful when predict-
ing acute systemic toxicity. A limited number of QSAR models for 
specifi c target organ and tissue effects are available. 

 The information obtained from acute systemic toxicity studies 
is used in the hazard assessment of chemicals occurring in food, 
industrial chemicals, biocides, pesticides, and cosmetics. In this 
chapter, we give an overview of the regulatory requirements for 
acute systemic toxicity information in the European Union, the 
software packages available for assessment of acute systemic toxic-
ity and organ- and system-specifi c toxicity, as well as the databases 
available for obtaining such data. Since comprehensive reviews of 
literature QSAR studies are available elsewhere [ 2 – 5 ], we focus 
here on some of the more recently published literature models for 
acute systemic toxicity. Some of these software and literature 
models are documented in the JRC’s QSAR Model Database 
(  http://qsardb.jrc.ec.europa.eu/qmrf/    ).  

2    Regulatory Context in the European Union 

 For the assessment of acute systemic toxicity, only in vivo tests are 
currently accepted by regulatory bodies (Table  1 ). However, 
in vivo acute systemic toxicity studies are prohibited for cosmetic 
substances and products [ 14 ].

   The endpoint measured in the majority of the standard assays 
is animal morbidity or death. Evident signs of toxicity (i.e., clear 
signs of toxicity indicating that exposure to the next highest con-
centration would cause severe toxicity in most animals within the 
observation period) are only used in the oral fi xed dose procedure 
(FDP), which causes less suffering and is, therefore, more humane. 

   Table 1  
  In vivo methods currently available for acute systemic toxicity   

 Exposure route  OECD  EU test method 

 Oral  TG 420: fi xed dose procedure [ 6 ]  B.1 bis [ 7 ] 
 TG 423: acute toxic class method [ 8 ] 
 TG 425: up and down procedure [ 9 ]  B.1 tris [ 7 ] 

 Dermal  TG 402 [ 10 ]  B.3 [ 7 ] 

 Inhalation  TG 403 [ 11 ]  B.2 [ 12 ] 
 TG 436 (acute toxic class method) [ 13 ]  B.52 [ 12 ] 
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 The assessment of acute systemic toxicity is one component in 
the safety evaluation of substances and represents a standard infor-
mation requirement within several pieces of EU chemicals legisla-
tion, including the Regulation on Classifi cation, Labelling and 
Packaging (CLP) of substances and mixtures [ 15 ], the Regulation 
concerning the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH) [ 16 ], the Biocidal Products 
Regulation [ 17 ], the Plant Protection Products Regulation [ 18 ], 
and the Cosmetic Products Regulation [ 14 ]. In preclinical drug 
development [ 19 ], however, these studies are no longer required 
to support fi rst clinical trials in man. The information needed can 
be obtained from appropriately conducted dose-escalation studies 
or short- duration dose ranging studies that defi ne a maximum tol-
erated dose in the general toxicity test species [ 20 ,  21 ]. Further 
information on the regulatory requirements in the EU is given in 
Prieto et al. [ 22 ].  

3    Software for Predicting Acute Systemic Toxicity 

 Several software tools capable of predicting endpoints related to 
systemic toxicity are available, as reviewed previously [ 23 ]. An 
updated list is given in Table  2  and some updates on the programs 
are described below.

   Among the commercial software programs covering a broad 
spectrum of systemic toxicological effects is ACD/Labs Percepta, 
which is developed and marketed by Advanced Chemistry develop-
ment Inc. (  http://www.acdlabs.com/    ). The platform has two 
modules related to systemic toxicity prediction—Acute Toxicity 
Prediction Module and Health Effects Prediction Module. The 
Acute Toxicity predictor has been built using experimental data for 
more than 100,000 compounds extracted from the Registry of 
Toxic Effects of Chemical Substances (RTECS) and former 
European Chemical Substances Information System (ESIS) data-
bases. It provides three different software components related to 
acute mammalian toxicity:

 ●    LD 50 —Provides predictions of LD 50  values for rats and mice 
according to various routes of administration. Prior to model-
ing, the original experimental data were converted to loga-
rithmic form (pLD 50 ) in order to maintain linear relationship 
with used descriptors. The fi nal prediction results returned to 
the user are converted back to LD 50  values (mg/kg). The pre-
dictive model for pLD 50  has been derived using GALAS 
(Global, Adjusted Locally According to Similarity) modeling 
methodology.  

 ●   Hazards—A knowledge-based expert system that identifi es 
and visualizes hazardous structural fragments.  

In Silico Models for Acute Systemic Toxicity
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 ●   Categories—Classifi es compounds into one of fi ve Globally 
Harmonised System (GHS) categories for acute oral toxicity.    

 The Health Effects module predicts the probability of a com-
pound having a health effect on a particular organ or organ sys-
tem (blood, cardiovascular system, gastrointestinal system, 
kidney, liver, and lungs). The models are based on data collected 
from chronic, sub-chronic, acute toxicity and carcinogenicity 
studies with adverse effects reported in particular organs or organ 
systems. 

 A common goal of toxicity prediction is to distinguish between 
toxicologically active and inactive compounds. Since multiple 
mechanisms are involved in systemic toxicity, this requires the 
availability of predictive tools that are able to cover a wide region 
of the activity space. This is the main feature of the expert systems 
that make assessments on the basis of structural alerts covering a 
spectrum of structural properties associated with the complex end-
point. One commonly used expert system, developed and mar-
keted by Lhasa Ltd (  http://www.lhasalimited.org/    ), is Derek 
Nexus which is a development of the former Derek for Windows 
(DfW). This contains knowledge rules derived from the known 
relationship between a given substructure and a toxicological effect 
of the molecule and applies these rules to predict potential toxico-
logical effects of compounds. Derek Nexus generates a prediction 
by comparing the structural features of the target compound with 
a toxicophore encoded as structural pattern(s) in its knowledge 
base. The fi nal predictions are derived from a reasoning scheme  
which takes into account the presence of a toxicophore in the 
query structure (‘structural alert’) and a limited number of calcu-
lated molecular properties, which, taken together, return an 
“uncertainty term” for the prediction itself. For some alerts, sup-
porting examples are provided and the system states whether the 
query compound already exists as an example in the knowledge 
base. Literature references are also included to enable the user to 
assess the applicability of the structural alert to the predicted struc-
ture and to allow for an expert knowledge assessment. Derek 
Nexus covers multiple endpoints, including hepatotoxicity, neph-
rotoxicity, and cardiotoxicity. 

 CASE Ultra (  http://www.multicase.com    /) is further devel-
opment of MCASE methodology and falls in the range of frag-
ment based QSAR expert systems [ 24 ]. The CASE Ultra model 
mainly consists of a set of “positive alerts” (biophores), and “deac-
tivating alerts” (biophobes), i.e., those fragments that are identi-
fi ed as statistically signifi cant for increasing/decreasing the activity. 
The improvement of CASE Ultra over its predecessor is related to 
the identifi ed alerts that are no longer limited to linear paths of 
limited size or limited branching pattern. In addition the training 
sets can be larger than 8000 molecules. The applicability domains 
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of individual toxicity alerts within the models quantitatively defi ne 
the necessary structural environment of the toxicity alerts. 

 The statistically based program TOPKAT (  http://accelrys.
com/    ) uses multiple QSARs on small and homogenous sets of 
data. It is now a part of QSAR, ADMET and Predictive Toxicology 
module within Biovia Discovery Studio platform. The rat oral 
LD 50  module in TOPKAT comprises 19 regression analyses devel-
oped using experimental values of approx. 4000 chemicals from 
RTECS, including pesticides and industrial chemicals. The rat oral 
LD 50  module in MCASE (named A56) is based on and comprises 
data for 7920 chemicals from the FDA, WHO, and NTP datasets. 
Tunkel and coworkers [ 25 ] compared the performance of the 
TOPKAT and MCASE rat LD 50  modules against an external test 
set of 73 organic compounds covering 32 chemical categories 
retrieved from submissions to the EPA High Production Volume 
(HPV) Challenge Program (  http://www.epa.gov/chemrtk/    ). 
The predictive accuracy of each software tool was assessed by 
applying the EPA’s New Chemical classifi cation approach (  http://
www.epa.gov/oppt/newchems/index.htm    ), from the  low- concern 
class (>2000 mg/kg) to the high-concern class (<15 mg/kg). 
While neither model was able to classify all 73 compounds, 
TOPKAT correctly classifi ed 67 % of the chemicals, while MCASE 
classifi ed 70 % correctly. However, it should be noted that the test 
set used was signifi cantly skewed toward “low concern” chemicals, 
which both models predicted correctly with a high degree of accu-
racy (82 % and 100 % correct for TOPKAT and MCASE, respec-
tively). Moreover, a high degree of false negatives was found for 
moderate and high concern HPV chemicals (TOPKAT, 72 %; 
MCASE, 100 %), suggesting that these programs are less reliable 
for the identifi cation of more toxic compounds. The authors also 
compared the model outputs against the GHS fi ve-tier scheme for 
classifi cation of rat oral acute toxicants (<5, 5–50, 50–300, 300–
2000, and 2000–5000 mg/kg), which is similar to the one adopted 
by EPA (<15, 15–50, 50–500, 500–2000, >2000 mg/kg). When 
compared against the GHS scheme, the ability of TOPKAT and 
MCASE to produce correct classifi cations was 73 % and 70 %, 
respectively, for the HPV test set chemicals, thereby changing 
slightly with respect to the EPA scheme, albeit enough to invert 
the rank order of these models. 

 VirtualToxLab is an in silico technology for estimating the 
toxic potential of chemicals [ 26 ] based on an automated protocol 
that simulates and quantifi es the binding of small molecules 
towards a series of proteins, known or suspected to trigger adverse 
effects. The interface to the technology allows building and 
uploading molecular structures, viewing and downloading results 
and rationalizing any prediction at the atomic level by interac-
tively analyzing the 3D binding mode of a compound with its tar-
get protein(s) in real- time. The VirtualToxLab has been used to 
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predict the toxic potential for over 2500 compounds and the free 
platform, OpenVirtualToxLab, is accessible (in client-server mode) 
over the Internet. It is free of charge for universities, governmen-
tal agencies, regulatory bodies, and nonprofi t organizations. 

 The LeadScope software (  http://www.leadscope.com    ) links 
chemical and biological data that allows exploration of large sets of 
chemical compounds, their properties, and biological activities. 
Chemical structures are organized in a taxonomy of familiar struc-
tural features each combined with common substituents—the 
common building blocks of medicinal chemistry [ 27 ]. LeadScope 
provides QSAR models for diverse physiological adverse effects 
including cardiological, hepatobiliary, and urinary endpoints. 

 Other software tools available for predicting acute toxicity 
(LD 50 ) to rat/mouse are also available, such as TerraQSAR 
(  http://www.terrabase- inc.com/    ), ADMET Predictor (  http://
www.simulations- plus.com    ), Molcode Toolbox (  http://molcode.
com/    ). The TerraQSAR software is based on neural network 
methodology and includes models for predicting both oral and 
intravenous LD 50  values in mice and rats. ADMET Predictor 
includes a number of in-built models for ADMET, and allows new 
predictive models to be built from the user’s data. ADMET 
Predictor’s Toxicity Module provides predictions of various toxic-
ity endpoints including hepatotoxicity, carcinogenicity, acute rat 
toxicity, and cardiotoxicity. Molcode Toolbox has a range of mod-
ules for predicting toxicological endpoints, including intravenous 
acute LD 50  values and in vitro cytotoxicity (IC 50  values) (from the 
Registry of Cytotoxicity). The models are well documented and 
the underlying experimental data is made available with references 
and structure fi les (MDL molfi les).  

4    Databases Containing Information on Acute Systemic Toxicity 

 Sources of rat LD 50  values which may be suitable for the develop-
ment of QSARs are listed in Table  3 . Some recent updates are 
discussed in the section below.

   In particular, Acutoxbase [ 29 ] was developed in the context 
of the EU FP6 project ‘A-Cute-Tox’ (  http://www.acutetox.eu/    ), 
which aimed to optimize and “pre-validate” an in vitro testing 
strategy for predicting acute human toxicity ([ 30 ,  31 ]; Prieto and 
Kinsner- Ovaskainen 2015). While the database is not available, 
the in vitro and animal data are published in several publications 
[ 30 – 32 ]. 

 Recently the COSMOS database has been developed as a part 
of the COSMOS project (  http://www.cosmostox.eu/    ), one of 
seven projects forming the Seurat-1 research cluster (  http://
www.seurat-1.eu/    ). Version 1 of the COSMOS database (  http://
cosmosdb.cosmostox.eu/    ) contains 12,538 toxicity studies for 
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1660 compounds across 27 endpoints, including acute toxicity 
data for 1697 compounds tested on different animal species, as 
well as in vitro data. 

 The Hazardous Substances Data Bank (HSDB) is a part of 
NLM’s Toxicology Data Network (TOXNET) [ 33 ]. It contains 
chemical substance information with one record for each specifi c 
chemical or substance, or for category of chemicals or substances. 
HSDB has approximately 5600 chemicals and substances, with 
information for toxicity and human exposure. All data comes from 
public scientifi c sources. HSDB’s content is peer-reviewed by a 
group of experts. 

 The Registry of Toxic Effects of Chemical Substances (RTECS) 
database includes basic toxicity information for: prescription and 
non-prescription drugs, food additives, pesticides, fungicides, her-
bicides, solvents, diluents, chemical wastes, reaction products of 
chemical waste, and substances used in industrial and household 
situations. It covers six categories of toxicity data including acute 
toxicity data. In vitro toxicology data has been added as well. 
Accelrys now produces the RTECS fi les using existing data selec-
tion criteria and rules established by NIOSH  (  http://accelrys.
com/products/databases    ). 

 In order to be useful for QSAR development, datasets should 
be fi rst curated, i.e., the accuracy of the structures should be veri-
fi ed and the quality of biological data should be reviewed. It is 
useful to provide a reference to the source of the experimental 
data. In addition, inorganic and organometallic compounds, salts, 
and compound mixtures are often removed from the analysis. For 
the development of QSARs, LD 50  values should be converted to 
log[1/(mol/kg)] (if originally expressed as mol/kg or mg/kg). 
Finally, approximate LD 50  values should be converted to discrete 
values, and multiple LD 50  values from different labs/experiments 
should be converted to a single value. The ChemIDplus and 
ZEBET databases have been recently employed as data sources for 
QSAR analyses [ 34 ,  35 ].  

5    Prediction of Organ-Specifi c and System-Specifi c Toxicity 

   Some currently available software tools (e.g., TOPKAT and 
MCASE) are useful for predicting acute toxicity in categorical 
terms (e.g., in terms of GHS classifi cations). The performance of 
different software tools in predicting acute toxicity has been inves-
tigated [ 36 ,  37 ]. In these studies, ACD and T.E.S.T. have per-
formed well. 

 In the scientifi c literature, local QSAR models have been gen-
erated for sets of congeneric compounds (organophosphates, aro-
matic amines, anilines, etc.) and are scattered over many original 
publications. Some of these studies have also explored the use of 

5.1  Ability to Predict 
In Vivo Toxicity
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in vitro data as additional descriptors in the derivation of so-called 
quantitative structure activity-activity relationships, QSAAR [ 38 ]. 
QSAAR modeling revealed good potential for acute toxicity pre-
diction, particularly in cases when a signifi cant correlation exists 
between in vivo data (LD 50 ) and in vitro cytotoxicity (IC 50 ), and 
the additional inclusion of physicochemical parameters serves to 
improve the correlation. In practical terms, QSAAR could be par-
ticularly useful if high-throughput screening methods are used to 
generate the in vitro data. 

 Despite their limited applicability when taken individually, 
local QSAR models might be usefully combined into an expert 
system for toxicity predictions. As a part of the efforts to develop 
global QSAR models for acute toxicity Raevsky and coworkers 
[ 39 ] proposed the so-called Arithmetic Mean Toxicity (AMT) 
modeling approach, which produces local models based on a 
k-nearest neighbors approach. Arithmetic mean toxicity values of 
one or more pairs of analogues (nearest neighbors) are considered 
as the toxicity of the chemical of interest. Recently a classifi cation 
model based on 436 Munro database chemicals and developed 
using Dragon descriptors has been proposed as a tool for chemical 
screening [ 40 ]. Kleandrova et al. [ 3 ] have developed a multitask-
ing (mtk) QSTR model based on ANN (artifi cial neural networks) 
for simultaneous prediction of acute  toxicity by considering differ-
ent routes of administration, different breeds of laboratory ani-
mals, and the reliability of the experimental conditions. The model 
is based on a diverse dataset comprising 1494 chemicals retrieved 
from CHEMBL (  http://www.ebi.ac.uk/chembldb    ). 

 A consensus approach has been exploited in some studies 
where the models are built by using a combinatorial QSAR mod-
eling approach, including multiple descriptors and employing 
several statistical modeling methods. It has been claimed that the 
predictive accuracy of consensus QSAR models is superior to the 
individual ones [ 34 ,  41 ]. In addition, several research studies 
[ 35 ,  42 ,  43 ] have demonstrated the ability to improve quantita-
tive predictions for structurally diverse datasets when high 
throughput bioactivity data are used in combination with tradi-
tional molecular descriptors. This can also be regarded as an 
example of the QSAAR approach. These hybrid approaches and 
their underlying datasets are publicly available via the ChemBench 
web portal (  https://chembench.mml.unc.edu/    ).  

   The feasibility of using in vitro cytotoxicity data for the prediction 
of in vivo acute toxicity has been investigated in a number of 
research programs [ 28 ,  44 ,  45 ]. Over 70 % correlation has been 
established between in vitro basal cytotoxicity and rodent LD 50  val-
ues [ 46 ]. The applicability of 3T3 Neutral Red Uptake Cytotoxicity 
Assay for the identifi cation of substances with an LD 50  > 2000 mg/
kg has been evaluated by the EURL ECVAM Scientifi c Advisory 

5.2  Ability to Predict 
Non-apical Toxicities
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   Table 3  
  Databases containing acute toxicity information   

 Database  Availability  Information 

 Acutoxbase, linked to the EU 
FP6 project ‘A-Cute-Tox’; 
  http://www.acutetox.eu/     

 Database not available, but 
the data are included in 
several publications (see 
text) 

 The following data are available for 97 
reference chemicals (i.e., 52 % drugs, 
31 % industrial chemicals, 12 % 
pesticides, 5 % others): 

 •In vitro: approx. 100 in vitro assays 
including general acute cytotoxicity, 
metabolism- mediated toxicity, 
biokinetics, and organ-specifi c toxicity. 

 •In vivo: Over 2200 LD 50  values in 
rodents (rat and mouse) and other 
animals (e.g., guinea pig, dog) with 
various administration routes (oral, 
intravenous, etc.) compiled from 
published literature. 

 For 97 reference chemicals, nearly 2800 
human acute poisoning cases from 
clinical/forensic reports are also 
available. 

 COSMOS Database;   http://
cosmosdb.cosmostox.eu/     

 Freely available through the 
Internet after registration 

 Includes US FDA PAFA acute 
toxicity data. 

 CEBS, developed by the US 
NIEHS;   http://cebs.niehs.
nih.gov/     

 Freely available through the 
Internet 

 Includes in vivo study data and acute 
dose of a small number of known 
hepatotoxicants to rat. 

 ChemIDplus, developed by 
the US NLM;   http://
chem.sis.nlm.nih.gov/
chemidplus/     

 Freely available through 
the Internet, 
structure-searchable 

 Toxicity data is available for over 
400,000 chemical records, of which 
over 300,000 include chemical 
structures that are retrieved from 
TOXNET ®  (TOXicology Data 
NETwork;   http://toxnet.nlm.nih.
gov    ). It includes HSDB (Hazardous 
Substances Data Bank, an older subset 
of the RTECS database). A search for 
rat and mouse oral LD 50  values found 
15,866 and 33,009 records, 
respectively. 

 Food Safety Acute Toxicity 
Database;   https://www.
leadscope.com/toxicity_
databases/
regulatory_databases/     

 Commercial  Contains acute oral toxicity (LD 50 ) data 
from US FDA CFSAN PAFA database 
for1070 food additives and 1633 
tests. 

 Test systems include mainly 
 •Rats: 950 chemicals 
 •Mice: 366 chemicals 
 Other test systems include rabbits, 

guinea pigs, dogs, and monkey. 

(continued)
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Table 3
(continued)

 Database  Availability  Information 

 RTECS, originally compiled 
and maintained (until 
2001) by the US NIOSH 
and currently maintained 
by Accelrys Technologies. 
Structure- searchable 
through the Accelrys 
Toxicity Database;   http://
accelrys.com/products/
databases/bioactivity/
toxicity.html     

 Also searchable via other 
databases including the 
Leadscope Toxicity 
Database;   http://www.
leadscope.com/databases/     

 Commercial  Rat acute oral toxicity (LD 50 ) and acute 
inhalation toxicity (LC 50 ) data are 
compiled from the open scientifi c 
literature for approx. 7000 
compounds (organic, inorganic and 
mixtures), including approx. 4000 
organic compounds. 

 HSDB—TOXNET database; 
  http://toxnet.nlm.nih.gov     

 Freely available through the 
internet 

 Toxicology database that focuses on 
potentially hazardous chemicals. 
Contains nonhuman toxicity values 
for almost 3000 chemicals. 

 Registry of Cytotoxicity (RC) 
database 

 Freely available on request 
from BfR ZEBET 
(zebet@bfr.bund.de) 

 Based on the publication by Halle [ 28 ], 
this comprises rodent acute oral LD50 
values and published IC50 values 
from diverse in vitro cytotoxicity 
assays on approximately 550 chemicals 

   CEBS  chemical effects in biological systems,  HSDB  Hazardous Substances Data Bank,  RTECS  registry of toxic effects 
of chemical substances;  TOXNET NLM’s  Toxicology Data Network,  US NLM  US National Library of Medicine,  US 
NIEHS  US National Institute of Environmental Health Sciences,  US NIOSH  US National Institute of Occupational 
Safety and Health,  BfR ZEBET  Centre for Documentation and Evaluation of Alternatives to Animal Experiments of the 
German Federal Institute for Risk Assessment  

Committee (ESAC). It was recommended however that the results 
should always be used in combination with other information 
sources. For instance, the assay is recommended as a component of 
an Integrated Approach to Testing and Assessment (IATA) [ 47 ]. 
A reason for the absence of a clear relationship between basal cyto-
toxicity and in vivo acute toxicity could be that specifi c organ tox-
icity is the most sensitive parameter for acute toxicity. Common 
sensitive systems and organs include nervous, cardiovascular, 
immune system, kidneys and liver, lungs and blood. IATA pro-
posed for acute systemic toxicity are a combination of complemen-
tary approaches (in vitro, ex vivo, in silico, in chemico) that address 
functional mechanistic endpoints tied to adverse outcomes of reg-
ulatory concern [ 48 ]. 

Julien Burton et al.

http://accelrys.com/products/databases/bioactivity/toxicity.html
http://accelrys.com/products/databases/bioactivity/toxicity.html
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 As summarized in Table  4 , there is a limited number of literature 
models for predicting toxicities at tissue and organ levels. A list of 
software applications is provided in Table  2 . They are based on 
expert system or regression/categorical QSAR models. In the case 
of ligand–protein interactions, molecular modeling approaches 
are mainly used. Among the commonly used software tools, 
Derek Nexus provides over 500 structural alerts for a range of 
organ and system-specifi c toxicities, and other miscellaneous end-
points. Models for predicting liver toxicity are further covered in 
Chapter   11     (Hewitt et al.).

   Some of these models are based on the concept of reactivity- 
based toxicity. The covalent binding of reactive electrophiles to 
cellular targets (i.e., nucleophilic sites of macromolecules) has the 
potential to initiate a chain of biological effects (e.g., depletion of 
glutathione and protein thiols) resulting in specifi c organ and sys-
tem toxicities. 

 Among the few comprehensive studies covering a range of 
organ toxicities and relying on a broad structural space in the train-
ing set are the models published by Matthews et al. [ 49 ]. These 
models were developed for urinary tract toxicities of drugs. For 
each organ, a number of toxicity endpoints were considered in the 
QSAR analysis. The investigation utilizes four software programs: 
MC4PC (versions 1.5 and 1.7); BioEpisteme (version 2.0); MDL-
QSAR (version 2.2); Leadscope Predictive Data Miner (LPDM 
version 2.4). The four QSAR programs were demonstrated to be 
complementary and enhanced performance was obtained by com-
bining predictions from two programs. The best QSAR models 
exhibited an overall average 92 % coverage, 87 % specifi city, and 39 
% sensitivity. These results support the view that a consensus pre-
diction strategy provides a means of optimizing predictive ability. 

 In the work of Myshkin et al. [ 51 ], a detailed ontology of toxic 
pathologies for 19 organs was created from the literature in a con-
sistent way to capture precise organ toxicity associations of drugs, 
industrial, environmental, and other compounds. Models for 
nephrotoxicity and for more specifi c endpoints related to these 
organ injuries were developed using a recursive partitioning algo-
rithm. The models performed better at the prediction of distinct 
organ toxicity subcategories than general organ toxicity, refl ecting 
the well- known tendency of QSAR models to have a better predic-
tive performance for more specifi c endpoints. 

 In a more recent study, Lee et al. [ 50 ] present QSAR models 
for three common patterns of drug-induced kidney injury, i.e., 
tubular necrosis, interstitial nephritis, and tubulo-interstitial 
nephritis. Binary classifi cation models of nephrotoxin versus non-
nephrotoxin with eight fi ngerprint descriptors were developed 
based on heterogeneous pharmacological compounds data. Two 
types of data sets were used for construction of the training set, 
i.e., parent compounds of pharmaceuticals (251 nephrotoxins and 
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387 non-nephrotoxins) and their major urinary metabolites (307 
nephrotoxins and 233 non- nephrotoxins). Thus the study refl ects 
the fact that the nephrotoxicity of a pharmacological compound is 
induced by the parent compound as well as its metabolites. The 
results of a tenfold cross- validation and external validation proce-
dures showed a high accuracy of the models (better than 83 % for 
external validation sets). 

 For kidney toxicity, local QSARs have been developed for spe-
cifi c chemical classes, such as the haloalkenes. These high-volume 
chemicals used in industrial, synthetic, and pharmaceutical applica-
tions are common environmental pollutants. Many haloalkenes are 
known to be nephrotoxic in rodents after bioactivation via the cys-
teine conjugate beta-lyase pathway, which is triggered by forma-
tion of hepatic glutathione S-conjugates, a reaction catalyzed by 
cytosolic and microsomal glutathione transferases [ 68 ]. The study 
by Jolivette and Anders [ 53 ] relates the nephrotoxicity of nine 
haloalkenes to their lowest unoccupied molecular orbital energies, 
 E  LUMO , refl ecting their propensity for conjugation reactions cata-
lyzed by glutathione transferase enzymes. 

 Very few QSAR studies of neurotoxicity have been published. 
An example is the work of Estrada et al. [ 57 ]. Their models are 
based on the TOPS-MODE approach, which provides a means of 
estimating the contributions to neurotoxicity in rats and mice of a 
series of structural fragments. 

 Organophosphorus (OP) compounds are well-known neuro-
toxic agents. These chemicals are potent inhibitors of serine ester-
ases, the most critical of which is the widely distributed nervous 
system enzyme acetylcholinesterase (AChE). This well established 
mechanism of action underlies the usefulness of molecular model-
ing approaches like 3D QSAR and pharmacophore modeling to 
predict the inhibition potency of OPs. Several published models 
are based on these approaches [ 54 ,  55 ,  58 ,  63 ]. 

 Among the commonly used software tools, Derek Nexus 
estimates neurotoxicity using a number of structural alerts: 
gamma- diketone or precursor, acrylamide or glycidamide, nitro-
imidazole, carbon disulfi de or precursor, pyrethroid, 1-methyl-1,
2,3,6- tetrahydropyridine, lead or lead compound, and organo-
phosphorus ester. 

 Few studies have been published in relation to other organs/
systems. Immunotoxicity can refer to immunosuppression in 
humans (caused, for example, by benzene and halogenated aro-
matic hydrocarbons), autoimmune disease (for example the pes-
ticide dieldrin induces an autoimmune response against red blood 
cells, resulting in hemolytic anemia), and allergenicity (chemicals 
which stimulate the immune system can cause allergies or hyper-
sensitivity reactions such as anaphylactic shock). Thus, immuno-
toxicity refers to a wide variety of biological effects, many of 
which involve complex biochemical networks. Tenorio-Borroto 
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et al. [ 62 ] have trained and validated a multi target-QSAR model 
for high- throughput screening of drug immunotoxicity using 
TOPS-MODE approach. Yuan et al. [ 63 ] have studied the key 
molecular features of polychlorinated dibenzodioxins, polychlo-
rinated dibenzofurans, and polychlorinated biphenyls for deter-
mining binding affi nity to the aryl hydrocarbon receptor 
(AhR)—an intracellular receptor which has been correlated to 
immunotoxicity, thymic atrophy, weight loss and acute lethality. 
CoMFA (Comparative Molecular Field Analysis) was applied to 
generate 3D QSAR models. In a study by Hui-Ying et al. [ 64 ], 
linear relationships between immunotoxicity values (log ED 50 ) 
and other biological activities of polychlorinated diphenyl ethers 
and their structural descriptors were established by multiple lin-
ear regression. It was shown that the structural descriptors derived 
from molecular electrostatic potentials together with the number 
of the substituting chlorine atoms on the two phenyl rings can be 
used to express the quantitative structure–property relationships 
of polychlorinated diphenyl ethers. 

 Evaluation of hematotoxicity is important step in early drug 
design. Particularly it is a common dose-limiting toxicity associated 
with anticancer drugs. The fi rst attempt to build in silico models to 
predict the myelosuppressive activity of drugs from their chemical 
structure was made by Crivori et al. [ 65 ]. Two sets of potentially 
relevant descriptors for modeling myelotoxicity (i.e., 3D Volsurf 
and 2D structural and electrotopological E-states descriptors) were 
selected and PCA (Principal Component Analysis) was carried out 
on the entire set of data (38 drugs). The fi rst two principal compo-
nents discriminated the highest from the least myelotoxic com-
pounds with a total accuracy of 95 %. In addition, a highly predictive 
PLS (Partial Least Squares) model was developed by correlating a 
selected subset of in vitro hematotoxicity data with Volsurf descrip-
tors. After variable selection, the PLS analysis resulted in a one-
latent-variable model with  r  2  of 0.79 and  q  2  of 0.72. 

 In contrast to other organ-specifi c effects, the in silico model-
ing of cardiotoxicity has been a rather productive fi eld. This is 
because drug cardiotoxicity is one of the main reasons for drug 
related fatalities and subsequent drug withdrawals. In recent years, 
the hERG channel has been extensively investigated in the fi eld of 
cardiotoxicity prediction as it has been found to play a major role 
in both cardiac electrophysiology and drug safety. Because hERG 
assays and QT animal studies are expensive and time consuming, 
numerous in silico models have been developed for use in early 
drug discovery. The earliest attempts to identify whether a mole-
cule is a hERG blocker include a set of simple rules based on 
structural and functional features, but these rules are not always 
reliable predictors for identifying hERG blockers. In order to give 
more accurate predictions of hERG blockage, a wide range of 
QSAR models have been developed based on a variety of statistical 
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techniques and machine learning methods, including multiple 
linear regression, partial least square (PLS), k-nearest neighbor 
algorithm (kNN), linear discriminant analysis (LDA), artifi cial 
neural networks (ANN), support vector machine (SVM), self-
organizing mapping (SOM), recursive partitioning (RP), random 
forest, genetic algorithm, and naive Bayesian  classifi cation (NBC). 
Most of these QSAR models are classifi ers and only a few regres-
sion models have been reported. 

 Pharmacophore modeling has also been employed to develop 
ligand-based prediction models of hERG channel blockers. Since 
the crystal structure of the hERG channel is not available, all 
structure- based studies on its blockage are performed on homol-
ogy models and are more qualitative and descriptive rather than 
predictive. For example they have been used for molecular dock-
ing, molecular dynamics simulations and free energy calculations 
to explore the hERG-blocker interactions. 

 Reviews by [ 66 ] and Villoutreix and Taboureau [ 67 ] sum-
marize the advances and challenges in computational studies of 
hERG channel blockage. It is expected that the development of 
in silico models for hERG-related cardiotoxicity will stay active in 
the coming years in order to design drugs without undesirable 
side effects.   

6    Conclusions 

 The modeling of acute systemic toxicity has largely focused on 
QSARs for predicting LD 50  values and for categorizing chemicals 
according to ranges of LD 50  values. For these purposes, which are 
potentially useful in the regulatory assessment of chemicals, the in 
silico models seem to perform as well as in vitro cytotoxicity meth-
ods. The developments in this fi eld can be attributed to the avail-
ability of extensive LD 50  datasets and a wide range of machine 
learning techniques. Many of these datasets, and software tools 
derived from the datasets, are in the public domain. 

 The emergence of mechanism-based toxicology (e.g., adverse 
outcome pathways) is a tremendous opportunity to improve cur-
rent models with better biological knowledge. Indeed, the time of 
global (and scientifi cally dubious) QSARs predicting LD 50  based 
on chemical properties for the whole chemical space is probably 
coming to an end. Future models should target specifi c toxicity 
mechanisms on the basis of current biological knowledge. 
Historically, this was actually done implicitly by focusing model 
building on very limited chemical classes (supposedly acting via 
the same mechanism). According to this approach, global LD 50  
models would be the sum of a multitude of accurate predictors 
dedicated to describe well- defi ned mechanisms of action. In this 
context, the use of biological (in vitro) descriptors in combination 
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with traditional molecular descriptors provides a promising means 
of building local QSAARs based on mechanistically based chemi-
cal classes. 

 In general, the modeling of organ-specifi c and system-specifi c 
effects represents an underdeveloped fi eld, ripe for future research 
but far from regulatory applications, which typically rely on the 
assessment of lethality. A notable exception concerns the modeling 
of receptors and ion channels implicated in specifi c organ patholo-
gies, such as the hERG channel in relation to cardiotoxicity. The 
development of models for upstream (molecular and cellular) 
effects represents a more scientifi cally meaningful exercise which 
also promises to unify the traditional regulatory distinction between 
the acute and repeat dose toxicity. 

 A future research initiative could include, for example, reex-
amination of the datasets for hepatobiliary and urinary tract toxici-
ties of drugs with a view to developing more accessible models and 
assessing their applicability to chemicals other than pharmaceuti-
cals. In addition, the concept of reactivity-based toxicity, now 
established as a plausible mechanism for hepatocyte toxicity, could 
be further exploited using data from hepatocyte cultures and cell 
lines. In some areas, such as immunotoxicity, short-term progress 
seems unlikely. The complexity of such effects probably means that 
systems biology approaches will be more appropriate. 

 In general, the development of models for organ-specifi c and 
system-specifi c effects will depend on a new generation of data-
bases, such as the COSMOS database, which contain high quality 
data that are structured and annotated according to meaningful 
chemical and biological ontologies.     
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    Chapter 11   

 In Silico Models for Hepatotoxicity                     

     Mark     Hewitt      and     Katarzyna     Przybylak     

  Abstract 

   In this chapter we review the challenges of predicting human hepatotoxicity. Principally, this is our partial 
understanding of a very complex biochemical system and our ability to emulate that in a predictive capacity. 
We give an overview of the published modeling approaches in this area to date and discuss their design, 
strengths, and weaknesses. It is interesting to note the shift during the period of this review in the direction 
of evidenced-based approaches including structural alerts and pharmacophore models. Proposals on how 
best to utilize the data emerging from modeling studies are also discussed.  

  Key words     Liver  ,   Hepatotoxicity  ,   In silico or computational prediction  ,   QSAR  ,   Expert system  

1      Introduction 

 Toxicity of new medicinal compounds to the liver is perhaps the most 
signifi cant hurdle to overcome during drug development. Often 
termed “drug-induced liver injury (DILI),” these adverse effects can 
range in nature from subtle elevations in serum enzymes, to acute 
and chronic hepatocellular injuries (steatosis, necrosis, cirrhosis), 
cholestatic injuries, and neoplasia [ 1 ]. Unfortunately, DILI accounts 
for a signifi cant proportion of drugs (>25 %) being terminated 
during development or withdrawn from the market [ 2 ]. 

 Given the protective/metabolic function of the liver, it is per-
haps not surprising that hepatotoxicity is frequently encountered. 
Given the livers high blood fl ow and fi rst-pass metabolism it is a 
certainty that a proportion of the diverse pharmaceutical products 
in use today are hepatotoxic (via metabolic conversion). Unwanted 
interaction between the liver and pharmaceuticals is a major hurdle 
which can often result in the loss of drug effi cacy and/or hepato-
toxicity. Despite preclinical and clinical safety assessments, liver 
toxicity remains a main cause of drug development failures and 
subsequent market withdrawal due to the poor predictivity of idio-
syncratic toxicity in animal models [ 3 ,  4 ]. 
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 The need to predict whether a new drug is likely to lead to 
hepatotoxicity is clear. Information relating to the likelihood of 
liver toxicity is critical in order to increase patient safety, reduce the 
frequency of drug withdrawals/failures and to further increase our 
understanding of liver toxicity. 

 Interestingly, despite a clear need to predict these effects, com-
putational studies in this area have only started to emerge in the 
last decade [ 1 ,  5 ]. Such methods are well-suited to the rapid 
screening of large numbers of compounds, offering signifi cant 
time and cost savings over traditional animal-based screening 
approaches. Furthermore, computational screening has been suc-
cessfully established for other endpoints, including skin sensitiza-
tion and mutagenicity [ 6 ,  7 ]. When coupled with supporting 
in vitro data they provide a powerful tool capable of predicting 
toxicity and, in certain cases, determining the mechanism of that 
toxicity. However, as stated, computational models for DILI have 
only recently started to surface and those that have been published 
are often limited in their scope and predictive capability. 

 The reason for this is simple; predicting toxicity to the liver is 
far from simple! 

 The task of predicting DILI is diffi cult because (a) the liver is 
an intricate and complex organ with numerous biological and met-
abolic pathways that can lead to downstream toxicities and (b) 
many of these toxicological pathways are poorly understood or 
remain unknown. Furthermore, as already introduced, DILI can 
take many forms and range in severity. With the absence of a single 
“catch all” biomarker that can be used as a metric of hepatotoxic-
ity, actually measuring these affects in patients is very challenging. 

 Furthermore, toxicity to the liver can occur in a dose depen-
dent manner (termed intrinsic toxicity) or in a non-dose depen-
dent manner (termed idiosyncratic toxicity) [ 8 ]. Typically, intrinsic 
liver toxicity accounts for approximately 80 % of cases, where the 
observed toxicity can be related to a particular mechanism of action 
(pharmacological, toxicological, or chemical) triggered by the 
drug or its metabolite(s). Idiosyncratic toxicity is very diffi cult to 
predict and is thankfully a relatively rare occurrence. The suscepti-
bility of particular patients to idiosyncratic DILI has been the focus 
of much research [ 9 ], but the prediction of idiosyncratic effects 
remains a herculean task.  

2    Prediction of Hepatotoxicity 

 It is crucial to develop predictive screening systems and mechanistic 
models capable of detecting hepatotoxicity as early as possible in 
the drug development process. However, accurate prediction of 
organ toxicity is very challenging due to the complexity of the 
underlying mechanisms, which are very often not known. 
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Moreover, the lack of specifi c and selective biomarkers that can be 
used to detect hepatotoxicity leads to a shortage of reliable in vivo 
and in vitro data from which to derive predictive models. Most 
likely as a result of these limitations, the fi rst in silico models were 
described in the literature only at the beginning of the last decade 
[ 10 ,  11 ]. The bulk of available computational models for liver tox-
icity have been published more recently [ 1 ]. 

 Published models for the prediction of hepatotoxicity can be 
classifi ed as belonging to one of two approaches [ 12 ]:

    (A)    The development of statistically based structure–activity rela-
tionship (SARs) of varying complexity. This modeling approach 
utilizes existing DILI data to derive a model able to predict a 
quantitative estimation of hepatotoxicity.   

   (B)    The development of qualitative “models” based on expert 
knowledge, directly related to chemical structure and molecu-
lar features. Most often, these qualitative approaches result in 
the development of structural alerts or three-dimensional phar-
macophore models.    

  These models can be further subdivided based upon (1) the 
endpoint being modeled (general hepatotoxicity or a specifi c aspect 
(e.g., steatosis)), (2) the type of variable(s) (descriptors) used to 
develop the model, or (3) the type of data being modeled (in vivo 
or in vitro). Figure  1  depicts how the 21 published models that are 
the subject of this chapter can be divided using these four differen-
tiating criteria.

   Statistical models are generally built from a training dataset of 
chemical structures and their associated toxicity data, expressed 
either in quantitative or qualitative terms, using an appropriate algo-
rithm. Therefore, they are often referred to as “(quantitative) struc-
ture–activity relationships” ((Q)SARs). In contrast, expert systems 
apply expert knowledge to a predictive environment and are usually 
not statistically based. The knowledge is based on the observed tox-
icity of known compounds, together with an understanding of toxi-
cological mechanisms, metabolism and chemical reactivity [ 13 ]. 

 The development of statistical models is usually faster (if suit-
able data are available) than that of expert systems, since expert 
systems require extensive study and integration with existing litera-
ture sources and are usually evidence-based (examples and sup-
porting documentation is supplied along with a prediction). 
Therefore, statistical models are the most common. Approximately 
75 % of the existing predictive models for liver toxicity have been 
developed using an array of different statistical methodologies, 
including  discriminant analysis [ 14 ], Bayesian models [ 15 ,  16 ], 
Artifi cial Neutral Networks (ANN) [ 14 ], k-Nearest Neighbor 
(kNN) [ 17 ,  18 ], Random Forest (RF) [ 18 ,  19 ], and specialist 
QSAR software [ 20 ]. 

In Silico Models for Hepatotoxicity
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 In terms of endpoint, most in silico models are focused towards 
the prediction of general hepatotoxicity (positive/negative irre-
spective of the mechanism/toxicity outcome) [ 5 ,  10 ,  14 ,  15 ,  18 , 
 19 ,  21 – 26 ]. However, it is important to stress that this trend seems 
to be changing in recent years as the number of approaches consid-
ering more specifi c endpoints is increasing. Examples of these spe-
cifi c endpoints include elevations of liver serum enzymes [ 17 ], 
cholestasis and jaundice [ 20 ], hepatosteatosis [ 27 ,  28 ], and hepatic 
histopathologic effects including hypertrophy, injury, and prolif-
erative lesions [ 29 ]. 

 It is interesting to see that the majority of in silico approaches 
have utilized variables representing only chemical structure [ 10 , 
 11 ,  14 – 17 ,  20 ,  21 ,  23 – 25 ]. It is perhaps not surprising given that 
QSAR models traditionally relate chemical structure to observed 
activity, but it seems here that the complex nature of the liver may 
warrant the use of biological descriptors to describe the biological 
process/systems at work. Only three models, discussed later, 
employed both chemical and biological descriptors and are referred 
to as hybrid models [ 18 ,  19 ,  29 ]. 

 Finally, considering the nature of endpoint data used for mod-
eling, most models have been developed using in vivo data. This 
can be broken down further into human data [ 10 ,  14 – 17 ,  19 ,  20 , 
 24 – 26 ] and animal data [ 18 ,  29 ] which may be further subdivided 
into data from different species [ 23 ]. Only two models have been 
built using in vitro data [ 11 ,  21 ] and a further two models utilizing 
both in vitro and in vivo data [ 23 ,  30 ]. The 21 in silico models 
considered in this chapter can be subdivided by their differentiat-
ing characteristics as described by Fig.  1 . The models will be dis-
cussed in the context of these categories and the strengths and 
weaknesses of different modeling methods will be highlighted. 
Potential future developments in the area are also speculated. 

  Fig. 1    Summary of published in silico models for predicting liver toxicity between 2000 and 2015       
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   A large proportion of the published hepatotoxicity models are sta-
tistical in their nature. The predictive element of these models is 
the statistical correlation of toxicity with one or more dependent 
variables. The approach used to identify and model this correlation 
varies considerably both in terms of methodology and complexity. 
Usually, statistically derived models are developed using sophisti-
cated modeling software and tools. 

 The premise of any (Q)SAR model is the relationship between 
chemical structure (described using a number of descriptors) and 
biological activity (e.g., liver toxicity). This enables predictions of 
such activity to be made for new substances based on their chemi-
cal structure. The algorithms used to construct these models com-
prise of simple linear regression, complex multi-variant data 
modeling, data mining, and classifi cation approaches [ 31 ]. Every 
statistical model has to be internally and externally validated to 
show its true predictive power and reliability [ 32 ,  33 ]. The predic-
tive performance is usually evaluated by sensitivity (correctly pre-
dicted positive chemicals), specifi city (correctly predicted negative 
chemicals) and accuracy (correctly predicted positive and negative 
chemicals). High sensitivity and specifi city of a model guarantees 
correct classifi cation of toxicologically active and inactive com-
pounds. Therefore, it is the most important feature when aiming 
to detect potential hepatotoxic drugs in early drug development, 
since the consequences of misclassifying a toxic (positive) drug are 
severe (i.e., the possibility of a toxic drug reaching clinical trials) 
[ 14 ]. Of course, in drug development poor specifi city can be a 
signifi cant problem since many negative compounds may be 
dropped from further development unnecessarily. 

 Table  1 , at the end of this section, describes the 15 diverse 
hepatotoxicity models discussed in this chapter and gives details of 
the methodologies employed, the endpoint modeled, the type of 
descriptors utilized, and the source of hepatotoxicity data.

     As already stated, most of the available in silico models have been 
developed based on in vivo data and are used to predict a general 
hepatotoxicity endpoint. These models consider intrinsic hepato-
toxicity, idiosyncratic hepatotoxicity or a combination of these. 
The majority have been developed based only on the chemical fea-
tures of the training set. 

 One of the fi rst published in silico models was developed by 
Cheng and Dixon (ID 1 in Table  1 ) and is predicting intrinsic liver 
toxicity in humans [ 10 ]. Data for 382 drug and drug-like com-
pounds (of various therapeutic classes) were collected from the lit-
erature. Amongst them, there were 149 chemicals which caused 
dose- dependent hepatocellular, cholestatic, neoplastic and other 
liver injuries. The authors employed a modeling method known as 
recursive partitioning (RP) [ 34 ,  35 ] with an ensemble approach 
[ 36 ], wherein the overall model is actually an average of numerous 

2.1  Statistically 
Derived Quantitative 
Models

2.1.1  Statistical Models 
for In Vivo General 
Hepatotoxicity Endpoint 
Using Chemical 
Descriptors
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models developed from random subsets of the training set. The RP 
technique involves the use of a decision tree to split the training 
dataset into predominantly toxic or predominantly nontoxic mol-
ecules based on the independent variables. Twenty-fi ve descriptors 
were selected from 1D molecular similarity scores and 2D struc-
tural information using a Monte Carlo linear regression algorithm. 
As a result, 151 different trees were generated with the RP 
approach. A compound was predicted using each of the 151 trees 
as being toxic or nontoxic and then the ensemble average was used 
to obtain the fi nal prediction. Leave-one-out (LOO) and leave-10 
%-out validation techniques yielded an overall concordance of 85 % 
and 76 %, respectively. The external validation of 54 compounds 
(23 toxic) gave a similar order of accuracy (81 %). This study 
showed the usefulness of the ensemble approach, using a diverse 
training dataset to build a model that can be applied to a broad 
range of chemical classes. Furthermore, a measure of predictive 
confi dence is also supplied. However, a potential drawback of an 
ensemble approach is observed when the combination of models 
makes the method less transparent and more diffi cult (or impossi-
ble) to investigate the underlying mechanisms. 

 The next model (ID 4), developed by Cruz-Monteagudo, 
employed a number of different modeling methods to predict hepa-
totoxicity; linear discriminant analysis (LDA), artifi cial neural net-
works (ANN), and machine learning algorithms [ 14 ]. In this study, 
33 compounds associated with idiosyncratic hepatotoxicity and 41 
chemicals not associated with liver toxicity were collected from the 
literature. The models used 3D Radial Distribution Function (RDF) 
descriptors, which give information about interatomic distances in 
the entire molecule, ring types, planar and nonplanar systems, atom 
types, and bond distances. The best predictive performance was 
obtained with the LDA model, which correctly classifi ed 86.4 % of 
compounds. Furthermore, based on the LDA model, a “desirabil-
ity” analysis was performed in order to ascertain the characteristics, 
or descriptor values, that a drug candidate should have to ensure a 
lower idiosyncratic hepatotoxicity potential. For the external valida-
tion, two small datasets were used. The fi rst set consisted of three 
pairs of chemically and pharmacologically related drugs having 
opposite observed toxicological profi les, including toxic troglitazone 
vs. nontoxic pioglitazone (insulin resistance drugs), toxic tolcapone 
vs. nontoxic entacapone (catechol- O -methyltransferase (COMT) 
inhibitors), and toxic clozapine vs. nontoxic olanzapine (psychotro-
pic drugs). In this case, LDA and OneR predicted hepatotoxicity 
with the same accuracy of 83.3 %. The second external set was cre-
ated from 13 published drugs, all hepatotoxic, and was used to vali-
date the LDA model. Nine out of the 13 drugs were classifi ed 
correctly and provide evidence that the computational approaches 
could be applied in early drug discovery to minimize the selection of 
chemicals with idiosyncratic hepatotoxicity. 
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 Another model (ID 6) for idiosyncratic hepatotoxicity was 
developed by Ekins et al. [ 15 ]. They used a training set of 295 com-
pounds (containing 158 DILI-inducers) and an external validation 
set of 237 molecules (114 DILI-inducers) to develop a liver toxicity 
prediction model using a Bayesian classifi cation approach [ 37 ]. 2D 
molecular descriptors and extended connectivity functional class 
fi ngerprints of maximum diameter 6 (ECFC_6) were used to dif-
ferentiate the active from inactive molecules and also to highlight 
chemical substructures known to be important for DILI, such as 
ketones, diols, and α-methyl styrene. In addition, the authors 
applied SMILES Arbitrary Target Specifi cation (SMARTS) fi lters 
published by several pharmaceutical companies to all 532 molecules 
to evaluate whether such reactive substructures could be readily 
detected by any of these fi lters. The best predictivity was obtained 
for the Bayesian model which correctly classifi ed 56.0 % of active 
chemicals and 66.7 % of inactive compounds. The external valida-
tion resulted in 59.9 % accuracy. Regarding the SMARTS fi lters, the 
Abbott fi lters resulted in more stringent classifi cation, giving a rea-
sonable sensitivity of 66.9 %, but a relatively low specifi city of 40.3 
%. A signifi cant outcome of this study was the provision of the 
structural and DILI classifi cation data that can be used as a founda-
tion for developing future computational models, as well as fi lters, 
in the early stages of the drug development process. It is evident 
that approaches such as the one above are not yet capable of deliv-
ering acceptable levels of predictivity. However, their potential 
application of drug screening makes them of great interest. 

 Exploring the premise that no single learning algorithm is 
optimal for toxicity modeling problems, Liew et al. applied an 
ensemble of mixed learning algorithms and mixed features to 
develop a model to predict hepatic adverse effects (ID 10) [ 24 ]. 
The authors obtained the list of available drugs on the market from 
the US Food and Drug Administration (US FDA) Orange Book 
[ 38 ], which were then screened for adverse hepatic effects by 
checking the reports on adverse reaction in each drug’s mono-
graph. A fi nal set of 1274 drugs was obtained which were split into 
a modeling set of 1087 and a validation set of 187 compounds. 
Using PaDEL descriptors [ 39 ] calculated for the training set, a 
total of 617 base classifi ers were selected using three algorithms: 
support vector machine (SVM), k-nearest neighbor (kNN), and 
Naiv̈e Bayes (NB). The remaining 187 compounds were divided 
into three different external validation sets. Two of them were 
aimed at verifying the model’s ability to predict “severely” toxic 
compounds and structurally similar chemicals but of opposing tox-
icity status. The outcome of this was that 22 of 23 withdrawn 
drugs or those with black warnings were predicted correctly. 
However, for the structurally similar chemicals with opposite hepa-
totoxicity potential, only 30 % of nontoxic drugs were predicted 
correctly. The inability of the model to separate the non-hepatoxic 
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chemicals was probably due to the similarity of the true negative 
compounds to positive training compounds, coupled with the 
inherent diffi culty to separate highly similar compounds by QSAR, 
which by defi nition expects that structurally related chemicals have 
similar activities. The third external set of 120 drugs gave the most 
reliable evaluation of model performance resulting in a sensitivity 
of 81.9 %, specifi city of 64.6 % and overall accuracy of 75 %. The 
ensemble model was able to identify the positive compounds quite 
well, but it was less successful in classifying negative chemicals, 
especially when they were structurally similar. In general, this study 
again demonstrated the usefulness of an ensemble methodology 
when applied to large and diverse datasets similarly to the Cheng 
and Dixon study [ 10 ]. 

 It is very important, especially in the case of such a complex 
endpoint as hepatotoxicity, to correctly annotate a drugs’ potential 
to induce toxicity. The accuracy and utility of a predictive model 
depends largely on how to annotate the potential of a drug to 
cause hepatotoxicity in a reliable and consistent way. To address 
this issue, Chen et al. used the high quality US FDA-approved 
drug labeling DILI dataset to construct a QSAR model for hepa-
totoxicity (ID 12) [ 25 ]. Within this dataset most DILI-concern 
drugs are (1) withdrawn from the market; (2) labeled with a boxed 
warning; or (3) indicated in the warning and precautions section. 
The authors divided the 387 drugs into a training set of 197 drugs 
(containing 81 positives) and test dataset of 190 drugs (95 posi-
tives). They then used a Decision Tree (DT) algorithm and Mold 
molecular descriptors to develop a QSAR model to predict hepato-
toxicity in humans. The model consisted of six decision trees using 
82 descriptors. Its predictive performance was fi rst assessed by ten-
fold cross validation giving an overall accuracy of 69.7 %. Then 
external validation was undertaken applying the test set and two 
additional (independent) validation datasets: Green dataset con-
sisting of 214 hepatotoxins and 114 drugs with no evidence of 
hepatotoxicity [ 22 ] and the Xu dataset consisting of 132 hepato-
toxins and 109 negative compounds [ 40 ]. The accuracy obtained 
in each external validation was between 61.6 and 68.9 %. The 
external validation also showed that the drugs with consistent 
annotations among these three validation sets were better pre-
dicted (69.1 % accuracy) than drugs with inconsistent annotations 
(58.8 % correctly predicted). Finally, the applicability of the model 
was examined. To this aim, 2000 repetitions of cross- validation 
based on the training set were performed to identify therapeutic 
subgroups in which the QSAR model had higher or lower accuracy 
than the overall accuracy. As a result, 22 therapeutic subgroups 
with high-prediction confi dence and 18 therapeutic categories 
with low prediction confi dence were identifi ed. Some drugs in the 
higher confi dence subgroups, such as: analgesic, antibacterial 
agents and antihistamines, are well documented either to cause or 
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not to cause DILI. Focusing only on the therapeutic categories 
with high prediction confi dence, the accuracy of model increased 
to 73.6 %. So, the therapeutic categories can be used to defi ne the 
chemical structure space, where the model has better predictive 
power. This study demonstrates that using relatively large datasets 
with high quality annotations and focusing on the therapeutic sub-
groups where the model performs best is crucial in developing reli-
able predictive models, especially for very complex endpoint, such 
as liver toxicity.  

   Considering the scarcity of in vitro data, only one study employed 
such data to predict general hepatotoxicity (ID 3). It is not a typi-
cal in silico predictive model, as it focuses mostly on the validation 
of the in vitro method itself using isolated hepatocytes, which 
includes QSARs examining physicochemical properties of chemical 
congeners responsible for observed cytotoxic activity [ 21 ]. The 
authors investigated the molecular mechanism of hepatotoxicity 
for 12 halobenzenes in rat and human hepatocytes. A relatively 
good correlation ( r  2  = 0.90) between LC 50  measured in phenobar-
bital (PB)-induced rat hepatocytes and in vivo toxicity in 
PB-induced male Sprague- Dawley (SD) rats was found. Moreover, 
the QSAR was used to identify the metabolic activating pathway in 
halobenzene toxicity. It was found that toxicity in normal rat and 
human hepatocytes was strongly correlated with hydrophobicity 
(log  P ), ease of oxidation (energy of Highest Occupied Molecular 
Orbital (EHOMO)) and the asymmetric charge distribution 
according to the arrangement of halogen substituents (dipole 
moment,  μ ). This suggests that the mechanism of toxicity is similar 
in both species and involves the interaction between halogens and 
cytochrome CYP450 for oxidation. In the case of PB-induced rat 
hepatocytes, halobenzene toxicity was correlated only with log  P  
and dipole moment, but not EHOMO. This can indicate that ease 
of oxidation is no longer of signifi cance in the underlying toxicity. 
This study is signifi cant as it allows for better understanding of 
hepatotoxic mechanism(s) for that class of chemical. This knowl-
edge is critical for the future prediction of hepatotoxicity.  

   Only a single example could be found where a combination of 
in vivo and in vitro data was used to develop a computational 
model for hepatotoxicity (ID 8) [ 23 ]. Given the success of ensem-
ble modeling approaches previously applied, pooling together all 
supporting or descriptive data seems a logical step in order to try 
to explain and increase user confi dence when predicting complex 
endpoints. Fourches et al. constructed a large and diverse dataset 
for liver toxicity using a novel approach of text mining from the 
published literature. The authors extracted 14,000 assertions link-
ing compounds to different degrees, or types, of hepatotoxicity 
(from the cellular level to the whole organ) across different species: 

2.1.2  Statistical Models 
for In Vitro General 
Hepatotoxicity Using 
Chemical Descriptors
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including humans and rodents (mostly rat and mouse). A fi nal 
dataset of 951 compounds was obtained following a data curation 
process. The data were classifi ed into “class 1” consisting of 248 
chemicals inducing liver effects in humans only and “class 2” con-
sisting of 283 compounds inducing no liver toxicity in humans, 
but causing liver effects in rodents. The authors used hierarchical 
cluster analysis to identify groups of chemicals sharing similar 
molecular motifs corresponding to similar liver effect profi les in 
humans and rodents. As reported by Liew et al. [ 24 ] in their previ-
ous study, Fourches et al. again identifi ed clusters of structurally 
similar molecules that possessed different liver effect profi les. This 
presents a signifi cant challenge for modeling approaches funda-
mentally based on the premise that structurally similar compounds 
should act in a similar manner. It is possible that, descriptor-based 
approaches such as these are not sensitive enough to distinguish 
these compounds and opens the door to structural alert-based 
approaches which are discussed later in this chapter. 

 In addition, the authors also developed Support Vector 
Machine (SVM)-based models to predict whether a compound 
would be expected to produce adverse liver effects in humans. 
Predictive performance was assessed by internal and external fi ve-
fold cross- validation, giving accuracies ranging from 61.9 to 67.5 
% and 55.7–72.6 % for internal and external validation, respec-
tively. After removal of structural outliers using an implementation 
of the applicability domain, an accuracy of 67.8 % was obtained for 
an external validation dataset of 222 compounds. 

 Further examination of the external validation set highlighted 
18 chemicals reported as liver toxicants in non-rodents only. This 
study confi rmed low cross-species concordance of liver effects (40–
45 %), which is in agreement with previous investigations [ 41 ,  42 ]. 
On the other hand, it showed the reasonably good predictivity of 
cheminformatics techniques using data generated by automated 
text mining with limited manual curation. The data mining tech-
nique seems to be feasible to search for the evidence of toxicity for 
compounds of interest that can be used to create in silico models.  

   Hepatotoxicity is a complex beast, a result of multiple mechanisms, 
many of which are still poorly understood or are not yet known. 
Moreover, there are various types of liver injury which can occur, 
such as acute and chronic hepatocellular injuries (steatosis, necro-
sis, cirrhosis); cholestatic injuries; neoplasia; and elevated levels of 
liver serum enzymes (aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), alkaline phosphatase (ALP)) [ 8 ,  43 ]. 
That given, “global” modeling of general hepatotoxicity seems 
almost like trying to paint the Mona Lisa using only one brush 
with a single color. Much information would be lost. If you truly 
aim to be able to understand and predict hepatotoxicity with 
confi dence, it seems logical that models should be developed for 
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specifi c endpoints of liver injury initiated by a single mechanism of 
action. Indeed, the focus in many areas of toxicity is shifting in the 
direction of trying to predict single molecular initiating events 
(MIEs) which then, once triggered, cause a cascade of effects lead-
ing to one or more toxicity outcomes. Such information is being 
termed an Adverse Outcome Pathway (AOP) ( see  also Chapter 
  14    ). Indeed, an AOP specifi cally for liver steatosis is one such 
development by the Organisation for Economic Cooperation and 
Development (OECD) [ 44 ]. A battery of such models used in 
combination would provide an incredibly powerful tool. 

 The US FDA conducted a three-part investigation to create a 
human health effects database and subsequently developed QSAR 
models to predict the hepatobiliary (liver enzyme disorders, cyto-
toxic injury, cholestasis and jaundice, bile duct disorders, gall blad-
der disorders) and urinary tract (acute renal disorders, 
nephropathies, bladder disorders, kidney function tests, blood in 
urine, urolithiases) adverse effects of drugs. Furthermore, they 
described specifi c properties of drugs that caused these adverse 
effects (ID 5) [ 20 ,  45 ,  46 ]. A dataset of about 1660 chemical 
structures was constructed from two pharmaceutical post-market 
surveillance databases maintained by the US FDA: a Spontaneous 
Reporting System (SRS) and an Adverse Event Reporting System 
SRS (AERS), and from the published literature. Five specifi c end-
points were considered: liver enzyme disorders, cytotoxic injury, 
cholestasis and jaundice, bile duct and gall bladder disorders. The 
authors employed four QSAR modeling programs to construct 
predictive models and model performance was optimized by 
adjusting the ratio of active to inactive drug molecules in the train-
ing sets. An average sensitivity of 39.3 % and specifi city of 86.5 % 
was obtained in the internal leave many out (LMO) validation pro-
cedure of the four programs. To improve the low sensitivity, con-
sensus models were constructed by a combination of two programs. 
This resulted in an average sensitivity and specifi city of 56.2 % and 
78.4 %, respectively. In the external validation of 18 new drugs, 
which were removed from market because of serious hepatotoxic-
ity effects, 16 compounds were predicted correctly by at least one 
program, but only two drugs were assigned as hepatotoxic by all 
four programs. These studies demonstrated that QSAR technology 
is a useful (albeit data-hungry) tool providing decision support 
information in drug discovery. However, given its multifaceted 
nature, prediction of hepatotoxicity remains a signifi cant challenge 
and the use of multiple models in combination could be a method 
of increasing performance and user confi dence. Moreover, the US 
FDA study also provided molecular insights into the mechanisms 
responsible for some adverse effects, and this was investigated fur-
ther in the third part of this study [ 46 ]. 

 Rogers et al. employed the US FDA Human Liver Adverse 
Effects Database (HLAED) containing 490 chemicals with fi ve 
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serum enzyme markers of liver toxicity: ALP, ALT, AST, lactate 
dehydrogenase (LDH), and γ-glutamyl transpeptidase (GGT) to 
build QSAR models using a kNN method (ID 7) [ 17 ]. 
Approximately 200 compounds covering a wide range of clinical 
data, structural similarity, and balanced (40/60) active/inactive 
ratios were selected for modeling and divided into multiple train-
ing/test and external validation sets. Since the kNN technique is 
based on interpolating activities of the nearest neighbors, it was 
necessary to introduce an applicability domain to avoid making 
predictions for compounds that differed substantially from the 
training set molecules [ 47 ]. Four hundred topological descriptors 
generated by MolConnZ (eduSoft LC, Ashland, VA) and 1664 
Dragon descriptors (v.5.4, Talete SRL, Milano, Italy) were used to 
construct the models for the fi ve endpoints as well as for the com-
posite liver endpoint created from all fi ve liver enzymes endpoints. 
Sensitivities >73 % and specifi cities >94 % were obtained in external 
validations. It was interesting to note that only three endpoints 
(ALT, AST, and the composite score) had a relatively broad cover-
age among the 490 drugs in the database. This is in agreement 
with the fact that ALT and AST are routine, widely used clinical 
chemistry biomarkers for liver toxicity. The examination of the 
applicability of these developed models, using three chemical data-
bases: World Drug Index (WDI), Prestwick Chemical Library 
(PCL), and Biowisdom Liver Intelligence Module, showed low 
coverage. For example, 80 % of chemicals in the WDI database 
were outside the applicability domain of the models. The authors 
also verifi ed the predictions for compounds from these three exter-
nal datasets, by comparing model-based classifi cation with reports 
in the publically available literature. For many compounds, the 
predictions could not be verifi ed, because of the lack of reports of 
toxicity in the literature. This is a common problem encountered 
in many hepatotoxicity modeling studies. The lack of data is a 
limiting factor as is the questionable quality and relevance of what 
is available. 

 The model for the composite endpoint was also further vali-
dated using fi ve pairs of structurally similar chemicals with oppos-
ing liver toxicity effects. The outcome of this external validation 
was equivocal. Two pairs were outside of the models applicability 
domain and only one pair was predicted correctly. Building on the 
similar experiences noted above, this may suggest that in some 
cases chemical mechanism(s) alone may not account for the toxic 
potential. It is possible in these cases that the differential toxicity 
may arise from metabolic transformations, complex disease path-
ways, or other risk factors dependent on genetic polymorphism 
and/or environmental conditions. This study clearly illustrates that 
the limitations of in silico methodologies result from their restricted 
applicability domains as well as a lack of understanding of the 
complexities of human risk factors and DILI pathways. 
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 Liu et al. utilized the clinical and post-marketing data from the 
computer-readable side effect resource (SIDER) database [ 48 ] and 
identifi ed 13 types of hepatotoxic side effects (HepSEs) based on 
MedDRA ontology, including bilirubinemia, cholecystitis, choleli-
thiasis, cirrhosis, elevated liver function tests, hepatic failure, 
hepatic necrosis, hepatitis, hepatomegaly, jaundice, liver disease, 
fatty liver, and liver function test abnormalities [ 16 ]. Firstly, these 
13 side effects were used to discriminate drugs that do and do not 
cause DILI using the Liver Toxicity Knowledge Base Benchmark 
Dataset (LTKB-BD) [ 49 ] and the Pfi zerData [ 22 ]. For the 
LTKB-DB, classifi cation accuracy was 91 %; for the Pfi zerData the 
accuracy was signifi cantly lower (74 %). In the next step, using the 
SIDER database, QSAR models for every HepSEs were generated 
using a Bayesian methodology and these were then combined to 
form a DILI prediction system (DILIps) (ID 11). Finally, the 
authors implemented a “rule of three” (RO3) criterion (a chemical 
being positive in at least three HepSEs) into DILIps which 
increased classifi cation accuracy. The predictive performance of 
DILIps was examined using three external databases: LTKB-DB, 
Pfi zerData and a dataset published by O’Brien et al. [ 50 ] and 
yielded prediction accuracies of 60–70 %. 

 Liu et al. also applied the RO3 criterion to drugs in DrugBank 
to investigate their DILI potential in terms of protein targets and 
therapeutic categories. Two therapeutic categories showing a 
higher risk for causing DILI were identifi ed (anti-infective for 
systemic use and musculoskeletal system drugs). These fi ndings are 
consistent with current knowledge that most of the anti-infective 
drugs are very often associated with liver injuries. One hundred 
thirty-four protein targets related to drugs inducing liver toxicity 
have been identifi ed using pathway analysis and co-occurrence text 
mining with most of these targets being associated with multiple 
HepSEs. This study provides an interesting example of the transla-
tion of clinical observations into an in silico tool which can be used 
to screen and prioritize new drug candidates or chemicals and to 
avoid those that might cause hepatotoxicity. 

 In recent years, a number of new initiatives and international 
projects have been undertaken to develop in silico models to pre-
dict the harmful effects of chemicals to humans considering differ-
ent endpoints such as liver injury. One such example is the 
COSMOS project [ 51 ] (belonging to the larger research initia-
tive—SEURAT-1). The main aim of COSMOS is to develop publi-
cally available tools and workfl ows to predict the safety to humans 
following the use of cosmetic ingredients. Among them is the 
development of computational methods to evaluate the potential 
of chemicals to bind to liver X receptor (LXR), activation of which 
leads to liver steatosis (ID 15) [ 52 ]. Using different techniques 
such as molecular modeling to assess the LXR binding potential 
and applying PaDEL or RDKit descriptors, QSAR models based 
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on Partial Least Squares Discriminant Analysis (PLS-DA) were 
developed and implemented into the freely available KNIME 
Platform [ 52 ]. These models, used together with the molecular 
modeling methods and structural alerts as discussed within this 
chapter, are forming integrated in silico strategies for screening of 
potential steatosis inducers.  

   Only one in silico model (ID 2) has been found that predicts 
in vitro specifi c hepatotoxicity endpoints measured by cell prolif-
eration, lactate dehydrogenase (LDH) for membrane integrity, 
intracellular ATP levels for cell vitality, and levels of caspases 3 and 
7 for cell apoptosis [ 11 ]. The authors applied molecular interaction 
fi elds (Idiotropic Field Orientation for Comparative Molecular 
Field Analysis (IFO- CoMFA)) as structural descriptors and Soft 
Independent Modeling of Class Analogy (SIMCA) to classify the 
hepatotoxicity of 654 drugs from the Sigma-RBI Library of 
Pharmaceutically Active Compounds (LOPAC) [ 11 ]. Each of the 
four assays showed good discrimination between the toxic and 
nontoxic chemicals. The greatest accuracy of 52 % was obtained for 
a hierarchical ranking model, which combined all four assays (again 
demonstrating that ensemble/consensus models show promise). 
A signifi cant improvement in predictive performance (accuracy of 
88 %) was achieved with a model constructed for a set of 27 non-
steroidal anti-infl ammatory drugs (NSAIDs) using data from the 
LDH assay. The cross-validation confi rmed the good performance 
of this model giving an accuracy of 71 % and 83 % for a training set 
of 21 NSAIDs and a test set of six NSAIDs, respectively. The poor 
predictivity of the global IFO-SIMCA approach for the large, 
diverse dataset of biologically active compounds and signifi cant 
improvement for single pharmacological class chemicals’ model 
showed that for endpoints based on specifi c cytotoxicity indicators 
only models for closely related class of chemicals may be useful. This 
possibly indicates that they are applicable only to a single mechanism 
of action within structurally related compounds. This is the main 
limitation of this approach, as it constricts the applicability of the 
model. However, local models such as this often demonstrate supe-
rior levels of predictivity, hence are useful in limited chemical space.  

   Signifi cant progress has been made in analytical and biomedical 
techniques in recent years which has resulted in the development 
of hundreds of new high-throughput screening (HTS) assays. The 
US Environment Protection Agencies (EPA’s) Toxicity Forecaster 
(ToxCast) program uses these HTS assays to screen environmental 
chemicals for bioactivity [ 53 – 55 ]. Within two phases of this pro-
gram, 1057 chemicals were measured using more than 800 HTS 
assay endpoints including biochemical assays, cell-based assays, 
cell-free assays, and multiplexed transcription reporter assays. 
These data provide valuable information about the molecular 

2.1.5  Statistical Models 
for In Vitro Specifi c 
Hepatotoxicity Endpoints 
Using Chemical 
Descriptors

2.1.6  Statistical Models 
for In Vivo General 
Hepatotoxicity Using 
Hybrid Descriptors
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mechanism(s) of toxicity and help to identify the pathways related 
to adverse effects. Three studies using both chemical and biological 
descriptors have been identifi ed. The main objective of these studies 
was to investigate if chemical descriptors and biological descriptors 
could be complementary in the prediction of hepatotoxicity. 

 One of the fi rst studies applying chemical and biological 
descriptors to develop models for hepatotoxicity was conducted by 
Low et al. (ID 9) [ 18 ]. In contrast to many other in silico studies, 
the authors utilized only the animal data obtained from subchronic 
(28 days of treatment) assay in rats for 127 drugs studied in the 
Japanese Toxicogenomics Project [ 56 ]. The chemical was assigned 
as a liver toxicant if it exhibited histopathological characteristics of 
hepatotoxicity. Conversely, a compound was deemed non-hepato-
toxic if it did not result in adverse histopathological features. When 
the observations were inconclusive, serum chemical indicators 
including ALT, AST, ALP, TBL, and gamma-glutamyl transpepti-
dase (GGT) were considered. The authors built conventional 
QSAR models using only chemical descriptors. They then applied 
toxicogenomic data to differentiate the hepatotoxins from non-
hepatotoxins and fi nally hybrid hepatotoxicity classifi ers were 
developed. For modeling purposes, statistical methodologies 
including: kNN, SVM, RF and Distance Weighted Discrimination 
(DWD) were applied using internal and a fi vefold external cross-
validation. The evaluation of predictivity showed that the accuracy 
of QSAR models based on chemical descriptors was generally poor 
(55–61 %). Conversely, models employing 85 selected toxicoge-
nomics descriptors showed signifi cantly improved predictive per-
formance with accuracies as high as 76 %. The authors examined 
the spatial distribution of compounds in their chemical and toxi-
cogenomics descriptor space which showed that 50 % of structur-
ally similar pairs of compounds had opposing toxicities. On the 
other hand, amongst pairs of compounds with the most similar 
gene expression profi lers, only 23 % exhibited opposing toxicity. It 
shows that pairs of compounds with similar gene expression pro-
fi les are more likely to have the same hepatotoxicity potential than 
pairs of chemically similar compounds. Of note here is that when 
hybrid models, combining both chemical and biological descrip-
tors, were constructed they demonstrated similar accuracy (68–77 %) 
to those models based only on toxicogenomics data but the use of 
both chemical and biological descriptors provides additional insights 
into understanding DILI. The study confi rmed that hepatotoxicity 
is a very complex endpoint and cannot be predicted effectively 
based only on the chemical characteristics of drugs. Such hybrid 
models look very promising as predictive and prioritization tools 
and allow for a better understanding of the mechanisms of 
hepatotoxicity. 

 A second study employing hybrid descriptors was conducted 
by Zhu et al. (ID 13) [ 19 ]. The authors constructed models based 
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on chemical descriptors and in vitro cell-imaging information taken 
from human hepatocyte imaging assay technology (HIAT) that 
 measures the intensity of biochemical indicators, such as lipids, 
glutathione (GSH), reactive oxygen species (ROS) [ 40 ]. The models 
were built based on a dataset of 292 diverse chemicals (156 posi-
tive) using RF and fi vefold cross validation methodologies. For 
each model the applicability domain was defi ned to control the 
distance between the predicted compound and its closest neighbor 
in the dataset. The main purpose of this research was comparing 
the prediction performance of models with a single type of descrip-
tor (chemical or HIAT) with hybrid models. The hybrid models 
were constructed by combination of HIAT descriptors with chemi-
cal descriptors calculated using three programs (CDK-HIAT, 
Dragon-HIAT, and MOE-HIAT). These three hybrid models 
were combined into a consensus model. The models with chemical 
descriptors alone showed the poorest predictivity with accuracies 
between 57 % (for CDK descriptors) and 63 % (for MOE descrip-
tors). Similar to the study conducted by Low et al. [ 18 ], this 
research confi rmed that structural properties alone are incapable of 
capturing the complex mechanisms of liver toxicity. The highest 
accuracy (77 %) and specifi city (87 %) were obtained from the 
HIAT model. However, the consensus hybrid model showed the 
greatest sensitivity (74 %). Since the HIAT model had the highest 
specifi city and consensus model-best sensitivity, both models were 
applied together to distinguish liver toxicants from nontoxic chem-
icals. Ninety-eight of 158 DILI-inducers and 96 of 136 non-
inducers were predicted correctly by both models. Careful 
investigation of the 39 false negative compounds revealed that at 
least three types of mechanisms are not captured by the models: 
(1) drugs that may cause liver toxicity only in high dosage, e.g., 
naltrexone; (2) metabolic activation, e.g., tianeptine; and (3) 
blockage of bile secretion, e.g., norethindrone. Ideally, QSAR 
models should be mechanistically interpretable to help understand 
the underlying mechanisms of toxicity. In this study, the distribu-
tion of molecular fragments among the toxic and nontoxic chemi-
cals was investigated together with the analysis of biological 
descriptors. Forty-seven molecular fragments showed a signifi -
cantly higher probability of being present in DILI- inducers than in 
non-inducers. Most of these fragments were associated with amine-
derivatives, aromatic rings and alkyl chloride fragments. 
Furthermore, three of HIAT descriptors: the tetramethylrhoda-
mine methyl ester (TMRM) intensity, ROS and a reduced intracel-
lular GSH level were ranked as the most important indicators of 
DILI. These fi ndings proved, for example, that the redox cycling 
of nitroaromatic drugs can generate reactive oxygen species (repre-
sented as ROS intensity HIAT descriptor) which are indicators of 
oxidative stress in hepatocytes. A further HIAT descriptor, TMRM, 
is an indicator of mitochondrial abnormality which can generate 
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superoxide and damage endogenous macromolecules. This study 
showed that chemical and biological  descriptors can be comple-
mentary and enhances the prediction accuracy of hepatotoxicity 
and can aid in rational mechanistic interpretation.  

   A recent study conducted by Liu et al. utilized the in vitro bioactivity 
data from ToxCast together with chemical structure descriptors 
for 677 chemicals to predict in vivo hepatotoxicity (ID 14) [ 29 ]. 
Of the 677 compounds, 214 were classifi ed as hepatotoxic based 
on rat liver histopathological observations in chronic studies and 
were categorized into three hepatotoxicity groups: (1) hypertro-
phy (161), (2) injury (101), and (3) proliferative lesions (99). The 
remaining 463 chemicals were classifi ed as non-hepatotoxic. The 
authors built the models using six machine learning algorithms: 
LDA, NB, SVM, classifi cation and regression trees (CART), kNN, 
and an ensemble of these classifi ers (ENSMB). Three types of 
descriptors were used to build the models: 726 chemical descrip-
tors from QikProp, OpenBabel, PaDEL, and PubChem; 125 
ToxCast HTS bioactivity descriptors and hybrid descriptors (the 
combination of chemical and bioactivity descriptors). Because of 
the skewed ratio of positive to negative chemicals in every hepato-
toxicity category, undersampled, balanced datasets have been pre-
pared: 160 positive and negative chemicals for hypertrophy, 100 
positive and negative chemicals for injury, and 90 positive and 
negative chemicals for proliferative lesions. For each of the three 
categories, classifi ers of hepatotoxicity were built using imbalanced 
and balanced datasets for three types of descriptors: chemical, bio-
activity, and hybrid. Predictive performance was evaluated using 
tenfold cross-validation and repeated 100 times. For each step in 
the cross-validation loop, the subset of best descriptors was fi l-
tered. The best predictive accuracy for hypertrophy (84 %), injury 
(80 %) and proliferative lesions (80 %) was obtained for hybrid 
descriptors. Using undersampled balanced datasets improved the 
sensitivity, but reduced the specifi city of classifi ers compared to the 
imbalanced datasets. 

 In general, classifi ers with bioactivity descriptors have better 
specifi city than models with chemical descriptors only, but have 
lower sensitivity. However, the best predictive statistics in terms of 
balanced accuracy, sensitivity and specifi city were obtained for 
hybrid classifi ers for both balanced and imbalanced datasets. This 
study showed that using both types of descriptors is more relevant 
for building predictive models, since they refl ect the synergies 
between structural features, molecular mechanisms and cellular 
functions. The interpretation of these selected descriptors is impor-
tant for the understanding of underlying mechanisms of hepato-
toxicity and can help to establish the adverse outcome pathways 
(AOPs) as highlighted previously in this chapter. The analysis of the 
descriptors suggested that the classifi ers may be related to AOPs 

2.1.7  Statistical Models 
for In Vivo Specifi c 
Hepatotoxicity Endpoints 
Using Hybrid Descriptors
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initiated by the pregnane X receptor (PXR), farnesoid X receptor 
(FXR), and vitamin D receptor (VDR). Overall, this study demon-
strates the  usefulness of HTS assays for characterizing the in vivo 
hepatotoxicity and the benefi t of using both types of descriptors 
refl ecting bioactivity and chemical structure.  

   The performance of statistical models generally suffers when 
predicting complex toxicity endpoints such as hepatotoxicity, a 
phenotype with multiple complex mechanisms and many that 
remain unknown. This literature review of the existing statistical 
models for predicting hepatotoxicity has confi rmed that there is no 
easy solution to the problem of correctly identifying hepatotoxins. 
The shortage of reliable data, the lack of sensitive biomarkers and 
the multifaceted nature of hepatotoxicity itself, all serve to compli-
cate an already complex problem. Since hepatotoxicity is so com-
plex a phenomenon, it could not be predicted with high confi dence 
based solely on the structural properties of the chemicals. It was 
found that the application of both chemical and biological infor-
mation together and modeling specifi c endpoints of liver injury, 
initiated by a single mechanism of action rather than the effect as a 
whole, can signifi cantly improve the identifi cation of potential 
hepatotoxins. Moreover, multiple studies showed that the ensem-
ble methodology that combines different models had improved 
the fi nal performances when compared with the best performing 
individual model.   

   In contrast to the quantitative models discussed up to this point, a 
number of qualitative approaches have also been explored. These 
are summarized later in this section by Table  2  following the 
discussion of these models.

     The development of structural alerts has been an area of considerable 
interest in recent years. Their transparency and ability to incorpo-
rate (or elucidate) mechanistic information offers an advantage 
over other, statistically derived, approaches. 

  
 Over a decade ago, Egan et al. provided an excellent review of in 
silico methods to predict various aspects of drug safety (ID 1 in 
Table  2 ) [ 5 ]. The authors own contribution to this review was the 
development of a structural alert-based approach for the predic-
tion of liver toxicity. From a dataset of 244 drugs (54 of which 
were withdrawn from the market or abandoned during develop-
ment owing to hepatotoxicity) a series of 74 computational alerts 
were developed. These alerts were based on an extensive review of 
the literature and were often accompanied with mechanistic rea-
soning for their observed hepatotoxicity. It is interesting to note 
that 56 of the 74 alerts were based on functional groups and were 
related to the formation of reactive (or otherwise toxic) 

2.1.8  Statistical Models 
Summary

2.2  Qualitative 
(Expert Knowledge- 
Based) Models

2.2.1  Development 
of Structural Alerts

2.2.1.1  Egan et al. 
(2004): Structural Alerts 
for Hepatotoxicity
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metabolites. The remainder were based on whole molecule similarity 
and were more complex, often with limited or no mechanistic 
rationale. No attempt was made here to assess their predictive per-
formance since the authors aim was to extract and investigate 
structural alerts for hepatotoxicity. 

 Unlike the statistical models in the previous section of this 
chapter, qualitative methods such as structural alerts are not statis-
tically derived models. In fact, they should not be considered as 
“models” at all. They serve as a direct link showing that a particular 
molecular fragment/feature is associated with observed hepato-
toxicity. No quantitative measure is provided. Interest in structural 
alerts is increasing. Since they are developed in an evidence-based 
manner and may contain mechanistic information, they are com-
pletely transparent and user confi dence in their application is gen-
erally higher than that of statistical models. 

 This is not to say that structural alerts are simple to generate. 
Each structural alert must be carefully defi ned. Too general in nature 
and it will be fl agged up in almost all compounds and will not 

     Table 2  
  Table summarizing expert knowledge-based models for liver toxicity   

 ID  Endpoint 
 Type and size of 
data 

 No. of structural 
alerts  Validation 

 Predictive 
performance  Ref 

 1  Hepatotoxicity  In vivo human 
data for 244 
compounds 

 74 developed  No data  No data  [ 5 ] 

 2  Hepatotoxicity  In vivo data for 
1266 
compounds 

 38 developed  External validation 
using 626 
chemicals 

 SEN (46 %), 
SPE (73 %), 
and ACC 
(56 %) 

 [ 22 ] 

 3  Hepatotoxicity  In vivo human 
data for 951 
compounds 

 16 developed  N/A  N/A  [ 30 ] 

 4  Hepatosteatosis  PDB and 
ChEMBL 

 N/A  Validation using 
the 251 
ChEMBL 
compounds and 
951 Fourches 
et al. dataset 

 N/A  [ 28 ] 

 5  Hepatotoxicity  In vivo human 
data for 577 
compounds 

 12 molecular 
fragments 

 Not reported  Not reported  [ 29 ] 

 6  Steatosis  Pharmacophore 
built on the 
three most 
active agonists 

 None—
pharmacophore 
model 

 External validation 
using a test set 
of 21 agonists 

 N/A  [ 27 ] 
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differentiate toxicity classes. Too specifi c (rigid) may restrict its 
application to a single compound and not extend to derivatives con-
taining the actual fragment initiating the toxicity. All of this, coupled 
with the need to research and defi ne mechanistic rationale makes 
structural alert defi nition a complex and time-consuming task. 

 Irrespective of their origins, the beauty of structural alerts is 
that they can be coded into computational systems which allow for 
rapid screening of compound libraries. Egan et al. packaged the 
knowledge extracted from the literature, linked this to defi ned 
structural alerts and developed a system capable of making mecha-
nistically supported predictions of likely hepatotoxicity in humans.  

   Green et al. further develop the concept of generating structural 
alerts for hepatotoxicity (ID 2) [ 22 ]. The authors highlight the 
presence of Derek for Windows (DfW), a commercial prediction 
system developed by Lhasa Ltd. [ 56 ]. In recent years this has been 
rebranded as Derek Nexus as already introduced in Chapter   10    . 
This knowledge- based expert system emulates human reasoning 
and utilizes the approach described by Egan et al. [ 5 ] to make pre-
dictions based on structural alerts and associated mechanistic 
knowledge. Version 8 of this software contained structural alerts for 
several endpoints, many of which were well established (e.g., carci-
nogenicity). However, at the time this study was performed, only 
two structural alerts for hepatotoxicity were present in DfW’s 
knowledgebase. 

 Green et al. highlighted this shortfall and published a study 
aimed at developing a number of additional structural alerts. 
Importantly, this study investigated whether it is possible to use 
publically available data to develop structural alerts for hepatotoxic 
potential. This study goes into some detail of how a dataset of 
known hepatotoxins was divided into various chemical/therapeu-
tic classes. This article also starts to introduce the concept of using 
structural similarity to generate structural alerts from clusters of 
structurally related compounds. 

 Thirty-eight new structural alerts were identifi ed in this study 
based on human and/or animal data. Each was incorporated into 
a customized version of DfW ( see  Fig.  2 ) together with supporting 
examples and mechanistic information gathered from the litera-
ture. Importantly, these alerts were externally validated using a 
large Pfi zer-developed dataset of 626 compounds ( see  Fig.  3  for 
examples of compounds containing identifi ed alerts). The predic-
tive performance of these alerts in the customized DfW knowledge 
base are summarized in Table  2 .

    The importance of developing structural alerts and embedding 
these into a tool such as DfW is clear. SARs in the form of structural 
alerts for complex endpoints can be elucidated from the open litera-
ture. The additional support of case studies and mechanistic  rationale 
extracted from the literature is where a structural alert approach 

2.2.1.2  Greene et al. 
(2010): The Interest 
in Structural Alerts Grows
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differs from traditional quantitative modeling. As a screening tool, a 
prediction along with transparent supporting evidence is very 
powerful. Of course, at the same time, the approach of developing 
structural alerts in this manner drives research into mechanisms of 
liver toxicity and injury which is of equal importance.  

   Driven by the continued need to predict hepatotoxicity and the 
growing utilization of structural alerts, our contribution to this area 
has been in the development of a general scheme for structural alert 
development (ID 3) [ 30 ]. Focusing purely on publically accessible 
data, our aim was to develop an approach (using freely available 
tools) capable of yielding mechanistically supported structural alerts 
as previously described [ 5 ,  22 ]. Given the scarcity of high quality 
hepatotoxicity data, the broad spectrum of possible endpoints to 
consider and the complex nature of the mechanisms involved, 

2.2.1.3  Hewitt et al. 
(2013): A Scheme 
for Generating Structural 
Alerts for Human 
Hepatotoxicity

  Fig. 2    Example alert describing SARs developed for tetracyclines and thiophenes. Reprinted with permission 
from Green et al. Chem. Res. Toxicol. 23, 1215–1222. Copyright 2015 American Chemical Society       
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  Fig. 3    Drugs containing a thiophene ring and associated with hepatotoxicity. Reprinted with permission from 
Green et al. Chem. Res. Toxicol. 23, 1215–1222. Copyright 2015 American Chemical Society       
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defi ning such alerts is a considerable challenge. Furthermore, our 
focus was set solely on predicting human hepatotoxicity utilizing 
compiled clinical data for 951 structural diverse compounds. Given 
that hepatotoxicity is often not evident until identifi ed during 
post- marketing surveillance, it seems logical to conclude that cur-
rent histopathological liver fi ndings in rats do not model the idio-
syncratic effects seen in humans [ 41 ,  42 ]. Conversely, Lhasa Ltd. 
(the developers of Derek Nexus) recently presented a poster show-
ing that the alerts available in Derek Nexus which are developed 
using human data cannot predict the liver fi ndings in rats [ 57 ]. 

 In our study, structural similarity scores were used to highlight 
chemical categories of structurally related (and hepatotoxic) com-
pounds (using the freely available Toxmatch software [ 58 ]). 
Eighty- two such categories were identifi ed and each was manually 
inspected for validity. Following this validation step, 16 unique 
structural categories were identifi ed and researched in detail to 
propose a mechanistic rationale. The common structural fragment 
of each category was extracted and taken to be the structural alert 
for that class. Each alert was further validated by using that struc-
tural alert to repopulate the original category. Examination of the 
resulting hits proved useful in highlighting alerts that were too 
general or restricted in terms of their defi nition. 

 An example of an alert generated from a small chemical cate-
gory (Table  3 ) is shown in Fig.  4 . This category contains a number 
of phenothiazine derivatives commonly used as antipsychotics. 
The common structural fragment was extracted and formed the 
structural alert as shown in Fig.  4 . Searching the literature for a 
mechanistic rationale to explain the observed hepatotoxicity for 
this chemical class quickly revealed multiple implications in mitochon-
drial toxicity ( see  Hewitt et al. for more details). As was often the 
case, categories contained one or more members which were 
recorded as non- hepatotoxins. Here, perphenazine was classifi ed as 
such in the Fourches et al. dataset. However, further literature 

    Table 3  
  Showing the category members formed using structural alert 6 (depicted)   

 Compound  Hepatotoxicity 

 Chlorpromazine  Positive 

 Perazine  Positive 

 Perphenazine  Negative 

 Prochlorperazine  Positive 

 Thioridazine  Positive 

 Trifl upromazine  Positive 

  ( See  also Fig.  4 )  
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searching suggested this to be an incorrect classifi cation since 
perphenazine has been associated with liver effects in humans.

    As such, this is not solely a process of extracting knowledge from 
a given dataset, but acts to highlight instances where the literature 
can be used synergistically to support and extend our current 
knowledge. 

 The aim of the article by Hewitt et al. was not to create a compre-
hensive suite of hepatotoxicity alerts, but to develop and publish a 
generic scheme for their development using freely available tools. 
Given the limitations of publically assessable data and our incomplete 
understanding of hepatotoxicity, developing a system suffi ciently 
capable of predicting hepatotoxicity in humans is a herculean task. 
A dynamic scheme such as that proposed by Hewitt et al., updated 
regularly with new data leading to new alerts and renewed mechanis-
tic understanding, is likely to be the most productive approach. 

 The general 7-step strategy proposed in this work is summarized 
in Fig.  5 . As with all modeling approaches, the fi rst step is to acquire 
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  Fig. 4    Showing the category members formed using structural alert 6 (depicted) 
( see  also Table  3 )       

  Fig. 5    Strategy for the development of structural alerts for the prediction of hepatotoxicity (taken with permission 
from Hewitt et al. [ 30 ])       
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an appropriate dataset suitable for modeling (defi ned chemical 
structures, clear toxicity annotations, etc.). The second step is to 
form groupings of structurally related compounds (often termed 
chemical categories). A manual validation step is then required in 
order to remove any duplicate categories or those exhibiting too 
wide a range of chemical diversity. Step 4 is when each category is 
inspected and a common structural feature is identifi ed. This fea-
ture becomes the structural alert. In order to assess the selectivity 
of the alerts generated, step 5 involves using these alerts to screen 
the original dataset. Step 6 then examines the resulting  category 
members (which may contain compounds with the alert but not 
previously assigned to the category) This stage quickly highlights 
alerts that are too general in nature since the repopulated category 
tends to contain multiple new compounds (many of which often 
demonstrate no toxicity). If developed well, this category adds a 
supportive element to the alert demonstrating a category of exam-
ple toxic compounds. The second stage of step 6 adds mechanistic 
support to the structural alert. Each alert (and its category mem-
bers) is investigated in detail to defi ne or propose a mechanistic basis 
for the toxicity observed. This stage is time consuming with no 
guarantee of success, but in most cases mechanistic rationale could 
be identifi ed and this gives a much greater weighting (and user con-
fi dence) in their use. The fi nal step proposed in the Hewitt et al. 
article (step 7) highlights that, at this stage, the structural alerts are 
read to be used to screen query datasets. Furthermore, it is stressed 
that the chemical categories themselves should not be forgotten and 
have a potential role in read-across; a process whereby measures of 
structural similarity can be used to match a query chemical to those 
in a library. These reference compounds (or category members) can 
then be used to estimate the properties/toxicity of the query com-
pound based on their similarity.

   As with the study by Greene et al., the power of structural alerts 
is their ability to be built into a platform capable of screening large 
numbers of compounds for the presence of each alert. The 16 alerts 
developed in his study were combined into a predictive tool and 
were made available on the predictive modeling platform developed 
within the eTOX Project [ 59 ]. Here, the structural alerts were 
coded as SMARTS and were incorporated into the KNIME plat-
form [ 52 ]. This automated the screening procedure and allowed 
for an input fi le to be uploaded and rapidly screened.  

   Working as part of the COSMOS Project, Steinmetz et al. (ID 4) 
[ 28 ] employed a slightly different approach to the problem. Instead 
of elucidating structural alerts and then investigating their 
mechanism(s) of action, they began with a known mechanism of 
interest (interaction with the retinoic acid receptor (RAR) which 
has been linked with liver steatosis) (It is interesting to note that 
the retinoid class was previously highlighted as a structural alert in 

2.2.1.4  Steinmetz et al. 
(2015): Focusing 
the Search
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Hewitt et al. [ 30 ].) Subsequent analysis then solely focuses on 
known RAR ligands to identify structural alerts for this mechanism 
of action. This is synonymous with the local versus global model-
ing approaches previously discussed with regards to the statistically 
derived models (multiple versus single mechanisms of action). 

 In contrast to previous works, Steinmetz at al. combined a 
small number of structural alerts together with a set of physico-
chemical property fi lters to highlight potential RAR ligands. These 
fi lters were based on the physicochemical characteristics of the 
known RAR ligands considered in the study. 

 Again, predictions were made via the development of a KNIME 
workfl ow containing the alerts as well as automated physicochemi-
cal property calculations and fi lters ( see  Fig.  6 ). The KNIME work-
fl ow then acts as a very powerful screening tool able to identify 
potential RAR ligands.

      The most recent example of structural alerts for human liver toxicity 
at the time of writing this chapter was an article by Liu et al. (ID 5) 
[ 29 ]. Their focus was on the validity of structural alerts. As stated 
in the article, a limitation of employing libraries of structural alerts 
is that they will effectively reduce the chemical space available for 
new drug discovery. Liu et al. highlight that more than half of the 
oral drugs currently on the market match to one or more structural 
alerts published for hepatotoxicity, suggesting that these alerts are 
either too general in their design or they are failing to take into 

2.2.1.5  Liu et al. (2015): 
Boosting the Validity 
of Structural Alerts

  Fig. 6    KNIME workfl ow developed by Steinmetz et al. to predict RAR ligands (taken with permission from 
Steinmetz et al. [ 28 ])       
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account other factors, such as metabolism. They go on to discuss 
the development of robust, statistically validated, structural alerts. 

 In the publication of Hewitt et al., structural alerts were often 
developed using categories containing both hepatotoxic and non- 
hepatotoxic compounds. The confl icting “non-hepatotoxic” com-
pounds could often be rebuttled following detailed literature 
searches suggesting these classifi cations to be false. Furthermore, 
with the dataset considered in the Hewitt et al. study, the absence 
of clinical reports for hepatotoxicity lead to a non-hepatotoxic 
classifi cation. 

 Liu et al. proposed to ensure the relationship of alert and toxicity 
using a statistical approach (utilizing  p  values) to highlight the 
robustness of this relationship in a quantitative manner. Alerts 
based on categories containing nontoxic compounds will therefore 
show reduced statistics and less robustness than those based solely 
on toxic compounds. However, as mentioned previously, it is 
important to ensure the validity of the nontoxic classifi cation before 
proceeding in this manner.   

   As introduced earlier in this chapter, the development of pharma-
cophore models is another qualitative approach to the prediction 
of hepatotoxicity. It is important to stress from the outset that 
pharmacophore models, depending upon how they are utilized, 
can provide quantitative information. Pharmacophore models can 
be seen to extend the theory of structural alerts and transform the 
two- dimensional representation of a structural alert into a three- 
dimensional scaffold, overlaid with information of important phys-
icochemical features. (This is not to be confused with chemotypes 
which are effectively two-dimensional structural alerts with 
encoded physicochemical data). 

   Tsakovska et al., partners in the COSMOS Project, recently pub-
lished a pharmacophore study focussing on a particular mechanism 
of action thought to be a key factor in the elucidation of liver ste-
atosis (ID 6) [ 27 ]. As in the Steinmetz et al. study, efforts are 
focused onto a single mechanism of action, in this case concentrat-
ing on the activation of the peroxisome proliferator-activated 
receptor gamma (PPARγ). 

 A pharmacophore model was developed following analysis of 
the interactions between PPARγ and the three most active full ago-
nists (rosiglitazone and two compounds termed compound 544 
and 570). The pharmacophore was evaluated using a dataset of full 
agonists and the pharmacophore features were evaluated. 

 The structure of one of the full PPARγ agonist (rosiglitazone) 
is shown in Fig.  7 .

   The three most active agonists are aligned on top of one 
another to defi ne the characteristics of the PPARγ pharmacophore 
(Fig.  8 ). In this study, four polar atoms and functional groups 

2.2.2  Development 
of Pharmacophore Models

2.2.2.1  Tsakovska et al. 
(2014)
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capable of performing hydrogen bonding and ionic interactions 
(F1, F2, F4 and F6) and three hydrophobic and aromatic features 
(F3, F5 and F7) were determined to be important pharmaco-
phore features of the most active agonists. The role of each fea-
ture and its interactions within the binding region of PPARγ are 
then considered.

   This scaffold can be used to screen libraries of compounds for 
likely PPARγ binders. In its most simplistic form, the presence/
absence of each pharmacophore feature can be used to predict 
activity. More complex application included assessment of the 
three-dimensional positioning of these features and the interactions 
these have with the PPARγ complexes. 

 Pharmacophore models extend beyond structural alerts in their 
ability to tease out information relating to the binding interactions 
between receptor and ligand. As such, if a particular interaction is 
known to be a prerequisite for activity, it can be explored and 
extended to fi nd other groups/molecules which possess this ability. 
They therefore have a signifi cant role in the drug development 
process given their possible applications in rational drug design.     
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  Fig. 7    Structure of rosiglitazone       

  Fig. 8    Pharmacophore model of PPARγ full agonists (rosiglitazone, carbon atoms in  magenta ; compound 544, 
carbon atoms in  green ; compound 570, carbon atoms in  grey ) (taken from Tsakovska et al. [ 27 ])       
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3    Fitting Together the Different Pieces of the Puzzle and Future Directions 

 The mechanisms by which a compound can elicit toxicity to the 
liver are complex and diverse in nature. Attempting to then predict 
the hepatotoxicity of a new compound using a single approach is a 
very diffi cult task. It has already been seen that, on multiple 
occasions, authors have combined not only model predictions, but 
also model types in search of better and more reliable hepatotoxicity 
prediction [ 10 ,  24 ]. 

 An emerging theme from all of these studies is that individual 
models have differing abilities to predict hepatotoxicity within a 
defi ned region of chemical space. As such, it is unlikely that a single 
model will ever be able predict such a complex endpoint as hepa-
totoxicity. Further integration of available datasets, mechanistic 
insights and available models for DILI is likely the only way to 
increase both prediction accuracy and application across chemical 
space. A system combining quantitative statistically derived mod-
els, structural alerts and pharmacophore models each bringing 
strengths (and weaknesses) is an exciting prospect and something 
that should be further explored. It is foreseeable that mechanisti-
cally based structural alerts could be used to screen large databases 
and populate a defi ne category relating to a single mechanism of 
action. Local QSAR models could then be developed on this sub-
set of data based on relevant descriptors. Moreover, it has been 
shown that most predictive methods discussed are based solely on 
descriptors of chemical structure and properties. Consideration 
and inclusion of biological information, such as toxicogenomics, 
can further help detect potential liver toxicants. Such biological 
descriptors may also provide further insights in the mechanisms at 
play in liver toxicity. 

 One of the major limitations currently is the lack of high qual-
ity hepatotoxicity data. To improve the prediction of potential 
hepatotoxins more effort should be focused towards developing 
specifi c and sensitive biomarkers for DILI. If this were possible, it 
would lead to more reliable hepatotoxicity data which then can be 
used for developing models to predict DILI. Similarly, a more 
detailed understanding of the mechanisms of liver injury would be 
of tremendous benefi t and may invert the current approach of 
modeling with the subsequent addition of mechanistic reasoning. 
If we could better understand a causal mechanism of DILI (again 
relating to AOPs), perhaps we could design a model/alert based 
purely on the mechanism (e.g., what are the characteristics a chem-
ical must possess in order to trigger mitochondrial toxicity?). These 
characteristics can then be used for screening and possibly further 
structural alert generation. 

 The generation of predictive systems for liver toxicity is rapidly 
gaining pace. With emerging modeling methods, technologies and 
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advances in all areas of science, it is likely that we are standing on 
the precipice of a modeling explosion. Careful consideration must 
now be made in how best to manage this emerging knowledge to 
best effect. In recent years, many regulatory agencies, institutions, 
EU Projects and working groups have established programs to 
help understand and detect DILI. These include the Virtual Liver 
Project (v-Liver™) established by US EPA [ 60 ], the Drug-Induced 
Liver Injury Network (DILIN) set up by the National Institute of 
Diabetes and Digestive and Kidney Diseases (NIDDK) in the USA 
[ 61 ], the Virtual Liver Network project initiated by the German 
Federal Ministry for Education and Research [ 62 ], and multiple 
EU Projects such as Mechanism based Integrated systems for the 
prediction of Drug Induced Liver Injury (MIP-DILI) [ 63 ]. Whilst 
duplication of effort is inevitable to some degree, what must be 
ensured is that both data and knowledge generated by these initia-
tives is shared. Just as combining models to form an ensemble seems 
to be benefi cial for predictive performance, it is likely that a com-
bined international ensemble effort is the only way we can success-
fully begin to tackle the prediction of liver toxicity in humans.  

4    Conclusions 

 Hepatotoxicity has been a problem for many years. Unfortunately, 
the same can also be said for predictive models aimed at predicting 
these effects. It is only in the past decade that models/systems for 
predicting hepatotoxicity have started to emerge. It is fair to say 
that the modeling community are currently limited by the amount 
and quality/reliability of the data available to them. Coupled with 
an endpoint as complex as hepatotoxicity, the scale of the challenge 
is obvious. That said, it can be seen from the models discussed in 
this chapter that progress is being made, our knowledge of the 
processes behind liver toxicity is growing and our ability to tackle 
this problem is increasing. Given the diversity of the modeling 
approaches seen in these studies and the general transition towards 
ensemble/consensus approaches in this area, it is likely that the 
next decade will be equally as productive.     
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    Chapter 12   

 In Silico Models for Ecotoxicity of Pharmaceuticals                     

     Kunal     Roy      and     Supratik     Kar     

  Abstract 

   Pharmaceuticals and their active metabolites are one of the signifi cantly emerging environmental toxicants. 
The major routes of entry of pharmaceuticals into the environment are industries, hospitals, or direct 
disposal of unwanted or expired drugs made by the patient. The most important and distinct features of 
pharmaceuticals are that they are deliberately designed to have an explicit mode of action and designed to 
exert an effect on humans and other living systems. This distinctive feature makes pharmaceuticals and 
their metabolites different from other chemicals, and this necessitates the evaluation of the direct effects of 
pharmaceuticals in various environmental compartments as well as to living systems. In this background, 
the alarming situation of ecotoxicity of diverse pharmaceuticals have forced government and nongovernment 
regulatory authorities to recommend the application of in silico methods to provide quick information 
about the risk assessment and fate properties of pharmaceuticals as well as their ecological and indirect 
human health effects. This chapter aims to offer information regarding occurrence of pharmaceuticals in 
the environment, their persistence, environmental fate, and toxicity as well as application of in silico meth-
ods to provide information about the basic risk management and fate prediction of pharmaceuticals in the 
environment. Brief ideas about toxicity endpoints, available ecotoxicity databases, and expert systems 
employed for rapid toxicity predictions of ecotoxicity of pharmaceuticals are also discussed.  

  Key words     Database  ,   Ecotoxicity  ,   Endpoints  ,   Expert system  ,   In silico  ,   Pharmaceuticals  ,   QSAR  

1      Introduction 

 A signifi cant amount of pharmaceuticals and their metabolites have 
been found in the various environmental compartments causing 
damage to the environment and hazard to the living systems. Due 
to an increase in application of human and veterinary medicines 
manyfold, pharmaceuticals and their metabolite residues have been 
found in rivers, sewage effl uents, streams and in surface, ground, 
and potable water, creating a big concern for the ecologists [ 1 ]. 
The primary routes of entrance of pharmaceuticals into the 
environment are domestic, hospital, and industrial wastes [ 2 ]. 
Pharmaceuticals are excreted in urine or feces as a mixture of 
unchanged chemicals and metabolites and enter into the environ-
ment through septic tank and sewage systems [ 1 ]. On the other 
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hand, ecotoxicity data of pharmaceuticals are available in the litera-
ture for less than 1 % of the drugs, and only a small number of 
pharmaceuticals and their residues have been subjected to risk 
assessment employing ecotoxicological tests. 

 Pharmaceuticals are intentionally designed to have a specifi c 
mode of action and exert an effect on specifi c organs, tissues, cells, 
or biomolecules in humans, mammals, or other vertebrates, and 
many of them are persistent in the body [ 3 ]. As a consequence, 
when pharmaceuticals and their unaltered metabolites enter into 
the environment by different means, they can affect humans as well 
as other living species. There are many drugs whose specifi c effects 
or modes of action are not well known, and they often produce 
effects through several modes of action. These distinguished fea-
tures make pharmaceuticals dissimilar from others and this is the 
sole reason to assess the potential acute and chronic effects of phar-
maceuticals in diverse environmental compartments. It is quite 
apparent that the toxic effects of pharmaceuticals on diverse organ-
isms in aquatic as well as nonaquatic environment are due to their 
long persistent and bio-accumulative nature [ 4 ]. In view of the 
serious issue of pharmaceutical toxicity to the environment, it is 
vital to categorize the proper source, occurrence, effects, and fate 
of each individual pharmaceutical product as well as to perform the 
risk assessment and risk management of ecotoxicological effects of 
the pharmaceutical chemicals and their metabolites [ 1 ,  2 ]. 

 Antibiotics are one of the majorly used pharmaceuticals in 
human and veterinary medicines. The world consumption of anti-
biotics has risen radically in the last decade, also increasing the 
elimination of their metabolites in their original form. Most antibi-
otics are poorly metabolized after ingestion, probably resulting in 
a fraction of antibiotics from 25 to 75 % leaving the bodies in an 
unaltered form after consumption [ 5 ]. Additionally, a high per-
centage of the antibiotics added to the animal feed are excreted in 
urine or manure. In some cases, as much as 90 % of the antibiotic 
administered orally may pass through the animal unchanged and 
excreted in urine and manure. Thereafter, these antibiotics can 
enter surface and groundwater and be strongly adsorbed in soils 
and are not readily degradable [ 6 ]. Vidaver [ 7 ] estimates that 
53,000 ha of fruit and vegetable plants are sprayed annually with 
antibiotics. For example, streptomycin and oxytetracycline are reg-
istered by the US Environment Protection Agency (USEPA) for 
use in plant agriculture. Utilization of transgenic plants to produce 
inexpensive antibiotics may also be a cause of environmental haz-
ards due to the existence of crop residues, roots, and root exudates 
in the soil which can act as a continuous source of residual antibiot-
ics to soil fauna and fl ora [ 8 ]. 

 While pharmaceuticals and their metabolite residues are 
detected in rivers, streams, sewage infl uents and effl uents, surface, 
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ground, and potable waters [ 9 ], it may be noted that the drinking 
water treatment methods reduce residues, but they are incapable of 
removing the contaminant pharmaceuticals absolutely. According 
to a nationwide study of “emerging pollutants” in waters, the US 
Geological Survey (USGS) tested for pharmaceuticals in 139 rivers 
in 30 states of the USA, detecting diverse therapeutic classes of 
biologically active compounds [ 10 ]. The cardiovascular drug pro-
pranolol has been reported downstream from the sewage treat-
ment plant [ 11 ]. The antiepileptic drugs carbamazepine and 
clofi brate are two most persistent pharmaceuticals which have been 
detected in the environment [ 2 ]. Major detected drugs in rivers 
were beta blockers (e.g., metoprolol up to 1.54 μg/l) and beta- 
sympathomimetics, estrogens (e.g., 17β-estradiol up to 0.013 μg/l) 
[ 12 ], analgesic and anti-infl ammatory drugs (e.g., Diclofenac up 
to 1.2 μg/l) [ 13 ], and also antibiotics (e.g., erythromycin up to 
1.7 μg/l) [ 12 ], as well as lipid-lowering agents (e.g., clofi brinic 
acid up to 0.2 μg/l) [ 14 ] and antiepileptic drugs (e.g., carbamaze-
pine up to 2.1 μg/l) [ 13 ]. Presence of clofi bric acid, propylphena-
zone, and diclofenac has been reported in the drinking water of 
Berlin in the concentration range of several hundreds of nanograms 
per liter [ 15 ]. Paracetamol, diclofenac, and carbamazepine were 
monitored in drinking water in Southern France [ 16 ], and clofi bric 
acid and diazepams were detected in treated drinking water in 
Milan, Italy [ 17 ]. Psychoactive and illicit drugs amphetamine, 
cocaine and its metabolite benzoylecgonine, morphine, 
6- acetylmorphine, 11-nor-9-carboxy-delta-9-tetrahydrocannabi-
nol, methadone and its main metabolite 2-ethylidene-1,5- 
dimethyl- 3,3-diphenylpyrrolidine have been detected in surface 
and waste waters [ 18 ]. Schultz and Furlong found highest concen-
trations of antidepressant drugs venlafaxine, citalopram, and 
bupropion 1000 ± 400 ng/l, 90 ± 20 ng/l, and 60 ± 40 ng/l, 
respectively, in samples collected downstream from a water recla-
mation plant [ 19 ]. The maximum determined concentration of 
fl uoxetine was 0.099 ng/l in wastewater treatment plant (WWTP) 
effl uents in Canada [ 20 ]. 

 Nonprescription drugs like caffeine, cotinine, and acetamino-
phenone are found in samples of potable water collected near 
Atlanta, Georgia [ 21 ]. Tauber detected carbamazepine and gemfi -
brozil in drinking waters in ten cities in Canada that were exam-
ined for a 44-drug subset consisting pharmaceuticals including 
sulfonamides, quinolones, tetracyclines, and macrolide antibiotics 
[ 22 ]. Oraine and Pettigrove identifi ed and quantifi ed ibuprofen 
(0.93 μg/l) and ibuprofen methyl ester (4.95 μg/l) in fi nished 
water in alarming quantity [ 23 ]. Median concentrations of 
0.02 μg/l and 0.12 μg/l were reported for ciprofl oxacin and nor-
fl oxacin, respectively, for samples from 139 surface streams across 
the USA. Ciprofl oxacin in the range 0.7–124.5 μg/l was found in 
wastewater of a Swiss hospital [ 24 ]. Hellweger et al. [ 25 ] claimed 
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that environmental concentrations of tetracycline in surface waters 
are usually less than 0.11 mg/l, although higher values of up to 
6.8 mg/l have been observed. Estrogens, a sex hormone, have 
been detected in plasticizers and preservatives, while 
17α-ethinylestradiol (EE2) used as a component of contraceptive 
pills has been identifi ed in ground and tap water samples [ 26 ]. 

 The presence of human and veterinary pharmaceuticals and 
their residues into the environment has impelled the introduction 
of different risk assessment guidelines in the European Union by 
the European Medicines Evaluation Agency (EMEA) and in the 
USA by the Food and Drug Administration (FDA). According to 
the European Commission guideline [ 27 ], a medicinal product for 
human use must be accompanied by environmental risk assessment 
data. The EMEA has released a guideline for the assessment of 
potential environmental risks in 2006 [ 28 ]. According to the US 
FDA guidelines for the risk assessments of human drugs, applicants 
have to provide an environmental assessment report when the 
expected concentration of the active pharmaceuticals in the aquatic 
environment is ≥1 μg/l [ 29 ]. Additionally, the FDA Center for 
Drug Evaluation and Research (CDER) issued a guidance docu-
ment “ Guidance for Industry for the Submission of an Environmental 
Assessment in Human Drug Application and Supplements ” in 1995 
[ 30 ]. In case of veterinary medicines, environmental risk assess-
ments have been required in the USA since about 1980 and Europe 
since 1997 [ 31 ]. 

 The need for a practical approach in gathering data on the 
environmental toxic effects of pharmaceuticals has been identifi ed 
by the European Union Commission’s scientifi c committee on 
toxicity, ecotoxicity, and environment (CSTEE). The four classes 
of special environmental feature-specifi c concerns, which are ste-
reotypically not evaluated in traditional ecotoxicity testing under 
EU directive 1488/94 [ 28 ] are antibiotics [resistance issue], anti-
neoplastics [mutagenicity], sex hormones [endocrine disruption], 
and cardiovascular high potential hazard. Therefore, it is acknowl-
edged that a prioritization technique needs to be developed for 
environmental risk assessment of pharmaceuticals, and this should 
follow the general scheme for chemicals according to the REACH 
guidelines [ 27 ], where the implication of in silico methods specifi -
cally the quantitative structure–activity relationship (QSAR) 
method is stressed. 

 In this perspective, to make the information regarding ecotox-
icity of diverse pharmaceuticals available, different government 
and nongovernment regulatory authorities are recommending the 
application of fast and economical in silico methods for prediction 
of the elementary physicochemical and fate properties of pharma-
ceuticals as well as their ecological and direct human health effects 
before they reach into market for usage. Computer-aided toxicity 
models allow for the effects of pharmaceuticals (physicochemical 
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properties, toxicological activity, distribution, fate, etc.) to be eas-
ily predicted. These predictions may be obtained from the knowl-
edge of chemical structure alone, provided that the structure can 
be described in two or three dimensions. Employing these meth-
ods, ecotoxicity information on pharmaceuticals may be obtained 
without toxicity testing, and/or even before synthesis of the com-
pound. Therefore, use of QSAR as one of the non-experimental 
methods is signifi cant in order to lessen time, animal usage and 
cost involvement in design, development, and discovery process of 
drugs and/or pharmaceuticals. 

 There is a signifi cant lack of knowledge about the environmen-
tal fate of a huge number of pharmaceuticals and their metabolites. 
On the contrary, only a limited number of in silico models have 
been developed so far to predict the risk of pharmaceuticals to the 
environment. This chapter aims to provide information regarding 
occurrence of pharmaceuticals and their residues in the environ-
ment, their persistence, environmental fate, and toxicity as well as 
application of in silico methods to predict risk and fate properties 
of pharmaceuticals to the environment. Concise ideas about eco-
toxicity endpoints, available ecotoxicity databases and expert sys-
tems employed for rapid ecotoxicity predictions of pharmaceuticals 
are discussed in this chapter.  

2    Ecotoxicity of Pharmaceuticals: A General Overview 

   Identifi cation of proper sources and routes of entry of pharmaceu-
ticals into diverse environmental compartments is the fi rst step to 
get a proper view of the ecotoxicity problem due to pharmaceuti-
cals. The most obvious and common pathways for environmental 
contamination of pharmaceuticals are discussed below.

    (a)     Urine and feces : Major and most common entry routes for 
pharmaceuticals into the environment are via urine and feces of 
the patients. Not only active ingredients, but also the metabo-
lites are excreted through the urine and feces as many drugs 
are metabolized into hydrophilic compounds for excretion. 
The risk of these metabolites is completely different from the 
parent drugs in majority of cases which make the risk assess-
ment study more critical one.   

   (b)     Direct exposure of diagnostic compounds : Contrast media like 
diatrizoate, iohexol, iomeprol, and iopromide are used as diag-
nostic tools for capturing detailed X-ray images of soft tissues. 
Iodinated X-ray contrast media are highly hydrophilic 
 substances which are extensively applied and eliminated without 
proper treatment; as a result they persist for a long time in the 
environment [ 32 ].   

2.1  Source 
and Entry Routes
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   (c)     Household disposal : Either out-of-date or unwanted medicines 
are discarded through the sink/toilet or via waste collection, 
before being taken to landfi ll sites where they appear as terres-
trial ecosystem contaminants. Less than 20 % users had ever 
been given instructions about medication dumping by a health 
care provider. In a study, causes for possessing unused medica-
tion were found to be due to an alteration of medication by 
the doctor (48.9 %), or self-discontinuation (25.8 %) [ 33 ]. 
The most common method of disposal was to throw unused 
medicines in the trash (76.5 %) or fl ush them down the drain 
(11.2 %) [ 33 ].   

   (d)     Manufacturers : According to the regulation of the Good 
Manufacturing Practices (GMP), the active pharmaceutical 
emissions during manufacturing have been thought to be 
insignifi cant. But recently it has been found that in Asian 
countries concentrations up to several milligrams per liter can 
be found in effl uents for single compounds [ 34 ].   

   (e)     Hospital infl uent and effl uent : Point sources such as hospital 
effl uents are likely to be another signifi cant source. There are 
up to 16 pharmaceuticals including antiepileptics and anti- 
infl ammatories which were found in the hospital waste water 
according to a study [ 35 ]. Several studies suggested the exis-
tence of the pharmaceuticals in the effl uent and infl uent of the 
sewage treatment plants and it was proved that the elimination 
of the pharmaceuticals is partial [ 35 ].   

   (f)     Animal husbandry and veterinary medicine : Veterinary medi-
cines and their metabolites are also excreted through urine and 
feces. Apart from the potential for direct soil contamination, 
there is also the risk of run-off with heavy rain, thus potentially 
contaminating both the surrounding surface and groundwa-
ter. Other sources include direct application in aqua farming, 
manure run-off, run-off from the application of sewage sludge 
and manure on farmland as fertilizers, or, fi nally, via landfi ll 
leaching [ 36 ].   

   (g)     Aquaculture : Sewage Treatment Plant (STP) sludge is habitu-
ally employed as fertilizer on agricultural land which is a rich 
source of non-suspected drugs [ 37 ]. According to the Food 
and Agriculture Organization (FAO), antibiotics have been 
utilized in aquaculture primarily for therapeutic purposes and 
as prophylactic agents. Antibiotics authorized for use in aqua-
culture are fl orfenicol, oxytetracycline, sarafl oxacin, premix, 
erythromycin sulfonamides potentiated with ormethoprim, or 
trimethoprim [ 38 ].   

   (h)     Plant agriculture : Antibiotics are comprehensively employed 
to control bacterial diseases of plants. Streptomycin with oxytet-
racycline to a minor extent is very commonly used antibiotic in 
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plant agriculture in controlling bacterial diseases of tree fruits. 
Primary uses are on apple, pear, and related fruit trees for 
the control of fi re blight caused by  Erwinia amylovora . 
According to a report, antibiotics applied to plants account for 
less than 0.5 % of total antibiotic use in the USA [ 39 ]. In 
Fig.  1 , we have represented different sources, routes, fate of 
pharmaceuticals.

          Pharmaceuticals are among the most common personal care prod-
ucts in day to day life. Medicines are regularly used in human and 
veterinary health care, farming, and aquaculture in the modern era. 
Country specifi c consumption for groups of drugs in defi ned daily 
doses (DDDs) can be found for Europe on the European 
Surveillance of Antimicrobial Consumption (ESAC) homepage 
[ 40 ]. In the last decade, a large number of studies covering occur-
rence of pharmaceuticals in water bodies, sewage treatment plants, 
manure, soil, and air dust have been published. The most concern-
ing issue is that under the environmental conditions, these 
 molecules can be neutral, cationic, anionic, or zwitterionic which 
make the risk assessment study of pharmaceuticals more diffi cult. 
In Table  1  we have presented the reported concentrations of 

2.2  Occurrence

  Fig. 1    Common sources, routes and fate of pharmaceuticals       
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diverse pharmaceuticals from various therapeutic classes in differ-
ent samples of different countries and probable ecotoxicity data to 
particular toxicological endpoints [ 3 ,  41 – 68 ].

     The presence of pharmaceuticals in the various waterbodies in the 
environment has been quite extensively studied by different 
research groups. Quinolones (predominantly ciprofl oxacin) and 
other pharmaceuticals have been detected in the effl uent of hospi-
tals up to a low μg/l range. Another study reveals that β-lactams 
(including penicillins, cephalosporins, carbapenems,  monobactams, 
β-lactamase inhibitors) were detected in the lower μg/l range in 
hospital effl uent and in the infl uent of a municipal STP [ 69 ]. 
NSAIDs have the higher concentrations recorded in surface water, 
ranging between 0.4 ng/l and 15 μg/l, diclofenac, paracetamol, 
and ibuprofen being the most quantitatively found [ 70 ]. Drugs 
like caffeine with a maximum concentration of 6 μg/l and sulfa-
methoxazole with 1.9 μg/l in the USA, carbamazepine up to 
1.3 μg/l in Germany and in Canada, gemfi brozil up to 790 ng/l, 
ranitidine up to 580 ng/l, atenolol with 241 ng/l in Italy, and 
metformin up to 150 ng/l are detected in surface water [ 71 ]. In 
the effl uent of WWTP and STP, the concentrations of estrogenic 
compounds usually are below 50 ng/l, but there are unexpected 
high concentrations of estriol and 17α-estradiol (about 590 ng/l 
and 180 ng/l respectively) found in the USA [ 72 ].  

   Antibiotics have been detected in soil in concentrations in the 
mg/kg range [ 73 ]. Generally, the concentrations of pharmaceuti-
cals detected in the soils are quite low when compared with that of 
pharmaceuticals in water resource. According to the literature, the 
six most common pharmaceuticals found in soil are the antibacteri-
als (trimethoprim, sulfadiazine, and triclosan), analgesics (ibupro-
fen and diclofenac) and antiepileptic (Carbamazepine). Extensive 
studies have detected tetracyclines and sulfonamides in liquid 
manure at concentrations of up to 20 and 40 mg/l, respectively. 
Antibiotics like virginiamycin, sarafl oxacin, tetracycline, oxytetra-
cycline, chlortetracycline, and cyclosporine A have quite slow bio-
degradability in soil. Tylosin disappeared soon after the application 
of manure. Hamscher et al. [ 74 ] detected tetracycline and chlortet-
racycline in 10 out of 12 soil samples. The highest average concentra-
tion of 86.2 μg/kg (0–10 cm), 198.7 μg/kg (10–20 cm), 171.7 μg/
kg (20–30 cm) tetracycline, and 4.6–7.3 μg/kg (in all three sub-
layers) chlortetracycline were found. Carbamazepine is the most 
frequent compound detected in soil among fi ve studies [ 75 ].  

   Several comprehensive reports have been published on environ-
mental concentrations of antibiotics in dust originating from a pig- 
fattening house [ 76 ]. In a large-scale pig production, veterinary 
antibiotics are hugely used. This production system is represented 
as a considerable source of dust.   

2.2.1  Waterbodies

2.2.2  Manure and Soil

2.2.3  Air Dust

In Silico Models for Ecotoxicity of Pharmaceuticals
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     Pharmaceuticals may have potential adverse effects on aquatic and 
terrestrial organisms by directly reaching into the environment. 
Organisms like bacteria, fungi, and microalgae are primarily 
affected as antibiotics are designed to inhibit the microorganisms. 
Antibiotics have the potential to affect the microorganisms in sew-
age systems and waste water treatment plant too. The inhibition of 
wastewater bacteria may seriously affect organic matter degrada-
tion and nitrifi cation process which is a vital step in wastewater 
purifi cation and elimination of toxic ammonia [ 77 ]. Lincomycin 
showed signifi cant inhibition of the nitrifi cation activity [ 78 ]. 
Ciprofl oxacin was found to be active against  Vibrio fi scheri  at a 
concentration of 5 mg/l [ 79 ]. Thomulka and McGee [ 80 ] have 
performed two bioassays to evaluate the toxicity of antibiotics like 
novobiocin, chloramphenicol, tetracycline, ampicillin, and strepto-
mycin to  Vibrio harveyi,  and approximately no toxic effects were 
identifi ed after short incubation times where the employed endpoint 
was luminescence. Common receptors have been identifi ed in 
plants for a number of antibiotics affecting transcription and trans-
lation (tetracyclines, macrolides, lincosamides, aminoglycosides, 
and pleuromutilins), metabolic pathways such as folate biosynthe-
sis (sulfonamides), chloroplast replication (fl uoroquinolones), and 
fatty acid biosynthesis (triclosan) [ 81 ]. 

 Antimicrobials can affect the degradation of organic matter in 
large extent as well as have effects upon sediment’s microbial com-
munity [ 82 ]. Strong inhibitory effects on several bacteria and dim-
inution in the length of the hyphae of lively molds in forest soil 
have been observed when antibiotics are added in concentrations 
of 10 mg/kg soil. A transitory effect on sulfate reduction was 
detected when antibiotics were mixed to sediment [ 83 ]. Allergic 
risks may arise from the high exposure of antibiotics dust particle 
in the air. Tylosin and sulfamethazine, which occurred in 80 % and 
65 % of the samples respectively, are drugs with known allergic 
potential. Therefore, the high incidence of the asthma disease 
occurred among children living on farms. A survey on dust in pig 
fattening buildings in Europe exposed an average concentration of 
inhalable airborne dust of 2.2 mg/m 3  [ 84 ]. Chloramphenicol is 
extensively employed in farming resulting in severe hazardous 
effects including myelosuppression to farmers; that is why it was 
totally banned for food-producing animals within the EU and the 
USA in 1994 [ 85 ]. 

 Another important aspect is the emergence of resistance due to 
enormous application of antibiotics in human medicine, veterinary 
medicine, and animal husbandry. Resistance is one of the most 
concerning issue in medical fi eld due to its accumulating and accel-
erating nature. On the contrary, the techniques combating resis-
tance are diminishing in power and number. Antibiotics in 
sub-inhibitory concentrations can have an infl uence on cell 
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functions and modify the genetic expression of virulence factors 
or the transfer of antibiotic resistance. The most prominent 
medical examples are vancomycin-resistant enterococci (VRE), 
 methicillin- resistant  Staphylococcus aureus  (MRSA), and multiresis-
tant pseudomonads [ 86 ].  

   Cleuvers [ 45 ] evaluated that acute toxicities of NSAIDs were rela-
tively low, with half-maximal effective concentration (EC 50 ) values 
obtained using  Daphnia  in the range from 68 to 166 mg/l and 
from 72 to 626 mg/l in the algal test. With EC 50  values of 
23.6 mg/l (ibuprofen), 23.8 mg/l (diclofenac), and 38.2 mg/l 
(naproxen), chronic ecotoxicity was somewhat higher, but still the 
values are far above the concentrations detected in surface water. A 
prominent confi rmation of diclofenac residues in dead cattle has 
been observed in Pakistan [ 87 ]. Only in Germany, in 2002, 93.5 
million prescriptions for NSAIDs were made with a transaction 
volume of about 1562 million Euros [ 88 ]. Due to higher usage 
and pharmacokinetic and pharmacodynamic properties, analgesics 
and anti-infl ammatory drugs can reach considerable (up to 
>1 μg/l) concentrations in the environment. Few NSAIDs are 
detected in very low doses even in drinking water. Reports sug-
gested the presence a concerning amount of diclofenac and ibu-
profen in Swiss lakes and rivers, as well as in water bodies from the 
UK, Spain, Brazil, Greece, and the USA [ 15 ]. 

 Diclofenac seems to be the compound having the highest 
acute toxicity with the effective concentrations below 100 mg/l 
within the class of NSAIDs. Short-term acute toxicity was analyzed 
in algae and invertebrates, phytoplankton was found to react more 
sensitively [lowest EC 50  (96 h) = 14.5 mg/l] than zooplankton 
[lowest EC 50  (96 h) = 22.43 mg/l] [ 89 ]. Diclofenac is commonly 
found in wastewater at median concentration of 0.81 μg/l whereas 
the maximal concentration in wastewater and surface water is up to 
2 μg/l [ 90 ]. Acetylsalicylic acid affected reproduction in  D. magna  
and  D. longispina  at concentrations of 1.8 mg/l [ 90 ]. Water fl ea 
 Daphnia magna  population growth rate was considerably reduced 
for concentrations ranging from 0 to 80 mg/l due to chronic tox-
icity of ibuprofen. Acute toxicity tests showed that naproxen had 
LC 50  and EC 50  values within the 1–100 mg/l range for the water 
fl ea  Ceriodaphnia dubia , the rotifer  Brachionus calycifl orus , and 
the fairy shrimp  Thamnocephalus platyurus . But the most sensitive 
reported species was  D. magna  for which EC 50  values were 30.1 or 
50 mg/l. Another most commonly prescribed NSAID is 
paracetamol which is present in concentration below to 20 ng/l to 
4.3 μg/l in STP effl uents; in surface waters, the values can reach 
78.17 μg/l, which are values higher than the predicted no-effect 
concentration (PNEC) of 9.2 μg/l [ 3 ]. Hence, paracetamol might 
represent a threat for nontarget organisms.  

2.3.2  Analgesics 
and Nonsteroidal 
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   Statins have the capability to subdue synthesis of the juvenile hor-
mone in insects and may also produce detrimental effect to 
 protozoan parasites, inhibiting growth and development. Reports 
suggested that a proliferation of peroxisomes in rodent livers is 
caused by fi brates. Embryonic development of nontarget organ-
isms that share these receptors can be stopped by simply inhibiting 
cellular differentiation. Fibrates present in the micromolar concen-
tration range are suffi cient to cause it in zebrafi sh ( Danio rerio ) and 
amphibians [ 3 ]. Quinn et al. [ 91 ] classifi ed gemfi brozil as toxic 
(EC 50  between 1 and 10 mg/l) and bezafi brate as harmful for non-
target organisms (EC 50  between 10 and 100 mg/l). 

 Clofi brate is classifi ed as harmful to aquatic organisms as it 
showed LC 50  values in the range of 7.7–39.7 mg/l. The fi sh 
 Gambusia holbrooki  [LC 50  (96 h) = 7.7 mg/l] seems to be the most 
sensitive organism to acute clofi brate concentrations [ 92 ]. 
Clofi brate has an immunosuppressive action in mammalian hosts, 
suppressing the production of IgM but not IgE antibodies, allow-
ing an amplifi ed number of encysted larvae of the nematodes 
 T. spiralis  and  Trichinella nelsoni  to occur and a decrease in the rate 
of exclusion of adult worms from the intestines, although the 
effects differed between parasite species and host strain [ 93 ]. 
Fibrates have been assessed by conventional toxicity tests and the 
following no-observed-effect-concentration (NOEC) were found 
for clofi bric acid in  C. dubia  [NOEC (7 days) = 640 μg/l], the 
rotifer  B. calycifl orus  [NOEC (2 days) = 246 μg/l], and in early life 
stages of zebrafi sh [NOEC (10 days) = 70 mg/l] [ 94 ]. Clofi brate 
was observed to produce no effect on in vitro growth of  T. bruceii  
but did reduce the incidence of  P. berghei  and the invasiveness and 
development of  Acanthomoeba culbertsoni  in exposed mammalian 
hosts [ 95 ]. Lovastatin hinders the egg production of the trema-
tode  S. mansoni  and subsequently there is a decline in pathogenic 
granulomas typically associated with the eggs in the mammalian 
liver [ 96 ].  

   Beta-blockers act by competitive inhibition of beta-adrenergic 
receptors which is critical for normal functioning in the sympa-
thetic branch of the vertebrate autonomic nervous system. Among 
beta-blockers, propranolol shows the highest acute toxicity and 
highest log  K  ow  which proves the fact that it is a strong membrane 
stabilizer than other examined beta-blockers [ 97 ]. Undefi ned 
antagonists such as propranolol may be active in fi sh as they con-
tain β 2 -receptors in heart and liver as well as in reproductive tissues 
[ 98 ]. There is a prominent evidence that propranolol not only has 
chronic cardiovascular toxicity, but also has toxic effect on repro-
duction system. The NOEC and lowest-observed-effect- 
concentration (LOEC) of propranolol affecting reproduction in 
 C. dubia  were 125 and 250 μg/l, and reproduction was affected 
after 27 days of exposure in  H. azteca  at 100 μg/l [ 97 ]. 
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 Beta-blockers may also affect parasite functional biology. 
Aqueous exposure of propranolol may negatively affect swim-
ming behavior, survival, and phototaxis of free living aquatic 
stages of trematodes. Propranolol may also considerably decrease 
the number of  Dirofi laria immitis  nematode larvae capable of 
fi nishing third- stage molt, and in vitro prevent the growth of the 
malaria parasite  Plasmodium falciparum  [ 99 ]. Fathead minnows 
exposed to atenolol throughout embryo-larval growth showed 
NOEC and LOEC values for growth rate of 3.2 mg/l and 
10 mg/l, respectively [ 3 ]. At 48-h exposure to propranolol, LC 50  
values of 29.8, 1.6, and 0.8 mg/l were obtained for  H. azteca ,  D. 
magna , and  C. dubia , respectively, while acute exposure to nado-
lol did not affect the survival of the invertebrates [ 3 ]. Encystment 
of the protozoan  Entamoeba invadens  was inhibited in the 
presence of metoprolol [ 100 ].  

   Antineoplastic drugs are designed to kill the proliferating cells in 
cancer. As a consequence, a parallel effect can be expected on nor-
mally growing eukaryotic organisms. It is expected that antineo-
plastic drugs possess mutagenic, genotoxic, teratogenic, 
carcinogenic, and fetotoxic properties, and 14–53 % of the admin-
istered drugs can be excreted in unchanged form through urine 
[ 101 ]. Methotrexate revealed teratogenicity for fi sh embryos with 
an EC 50  of 85 mg/l after 48 h of exposure and acute effects in the 
ciliate  Tetrahymena pyriformis  with an EC 50  for 48 h of 45 mg/l 
[ 102 ]. Due to immunosuppressant property, methotrexate and 
cyclophosphamide are reported to cause a proliferation in disease 
incidence and intensity in host–parasite systems [ 103 ]. Acute tox-
icity of methotrexate is reported on highly proliferative species like 
the ciliate  Tetrahymena pyriformis  [EC 50  (48 h) = 45 mg/l] [ 104 ]. 
On the contrary, cyclophosphamide appears to have a little effect 
on them. Methotrexate has been shown to have no or little effect 
on certain protozoans including  Toxoplasma gondii ,  Babesia bovis , 
and  Leishmania tropica,  perhaps as they have different mechanisms 
of drug metabolism [ 105 ]. Development and growth of helminths 
in both mammalian and bird hosts were detrimentally effected by 
methotrexate and cyclophosphamide. Abnormal teratogenicity 
was noticed in fi sh embryos at higher concentrations [EC 50  
(48 h) = 85 mg/l].  Biomphalaria glabrata , a freshwater snail is 
largely affected with the long-term exposure to methotrexate 
[ 106 ]. Doxorubicin, tamoxifen, and methotrexate have all been 
reported as effective parasiticide agents against many protozoan 
species [ 107 ].  

   A very limited number of studies on the effects of neurological 
agents on host–parasite dynamics have been studied, despite phe-
nothiazine has been used as a parasiticide for long time [ 108 ]. The 
serotonin re-uptake inhibitor (SSRI) fl uoxetine is deceptively the 
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most acute toxic human pharmaceutical with toxicity ranging from 
EC 50  (48 h, alga) = 0.024 mg/l to LC 50  (48 h) = 2 mg/l so far [ 2 ]. 
Sertraline exhibits highly toxic properties to rainbow trout (LC 50  
of 0.38 mg/l) at a 96-h exposure [ 109 ]. SSRIs were also tested on 
algae by evaluating the growth inhibition induced. Chronic toxic-
ity tests proved that the organisms were sensitive with NOEC val-
ues below 1 mg/l [ 110 ].  C. vulgaris  was shown to be the least 
sensitive species for all SSRIs tested. Fluvoxamine provided escala-
tion to the highest EC 50  values for all algae species tested 
(3563–10,208 μg/l). 

 Under the category of benzodiazepines, diazepam and nitraz-
epam were identifi ed to increase the number of microfi lariae of 
 Setavia cervi  liberated from the lungs into the peripheral blood 
circulation in rats [ 111 ]. Caffeine was found to stimulate the 
growth of  Plasmodium gallinaceum  and  P. falciparum , while the 
antipsychotic haloperidol and the mood stabilizer valproic acid 
effectively inhibited the in vitro growth of  T. gondii  [ 112 ]. 
Diazepam and carbamazepine (antiepileptics) are classifi ed as 
potentially detrimental to aquatic organisms as most of the acute 
toxicity data are below 100 mg/l. Conventional toxicity studies 
showed chronic toxicity of carbamazepine in  C. dubia  [NOEC 
(7 days) = 25 μg/l], in the rotifer  B. calycifl orus  [NOEC 
(2 days) = 377 μg/l], and in early life stages of zebrafi sh [NOEC 
(10 days) = 25 mg/l] [ 94 ]. Carbamazepine is carcinogenic to rats 
but does not have mutagenic properties in mammals [ 113 ]. It is 
also lethal to zebrafi sh at the 43 μg/l level and produces sublethal 
changes in  Daphnia  sp. at 92 μg/l [ 113 ]. Growth of  D. magna  
was inhibited for concentrations of carbamazepine above 
12.7 mg/l, showing acute toxicity at 17.2 mg/l [ 113 ].  

   Sex hormones are one of the extremely important biologically 
active compounds emerged as most serious aquatic environmental 
toxicants due to extensive use of human contraceptives. Exposure 
of mammalian hosts infected with the blood trematode  S. mansoni  
to contraceptive pills resulted in a noteworthy modifi cation in a 
range of liver cell’s ultrastructure and function. Ethinylestradiol 
(EE2) is a synthetic estrogen found in oral contraceptive pills with 
noticeable estrogenic effects in fi sh. The life-cycle exposure of fat-
head minnows to EE2 concentrations below 1 ng/l produced a 
noteworthy decline in fertilization success, an increased egg pro-
duction and decreased expression of secondary male sex character-
istics. Life-long exposure of zebrafi sh to 5 ng/l to EE2 has led to 
reproductive failure due to the nonexistence of secondary male sex 
characteristics [ 63 ]. Exposure to 17β-estradiol caused an increased 
susceptibility to the protozoan  T. gondii  in mice, while increased 
pathology occurred in mammals infected with  Leishmania 
 mexicana amazonensis  and exposed to either estradiol or testoster-
one [ 114 ]. Estradiol increased the susceptibility of cyprinids to 
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hemofl agellates by the suppression of lymphocyte proliferation 
[ 115 ]. At relatively high concentrations, hydrocortisone can cause 
an increase in the intensity of ectoparasitic infections in fi sh.  

   A study was performed on farms in the UK and the report 
suggested that concentrations of antiparasitic compounds of 
0.112 mg/kg (doramectin) to 1.85 (ivermectin) mg/kg in dung 
were found. On the contrary, in same place, concentrations of 
these drugs in soil were considerably lower up to 0.046 mg/kg 
[ 116 ]. In a study performed in Slovenia, it was found that high 
concentrations of abamectin and doramectin were found in feces 
(0.2–0.8 mg/kg and 0.4–1.2 mg/kg, respectively) during the fi rst 
20 days after treatment, reaching concentrations of about 0.2 mg/
kg after 70 and 50 days, respectively [ 117 ]. Grønvold et al. [ 118 ] 
found that ivermectin and fenbendazole affect the survival of the 
nematode  Pristionchus maupasi  at concentrations higher than 
3 mg dung/kg (w/w) and 10–20 mg dung/kg, respectively. 
Svendsen et al. [ 119 ] showed that ivermectin and the fenbenda-
zole did not affect earthworms. However, the disappearance of 
dung was affected by the avermectin but not by the fenbendazole. 
Avermectin B 1A  with LC 50  value of 17.1 mg/kg in soil was found 
with the compost worm  Eisenia fetida  [ 120 ]. Eprinomectin did 
not affect survival or biomass of the earthworm species  Lumbricus 
terrestris  in laboratory tests at concentrations up to 0.43 mg/kg 
dung (w/w) or 3.3 mg/kg dung [ 121 ].  

   Tamifl u [oseltamivir ethylester-phosphate (OP)] and Relenzas 
(zanamivir) belong to a novel class of antiviral drugs under the 
neuraminidase inhibitors category. National storing of neuramini-
dase inhibitors in the USA began with the emergence of the 2009 
infl uenza pandemic (H1N1) [ 122 ]. Tamifl u tablet largely domi-
nated Relenza (disk inhaler) due to its relative ease of administra-
tion. Tamifl u is a prodrug, which is converted to the active drug 
oseltamivir carboxylate (OC) in the liver. About 80 % of an oral 
dose of Tamifl u is excreted as OC in the urine and the remaining 
portions are excreted as OP in the feces. Therefore, both the par-
ent chemical and its bioactive metabolite eventually are projected 
to reach a mean of 2–12 mg/l in WWTPs during a moderate and 
severe pandemic [ 122 ]. Current evidences suggested that rivers 
receiving WWTP effl uent would also be exposed to OC through-
out a pandemic. The OC concentrations between 293 and 
480 ng/l have been recorded in rivers receiving WWTP effl uent 
during the 2009 pandemic [ 123 ].  

   Pharmaceuticals are identifi ed as multicomponent mixtures rather 
than isolated pure substance in diverse environmental compart-
ments. Majority of pharmaceuticals will either be transformed by 
physical and chemical means and/or subsequently biotransformed 

2.3.8  Antiparasitic 
Compounds

2.3.9  Antivirals

2.3.10  Pharmaceuticals 
Mixtures

In Silico Models for Ecotoxicity of Pharmaceuticals



264

by some organisms. Multicomponent mixtures are the foremost 
concerning issue for the ecotoxicity. The following characteristics 
also make their joint toxic effects a major issue for hazard and risk 
assessment:

    1.    The toxicity of a mixture has always a synergistic effect than 
the effects produced by a single component.   

   2.    A mixture can have a substantial ecotoxicity, even if all compo-
nents exist only in low concentrations that do not aggravate 
noteworthy toxic effects if acting separately on the exposed 
systems.     
 A combination of fl uoxetine and clofi bric acid is lethal for 

more than 50 % of a water-fl ea ( Daphnia ) population after an 
exposure of 6 days, although the individual drugs did not show any 
signifi cant effect when present separately at same concentrations 
[ 124 ]. A substantial swing in sex ratio was perceived after an expo-
sure to a three-component mixture of erythromycin, triclosan, and 
trimethoprim. Again, individual components did not elicit signifi -
cant individual effects. These studies are very important to show 
that mixture effects have to be taken into consideration to identify 
the effects of pharmaceuticals.   

   Exposure assessment is the procedure of determining or assessing 
the intensity, frequency, and extent of environment and human 
exposure to an existing pharmaceutical product, or of estimating 
theoretical exposure that might rise from the discharge of new 
pharmaceuticals into the environment. The concept of “exposo-
mics,” which integrates a top-down and bottom-up approach to 
identifi cation of relevant exposure biomarkers, will be an impor-
tant component of future exposure science [ 125 ]. The major aims 
of environmental risk assessment (ERA) should be risk mitigation 
and risk management. In order to alleviate or accept risks, a risk 
assessment has to be performed both for products and for activi-
ties followed by generation of report based on the characteristics 
of the product, its possible environmental exposure, fate and 
effects, and risk extenuation strategies. The inference of the report 
should be based on sound scientifi c reasoning supported by ade-
quate studies. If other applicable data are accessible, they should 
also be submitted. 

 The outline of the registration process and the ERA consist of 
European Commission and Council directives and regulations on 
registration, European policy, case law, and global (trade) agree-
ments. The decision-making process and the risk models should 
elevate the expenses to society in terms of ecotoxicity and fi nancial 
loss. Also the assessment method itself should obstruct neither 
product development nor timely action to eradicate hazards. 

2.4  The 
Environmental Risk 
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   The most commonly employed approaches for risk assessment are 
hazard identifi cation, dose-response assessment, exposure assess-
ment, and risk characterization of pharmaceuticals and its metabo-
lites in various environment compartment [ 126 ]. 

   The fi rst step for risk assessment is hazard identifi cation which sup-
ports the intensity of risk for a particular product. Although in vitro 
test studies provide useful data on the toxicity of environmental 
hazards, the majority of scientists rely heavily on the outcome of 
animal toxicity tests for hazard identifi cation. As a consequence, a 
greater stress should be provided on the implication of in vitro 
assays in human cells and QSAR analysis, as well as the use of com-
putational techniques in systems biology [ 127 ].  

   Identifi cation of the threshold dose of the toxic effect of any prod-
uct is very much essential for scientifi c risk assessment. Dose-
response information over a wide range of test concentrations 
should be assessed employing Quantitative high throughput 
screening (q-HTS). There should be availability of sensitive assays 
capable of detecting toxicity at very low doses or below environ-
mental levels experienced by human populations. Statistical 
approaches can be used to estimate yardstick concentrations for 
adaptive and adversarial responses and to assess critical concentra-
tions [ 128 ]. As discussed in subheading “Hazard Identifi cation”, 
the extrapolation techniques will be required to interpret in vitro 
test results to in vivo utilizing an appropriate internal tissue dose 
metric [ 129 ].  

   The major problems of risk assessment are low-dose and interspe-
cies extrapolation. In silico models and expert systems have sup-
ported such extrapolations, including linear and threshold models 
for low- dose extrapolation and body weight or surface area altera-
tions for interspecies extrapolation. New extrapolation complica-
tions are dose extrapolation of molecular and cellular pathway 
responses, and extrapolation from the short-term in vitro to longer 
term in vivo exposure. In vitro to in vivo extrapolation and physi-
ologically based pharmacokinetic (PBPK) models are amenable 
to sensitivity, variability, and uncertainty analysis employing con-
ventional tools [ 130 ]. Computational biology systems will back 
the application of tools for determining variability and uncertainty 
from the pharmacologically based pharmacokinetics (PBPK) infor-
mation as the pathway components imitate more targeted molecu-
lar elements and their interactions [ 131 ].  

   In present scenario, human exposure assessment is made principally 
on the measured levels of environmental agents in the human envi-
ronment [ 132 ]. In few cases, internal dose measures may also be 
calculated using biomonitoring [ 133 ] or pharmacokinetic model-
ing [ 134 ]. For superior exposure assessment, the focus should be 
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more on direct measures of critical toxicity pathway agitations in 
humans by employing innovative biomonitoring techniques cou-
pled with advanced new high throughput approaches [ 135 ].   

   The risk assessment model consists of the risk assessment process, 
including their harmonization and communication with the risk 
management process. The risk model interprets the safety issues in 
quantities like probabilities, concentrations, dosages, and risk 
quotients of each pharmaceutical product. The simplest approaches 
to estimating concentrations of a pharmaceutical in diverse 
compartments are provided in the guidance for environmental 
assessments for regulatory drug approvals by the US FDA [ 30 ] or 
the EU EMA [ 28 ]. In Fig.  2 , the risk assessment is harmonized 
with risk management process.

   Before designing or modeling a toxicological study, it is very 
benefi cial to assess exposure of any pharmaceutical by the follow-
ing way [ 136 ]:

 ●    The exposure is measured in form of the environmental con-
centration (occurrence) to which the biological system is 
exposed, the duration and frequency being not on the concen-
trations to which each individual is actually exposed. The actual 
exposure is subjected to many other factors such as, the fate, 
sorption effects, metabolism and transformation processes.  

 ●   The life stage and behavioral patterns should also be taken into 
account for any organism or living system.  

2.4.2  Environmental Risk 
Assessment Modeling 
of Pharmaceuticals

  Fig. 2    Possible steps for risk assessment and risk management       
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 ●   The bioavailability and toxicokinetics of the drug are studied.  
 ●   The pathways and target sites in the biological system are 

explored.  
 ●   The mode of action which depicts steps and processes to 

molecular and functional effects is determined.  
 ●   As pharmacokinetics and pharmacodynamics can infl uence the 

dose of pharmaceuticals, one has to consider these aspects to 
assess the dose which ultimately reaches the environment taking 
into account possible absorption, distribution, and elimination 
mechanisms.  

 ●   The hazard due to the inherent toxicity of the pharmaceutical 
according to its chemical properties is also studied.      

   Risk management is “the process of identifying, evaluating, select-
ing, and implementing actions to reduce risk to human health and 
to ecosystems. The goal of risk management is scientifi cally sound, 
cost-effective, integrated actions that reduce or prevent risks while 
taking into account social, cultural, ethical, political, and legal 
considerations” [ 137 ]. For eco-friendly risk management, one 
may select a combination of apposite tactics to balance risks, costs 
and benefi ts, taking into account social values and economic 
considerations. 

   The application of pharmaceuticals and their after use toxic effects 
cannot be stopped but the probable risk of pharmaceutical prod-
ucts related to environmental can be controlled by implementing 
proper precaution and safety measures. The EMEA 2006 guide-
line demonstrates following steps as safety measures for risk 
management:

    1.    Calculation of product risks initially   
   2.    Proper product labeling and summary product characteristics 

(SPC)   
   3.    Package leafl et (PL) for each pharmaceutical for patient use to 

inform the probable toxic effects   
   4.    Appropriate and safe storage of pharmaceutical product   
   5.    Safe and proper scientifi c disposal of pharmaceuticals      

   To diminish the occurrence of pharmaceuticals into the different 
compartments of the environment, one has to follow the prin-
ciple of sustainability where the entire life cycle of a pharmaceu-
tical has to be taken into consideration to categorize the 
opportunities for risk management. For diminishing the input of 
pharmaceuticals into the environment, following steps can 
employed effectively [ 138 ]. 
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   The most important step to reduce the occurrence of pharmaceu-
ticals in the environment is proper training and awareness of users 
who are the major source points. A proper usage and disposal of 
pharmaceutical is the responsibility of the shareholders and people 
using the compounds, including patients, doctors and nurses, and 
pharmacists. Industrial sectors should have the major role to treat 
the failed active pharmaceutical under quality control category 
properly before it reach to the environment. Additionally, each 
pharmaceutical product should consist of materials safety data 
sheet (MSDS) intended to provide workers and emergency person-
nel with procedures for handling or working with that substance in 
a safe manner, information such as physical data, toxicity, health 
effects, fi rst aid, reactivity, storage, disposal, protective equipment, 
and spill-handling procedures. Appropriate and effective risk man-
agement strategies need basic knowledge of entry routes of phar-
maceuticals. Therefore, one has to identify the bulk of drug fl ows 
connected with the diverse sources of pharmaceuticals such as 
households, industries, hospitals and pharmacy.  

   The most technical and extensively considered approach for risk 
management is improvement of sewage treatment. Analyzing 
Table  1 , one can easily identify the presence of threatening amount 
of pharmaceutical wastes after sewage and waste water treatment 
also. The purpose of advanced and improved sewage and waste 
water treatment is to further reduce the ecotoxicity, hormonal 
effects and pathogenic effects of the effl uent. In recent years, 
advanced effl uent treatment has been studied extensively. The 
advanced treatment of sewage infl uents and effl uents as well as 
waste water treatment can be done employing photochemical oxi-
dation processes, fi ltration, and application of powdered charcoal 
and constructed wetlands [ 139 ].  

   The third approach is evolving from the knowledge of green and 
sustainable pharmacy which states that substitution of the com-
pound with a more environmentally benign compound [ 138 ]. 
Though this approach is less practiced, in terms of sustainability, it 
appears to be the most encouraging one in the long run. The prime 
principle of green chemistry is easy and fast degradability of phar-
maceuticals after their application. Understanding of full life cycle 
of drugs will lead to a different understanding of the functionality 
necessary for a pharmaceutical. 

 Additionally, other crucial issues like (a) development of 
improved drug delivery systems so that lower doses are required; 
(b) upgradation of packaging and package sizes to prolong 
shelf life and lessen the amount of the product that expires and 
rejection of unused products; and (c) changes in prescription and 
animal farming practices are substantial options for minimizing or 
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eliminating emissions to the environment. Potential processes and 
measures to decrease the environmental toxicity by carious stake-
holders are addressed in Fig.  3  for a better understanding.

3          Regulatory Agencies for the Risk Assessment and Management of Ecotoxicity 
Pharmaceuticals 

 Immense exposure of pharmaceuticals and their metabolites to the 
environment is a matter of concern and a burning global issue at 
recent times. The risk effects are not only related with the 
 environment, it is also directly related to human health to a large 
extent. As a consequence, release of these pharmaceutical products, 
their risk assessment as well as risk management are controlled and 
regulated at local, national and international levels by different 
governments and regulatory agencies worldwide. As experimental 
data of environmental fate and toxicity of pharmaceuticals are absent 
or some time not suffi cient, there is a strong urge to predict physical 
and chemical properties, environmental fate, ecological effects and 
health effects of pharmaceuticals and their metabolites. Several 

  Fig. 3    Probable actions to be taken for reduction of the occurrence of pharmaceuticals in the environment by 
different stakeholders       
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government organizations have been applying the approaches of 
structure–activity relationship (SAR) and QSAR to develop the pre-
dictions for untested existing as well as newly introduced pharma-
ceuticals. To establish proper identifi cation of environmental 
hazards, their risk assessment and fate modeling, SAR and QSAR 
approaches along with other predictive in silico tools are employed 
by Australian, Canadian, Danish, European, German, Japanese, 
Dutch, and US Government organizations [ 28 ,  30 ,  140 – 144 ]. 

  QSAR models can be generated for prediction of the following 
ecotoxicity related properties or effects :

    1.    Physicochemical properties   
   2.    Toxic potential and potency   
   3.    Environmental distribution and fate in different compartments 

(air, water and soil) of environment   
   4.    Biokinetic processes (absorption, distribution, metabolism, 

and excretion) of pharmaceuticals and their metabolites    
   Areas where QSARs can be applied by governmental regulatory 

agencies are as follows :
    1.    Prioritization of existing pharmaceuticals for toxicity testing to 

environment.   
   2.    Classifi cation and labeling of new pharmaceuticals according 

to their safe use.   
   3.    Risk assessment of new and existing pharmaceuticals.   
   4.    Guiding experimental design of regulatory tests or testing 

strategies.   
   5.    Providing mechanistic information   
   6.    Filling up the large data gaps.   
   7.    Building a proper database of each pharmaceutical to different 

species regarding environmental toxicity.   
   8.    Development of expert systems for each therapeutic classes for 

different compartments of the environment.   
   9.    Construction of effi cient interspecies models to extrapolate 

data from one species to another species when data of a par-
ticular species is absent.    
  Global regulatory authorities and agencies [ 28 ,  30 ,  140 – 144 ] 

for the risk identifi cation, risk assessment and fi nally risk manage-
ment of ecotoxicity pharmaceuticals are listed in Table  2 .

    The most common endpoints associated with various test methods 
proposed under Organization for Economic Co-operation and 
Development (OECD) are the following ones: 

 ●     Physical-chemical properties : Most commonly evaluated prop-
erties are melting point, boiling point, vapor pressure, octa-
nol–water partition coeffi cient, organic carbon–water partition 
coeffi cient, and water solubility.  
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 ●    Ecological effects on endpoints : Acute fi sh-toxicity, long-term 
toxicity, acute Daphnia toxicity, algal toxicity, terrestrial toxicity, 
marine organism toxicity, microorganism toxicity in sewage 
treatment plant.  

 ●    Environmental fate : Biodegradation, hydrolysis in water, 
atmospheric oxidation, and bioaccumulation;  

 ●    Human health effects : Acute oral, acute dermal, acute inhala-
tion, eye irritation, skin irritation, skin sensitization, repeated 
dose toxicity, genotoxicity, reproductive toxicity, developmen-
tal toxicity, systemic toxicity, mutagenicity, carcinogenicity, etc.    

  OECD’s database on risk assessment models : 
 In silico models that are employed by the OECD countries to 

predict health or environmental hazards, exposure potential, and 
probable effects were organized into a searchable database. This 
database is intended as an information resource only. The models 
are listed by countries and by the property or effect included. The 
models can be useful as a screening tool, when there is a lacking of 
chemical-specifi c data, for establishing priorities for chemical 
assessment and for identifying issues of potential concern [ 140 ]. 
Areas of assessment and category of information for predicting 
human health and environment according to OECD’s guidelines 
are represented in Figs.  4  and  5 , respectively.

  Fig. 4    Areas of assessment and risk models for predicting human health and environment according to the 
OECD database       
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4        In Silico Modeling of Ecotoxicity Using SAR and QSAR Approaches 

 The toxic potential of large quantities of industrial chemicals 
including pharmaceuticals, cosmetics, pesticides and other syn-
thetic or semisynthetic chemicals is often required to be assessed by 
using standard animal models, comprising the basic test protocol 
for risk assessments for their approval as a registered product to 
launch into the market. With increasing concern about the envi-
ronmental pollution and human health, the manufacture, storage, 
distribution, and release of these hazardous substances after their 
application to the environment are controlled and regulated at 
various levels by different governments and regulatory agencies 
worldwide. Applications of analogues, SAR and QSAR of different 
pharmaceuticals are also providing useful information in a regula-
tory decision making context in the absence of experimental data 
[ 140 ]. Most commonly employed predictive in silico tools are 
depicted in Fig.  6 .

   Among the available in silico predictive models for ecotoxicity, 
majority of the models are constructed employing QSAR 
techniques. Therefore, in this book chapter, a special importance 
is given to the discussion of QSAR models. The QSAR approach 

  Fig. 5    Category of information included in predicting health and environmental effects according to the OECD 
guidelines       
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attempts to correlate structural/molecular properties with biolog-
ical activities/toxicities, for a set of compounds by means of sta-
tistical methods. As a result, a simple mathematical relationship is 
established:

  Biological activity or toxicity chemical structure or property= (f )).   

Applications of QSAR can be extended to any molecular design 
purpose, prediction of different kinds of biological activities and 
toxicities, lead compound optimization, classifi cation, diagnosis, 
and elucidation of mechanisms of drug action, toxicity prediction 
of environmental toxicants (pollutant pharmaceuticals, chemicals, 
gas, etc.), and prediction of drug-induced toxicity [ 145 ]. The 
major objective of structure–activity/toxicity relationship modeling 
is to investigate and identify the decisive factors for the measured 
activity/toxicity for a particular system, in order to have an insight 
of the mechanism and behavior of the studied system. For such a 
purpose, the employed strategy is to generate a mathematical 
model that connects experimental measures with a set of chemical 
descriptors determined from the molecular structure for a set of 
compounds. The derived model should have as good predictive 
capabilities as possible to predict the studied biological/toxicolog-
ical or physicochemical behavior for new compounds. The factors 
governing the events in a biological system are represented by a 

  Fig. 6    Predictive in silico tools for the prediction of ecotoxicity of pharmaceuticals       
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multitude of physicochemical descriptors, which can include 
parameters to account for hydrophobicity, electronic properties, 
steric effects, and topology, among others [ 145 ]. 

 With the constant progress of QSAR techniques, many methods, 
algorithms, and techniques have been discovered and applied in 
QSAR studies. The development of a QSAR model follows fi ve 
major steps:

    1.    Selection of a dataset with series of known response data   
   2.    Calculation of descriptors   
   3.    Splitting of the dataset into training and test sets for model 

development and its subsequent validation   
   4.    Construction of models using different chemometric tools, 

and   
   5.    Validation of the developed model based on internal and exter-

nal validation statistics     
 Additionally, the development of 3D-QSAR models includes 

two more steps for their successful execution: conformation analysis 
of the molecules and their alignment status with respect to the most 
active compound. The most important feature for an acceptable 
and reliable QSAR model is predictive capability for new set of 
compounds. The predictive quality of the developed model is deter-
mined based on different validation statistics. Thus, validation of 
QSAR models plays the most crucial role in defi ning the applicabil-
ity of the QSAR model for the prediction of untested compounds. 
Initially, verifi cation of the correlation between chemical features of 
the molecules and the biological activity/toxicity was of prime 
interest during the development of a QSAR model. Later, the focus 
gradually shifted toward the predictive power of the model than 
simply unveiling the quantitative relationships [ 146 ]. 

 To validate a QSAR model, one has to follow OECD princi-
ples for acceptable predictions in order to make the model as a 
reliable screening tool for future toxicity prediction of untested 
pharmaceuticals. A meeting of QSAR experts held in Setúbal, 
Portugal in March 2002 reported guidelines for the validation of 
QSAR models for regulatory purposes. The OECD principles were 
agreed by OECD member countries, QSAR and regulatory com-
munities at the 37th Joint Meeting of the Chemicals Committee 
and Working Party on Chemicals, Pesticides and Biotechnology in 
November 2004. These principles are listed here: Principle 1: a 
defi ned endpoint; Principle 2: an unambiguous algorithm; Principle 
3: a defi ned domain of applicability; Principle 4: appropriate mea-
sures of goodness-of fi t, robustness, and predictivity; Principle 5: a 
mechanistic interpretation, if possible [ 147 ]. Different quality 
metrics for QSAR models can be categorized into two classes: one 
determining the fi tting ability of the model while the other analyz-
ing the predictive potential of the developed model [ 146 ]. 
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     The 3R concept represents three words “Reduction,” 
“Replacement,” and “Refi nement”. The concept brought about 
an imperative notifi cation about animal experimentation in the 
scientifi c communities. The word ‘Reduction’ refers to the dimi-
nution in number of animals used to get results of a defi ned preci-
sion. Next, ‘Replacement’ corresponds to the use of nonliving 
resources to replace conscious living higher animals, and 
‘Refi nement’ means decline in the severity or cruelty of inhuman 
methodologies applied to the experimental animals [ 148 ]. As a 
consequence, to establish the 3R concept, in silico techniques are 
one of the front runners.  

   There are different social as well as governmental organizations 
that consider reduction or complete ban of animal experimenta-
tions [ 149 ]. Here, we have listed a few of them:

    1.    The European Centre for the Validation of Alternative Methods 
(ECVAM) was established in the year 1991 that agrees the 
principle of 3Rs.   

   2.    The European Convention for the Protection of Vertebrate 
Animals used for Experimental and Other Scientifi c Procedures.   

   3.    Council Directive 86/609/EEC on the Approximation of 
Laws, Regulations and Administrative Provisions of the 
Member States Regarding the Protection of Animals Used for 
Experimental and Other Scientifi c Purposes.   

   4.    Johns Hopkins Center for Alternatives to Animal Testing 
(CAAT), a US based organization focussing on the reduction 
of animal experimentations.   

   5.    The testing ban on the fi nished cosmetic products applies since 
11 September 2004; the testing ban on ingredients or combi-
nation of ingredients applies since 11 March 2009. The mar-
keting ban applies since 11 March 2009 for all human health 
effects with the exception of repeated-dose toxicity, reproduc-
tive toxicity, and toxicokinetics. For these specifi c health 
effects, the marketing ban applies since 11 March 2013, irre-
spective of the availability of alternative non-animal tests [ 150 ].   

   6.    India and Israel have also banned animal testing for cosmetic 
products, while the USA has no such ban in place [ 151 ].   

   7.    China is the only major market where testing all cosmetics on 
animals is required by law, and foreign companies distributing 
their products to China must also have them tested on animals. 
[ 152 ] China has announced that its animal testing require-
ment will be waived for shampoo, perfume, and other so-called 
“non- special use cosmetics” manufactured by Chinese compa-
nies after June 2014. “Special use cosmetics,” including hair 
regrowth, hair removal, dye and permanent wave products, 
antiperspirant, and sunscreen, will continue to warrant manda-
tory animal testing.    

4.1  Why In Silico 
Models Should Be 
Developed for 
Ecotoxicity Predictions 
of Pharmaceuticals?

4.1.1  The 3R Concept

4.1.2  Ban of Animal 
Experimentation
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     SARs and QSARs are employed to predict aquatic toxicity, physical 
or chemical properties, and environmental fate parameters as well 
as to predict specifi c health effects of organic chemicals by 
Australian, Canadian, Danish, European, German, Japanese, 
Dutch, and US Government organizations.  

   Acceptable toxicity data of pharmaceuticals to environment and 
human health is considerably less than 5 % [ 153 ]. Computer-aided 
prediction has the competency to assist in the prioritization of 
pharmaceuticals for testing, and for predicting specifi c toxicities to 
allow for classifi cation. As the number of reliable models for toxic-
ity predictions is increasing, they can be employed as one of the 
major sources for fi lling the missing data of pharmaceutical toxicity 
to ecosystem.  

   In the modeling of acute toxicological endpoints, much has been 
gained regarding mechanisms of action. For many modeling 
approaches, it may be assumed that compounds fi tting the same 
QSAR are acting by the same mechanism of action. This has 
allowed workers to defi ne the chemical domain of certain mecha-
nisms. There are countless examples where knowledge of biology 
and chemistry has been advanced by modeling in the fi eld of toxi-
cological and fate effects [ 154 ].  

   Toxicity study is very costly in terms of the animals employed for 
testing and time taken. Even a simple ecotoxicological assay may 
cost several thousand dollars, and a 2-year carcinogenicity assay 
may cost several million dollars. Cost is a clear issue to fi ll the data 
gaps for the many new compounds that have not been tested. On 
the other hand, prediction of various toxicity endpoints for phar-
maceuticals at an early stage of design can save a large amount of 
expenses for such compounds which may be found toxic at a later 
stage of drug development program [ 155 ].  

   The development of computational techniques not only allows for 
the prediction of the potential risk of pharmaceuticals but also 
allows for rational direction to be given to the testing programs.    

5    Review of Literature on In Silico Ecotoxicity Modeling of Pharmaceuticals 

 Kar and Roy [ 156 ] have constructed robust quantitative interspecies 
toxicity correlation models for  Daphnia magna  and fi sh evaluating 
the ecotoxicity of structurally diverse 77 pharmaceuticals. They 
have demonstrated that the keto group and the       (aasC) frag-
ment are principally responsible for higher toxicity of pharmaceu-
ticals to  D. magna . On the other hand, for fi sh toxicity, along with 
the keto group, structural fragments like X=C=X, R–C(=X)–X, and 

4.1.3  Regulatory 
Decision Making

4.1.4  Filling Data Gaps

4.1.5  Development 
of Understanding 
of Biology and Chemistry

4.1.6  Cost and Time 
Reduction

4.1.7  Identifi cation 
of New Toxicological 
Problems
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R–C≡X are largely responsible for the toxicity. The interspecies 
models were also used to predict fi sh toxicities of 59 pharmaceuti-
cals (for which Daphnia toxicities were present) and Daphnia tox-
icities of 30 pharmaceuticals (for which fi sh toxicities were present). 
They established that the interspecies correlation study would per-
mit an improved and inclusive risk assessment of pharmaceuticals 
for which toxicity data was missing for a particular endpoint. 

 Das et al. [ 157 ] attempted to develop interspecies correlation 
models taking rodent toxicity as dependent variable so that any 
drug without reported rodent toxicity can be predicted using fi sh, 
daphnia, or algae toxicity data which can be further extrapolated to 
human toxicity. Interspecies extrapolation QSAR models were 
developed employing multiple validation strategies. Analyzing the 
models, the authors concluded that heteroatom atom count and 
charge distribution were signifi cant determinants of the rodent 
toxicity, and that the atom level log  P  contributions of various 
structural fragments and various extended topochemical atom 
(ETA) indices refl ecting electronic information and branching pat-
tern of molecules were important determinants for the rodent tox-
icity. In addition, from interspecies aquatic toxicity modeling, it 
was established that apart from the algae toxicity, atom level log  P  
contributions of different fragments, charge distribution, shape, 
and ETA parameters were important in describing the daphnia and 
fi sh toxicities in the interspecies correlation models with algae tox-
icity. The toxicity of chemicals to rodents bears minimum interspe-
cies correlation with other mentioned nonvertebrate and vertebrate 
toxicity endpoints. 

 The acute toxicity was predicted (>92 %) using a generic quan-
titative structure–toxicity relationship (QSTR) model developed 
by Sanderson and Thomsen [ 158 ] suggesting a narcotic mecha-
nism of action (MOA) of 275 pharmaceuticals. An analysis of 
model prediction error suggests that 68 % of the pharmaceuticals 
have a nonspecifi c MOA. Authors have compared the measured 
effect data to the predicted effect concentrations using ECOSAR 
regarding the predictability of ecotoxicity of pharmaceuticals and 
accurate hazard categorization relative to Global Harmonized 
System (GHS). Molecules were predicted using the model result-
ing in 71 % algae, 74 % daphnia, 83 % fi sh datasets that could be 
compared. 

 Escher et al. [ 159 ] constructed QSAR models with the total 
toxic potential of mixtures of the β - blockers and related human 
metabolites for the phytotoxicity endpoint. They have assumed 
two scenarios for this study. In the fi rst scenario, the metabolites 
lose their explicit activity and act as baseline toxicants. In the sec-
ond scenario, the metabolites reveal the identical specifi c mode of 
action like their parent drug. β-Blockers are secondary amines and 
are, therefore, fully protonated at environmental pH. The authors 
accounted for their positive charge in the QSAR analysis and have 
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experimentally determined the liposome–water partition ratios at 
pH 7 to make QSAR analysis more robust. 

 Berninger and Brooks [ 160 ] considered the mammalian Acute 
to Therapeutic Ratio (ATR) to predict pharmaceuticals which may 
result in comparatively high Acute to Chronic Ration (ACR) in 
fi sh models. The authors identifi ed a statistically signifi cant rela-
tionship between mammalian ATRs and fi sh ACRs ( p  < 0.001, 
 r  2  = 0.846). In this model, they only included chronic responses of 
fi sh to pharmaceuticals which appear to have been elicited through 
a therapeutic MOA for calculating ACRs and for statistical analysis 
of the relationship with mammalian ATRs. Utilizing this approach, 
mammalian ATR values can be used for predicting pharmaceuticals 
with higher fi sh ACRs if the chronic response used in ACR calcula-
tion is reasonably linked to the therapeutic MOA of a 
pharmaceutical. 

 Sanderson et al. [ 161 ] employed the US EPA generic aquatic 
(Q)SAR model ECOSAR to screen more than 2800 pharmaceuti-
cals and provided a baseline to fi ll the screening data regarding 
parent pharmaceuticals environmental toxicity. The model can be 
used to predict both acute and chronic aquatic toxicity. 

 Sanderson and Thomsen [ 162 ] overestimated the toxicity for 
70 % of the 59 pharmaceuticals by ECOSAR v3.20 which contains 
both measured and modeled data. For the remaining 30 % phar-
maceuticals, more than 94 % of the predictions underestimated 
toxicity by less than a factor of 10. This is an indication that a nar-
cosis based model is conservative relative to experimental values 
around 70 % of the time, thus implying that for at least 70 % of the 
Active Pharmaceutical Ingredients (APIs), the acute mode of 
action (MOA) can be elucidated by baseline toxicity. The authors 
have observed determination coeffi cients ( r  2 ) ranging from 0.73 to 
0.76 between all the modeled Log EC 50  and Log  K  ow . The slopes 
of the Log EC 50 –Log  K  ow  regressions based on measured data from 
the USA National Oceanic and Atmospheric Administration 
(NOAA) database for both fi sh and daphnia equal −0.86 which 
suggest a narcotic MOA. 

 Lienert et al. [ 163 ] assessed the ecotoxicological risk potential 
of 42 pharmaceuticals from 22 therapeutic classes, including 
metabolites formed in humans. They considered each parent drug 
and its metabolites as a mixture of equally acting compounds, and 
in case when effect data were missing, they estimated these with 
QSAR models. They have collected data on the identity and excre-
tion pathways of human metabolites and, where available, experi-
mental ecotoxicity data (EC/LC 50 ) from pharmaceutical 
compilations and from diverse literature sources. They have com-
piled physicochemical data like structure, molecular weight, 
 octanol–water partition coeffi cient K ow , acidity constant p K  a  mainly 
from the Physical Properties Database (  http://www.syrres.com/
esc/physprop.htm    ). Moreover, they have generated a risk quotient 
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(RQ mixture ) using simple predictions of drug concentrations in 
wastewater which can be useful for risk assessment of 
pharmaceuticals. 

 Christen et al. [ 164 ] developed VirtualTox Lab [ 165 ] to pre-
dict the effects of pharmaceuticals in the aquatic system. The study 
leads to the inference that the mode of action perception is most 
appropriate for the identifi cation of highly active compounds 
(HC). As suggested by the authors, modifi cation can be done by 
balancing this concept by the QSAR model (VirtualTox Lab), 
whereas the fi sh plasma model seemed to be less apposite due to 
the requirement of environmental concentration above 10 ng/l 
for the identifi cation of a risk. The practice of the VirtualTox Lab 
will support the mode of action concept and may be benefi cial to 
recognize surplus targets of the pharmaceutical to assess the 
ecotoxicity. 

 Escher et al. [ 166 ] predicted baseline toxicity of the 100 mol-
ecules using established QSARs for algae, daphnia, and fi sh. The 
QSARs were selected from the Technical Guidance Document of 
the EU. The logarithm of  D  lipw  (liposome water distribution coef-
fi cient) was employed in the model development for baseline toxic-
ity to calculate the toxicity of the compound towards the stated 
species. 

 The environmental risk assessment of 26 pharmaceuticals and 
personal care products have been performed by De García et al. 
[ 167 ] based on the ecotoxicity values generated by biolumines-
cence and respirometry assays. Then the compounds were classi-
fi ed following the Globally Harmonized System of Classifi cation 
and Labelling of Chemicals by predictions using the US EPA eco-
logical structure–activity relationship (ECOSAR™). The real risk 
of impact of these pharmaceuticals in wastewater treatment plants 
(WWTPs) and in the aquatic environment was predicted according 
to the criteria of the European Medicines Agency. According to 
their studies, in at least two ecotoxicity tests, 65.4 % of the PPCPs 
showed prominent toxicity to aquatic organisms. There study 
showed some type of risk for the aquatic environments and/or for 
the activated sludge of WWTPs for pharmaceuticals like acetamin-
ophen, ciprofl oxacin, clarithromycin, clofi brate, ibuprofen, 
omeprazole, triclosan, parabens, and 1,4-benzoquinone. 

 Here we have discussed available in silico models on ecotoxic-
ity of pharmaceuticals. Due to the limited availability of the in 
silico models on ecotoxicity of pharmaceuticals, there is a need to 
develop more in silico models in order to reduce time and cost 
involvement as well as reduction of animal usage in getting rele-
vant data and for better and fast risk assessment of pharmaceuticals. 
It is not possible to experimentally study toxic effects of each phar-
maceutical in different species. Most active pharmaceutical ingredi-
ents have available rodent toxicity information. As a result, if this 
data could be extrapolated or modeled to different other species, 
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this would be a noteworthy resource for prioritization of pharma-
ceuticals with regards to diverse environment hazards. However, 
very limited papers have been published on interspecies models to 
predict environmental toxicity for pharmaceuticals, and there are 
relatively few statistical models available to bridge the chronic tox-
icity data information gap [ 168 ,  169 ].  

6    Endpoints 

 Toxicity of a molecule should be assayed on specifi c toxicity end-
points for the generation of data which are employed commonly to 
develop in silico models. This why a clear concept is required about 
the endpoints or test batteries as they are employed for the experi-
mental toxicity studies and for understanding the mode of toxicity 
with respect to that particular endpoint [ 110 ]. We list the most 
commonly employed endpoints for this purpose in Table  3 .

7       Databases 

 A good quality of ecotoxicological data of pharmaceuticals and 
their metabolites is required for the development of accurate and 
reproducible in silico models. A signifi cant number of chemical/
drug/agrochemical/pesticide toxicity databases towards environ-
ment are publicly accessible, and such numbers are growing. But 
one cannot deny that the existing databases are very few compared 
to drug discovery compound libraries. Recent initiatives requiring 
superior use of in silico technologies have called for transparency 
and expansion of toxicity database information that is available to 
the public at no cost. Table  4  represents publicly available toxicity 
databases describing environmental as well as human health effects 
of pharmaceuticals useful in risk assessment, risk management, 
safety evaluation, and hazard characterization.

8       Expert Systems 

 Expert systems allow for the direct entry of a structure into soft-
ware followed by the calculation or prediction without the require-
ment to compute descriptors and re-perform the modeling process. 
This makes expert system a more convenient option for toxicity 
prediction over traditional QSARs. Expert systems have been 
 frequently employed by regulatory agencies, academia and indus-
tries worldwide for more effi cient and fast prediction. The fore-
most criterion of toxicity prediction is to differentiate between 
toxicologically active and inactive molecules. Multiple mechanisms 
can lead to the identical toxic effect and this intricacy requires the 
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accessibility of predictive tools that are able to discriminate mani-
fold regions in the activity space. This necessitates the development 
of so-called expert systems, which try to cover broader structural 
and activity regions in comparison to the local models. Table  5  
summarizes different freely available and commercial expert sys-
tems to predict endpoints related toxicity predictions.

9       Green and Ecological Pharmacy 

 The role of green chemistry and principles are very important for 
risk management of pharmaceuticals. The principles of green 
chemistry state that the functionality of a chemical should not only 
comprise the properties of a chemical essential for its application, 
but also quick and trouble free degradability after its usage. 
Improvement of synthesis and renewable feedstock are very impor-
tant issues for preparation of environment friendly pharmaceuti-
cals. Employing these principles and the awareness of green 
chemistry to pharmaceuticals are necessary [ 138 ]. In this perspec-
tive, a system called “benign by design” can be considered which 
means easy degradability after application is considered even before 
a pharmaceutical’s synthesis. This approach is not completely new. 
For instance, it is a general practice during the development of 
pharmaceuticals that adverse side effects are to be taken into con-
sideration. This can also result in economic rewards in the long run 
and will fi t into green pharmacy [ 170 ]. But one has to note that a 
pharmaceutical may also lose its specifi c therapeutic action due to 
the structural modifi cation while introducing green chemistry. 
However, this approach can be employed at least for the optimized 
and new synthesis routes [ 170 ]. Again, it is true that fi nding good 
lead compounds is a major task even without considering the envi-
ronment toxicity issue. However, there is no requirement to fi nd a 
new lead compound at fi rst. The modifi cation of known lead struc-
tures can be the best option to do. Responding to the green and 
justifi able pharmacy challenge may also result in new marketing 
opportunities with help of appropriate and scientifi c research 
within industry and academia.  

10    Overview and Conclusion 

 A huge number of reports and publications have been published in 
the last decade about the ecotoxicity due to human and veterinary 
pharmaceuticals, but it is still too meager to permit us to execute a 
systematic and precise risk assessment and appropriate risk man-
agement. There is still a huge need of fi lling the missing data gaps 
in our knowledge. Due to biologically active and persistence nature 
of pharmaceuticals, they are one of the most serious threats to 

Kunal Roy and Supratik Kar
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human health and environment stability. Additionally, their specifi c 
modes of action and specific effects on living systems make 
pharmaceuticals distinctly different from other chemicals. This 
sole feature is suffi cient reason to assess the potential effects of 
pharmaceuticals in diverse environmental compartments. The 
problem is more horrifying as the occurrence level of pharmaceu-
ticals in different environmental compartments is largely varied. 
The variations in drug occurrences from country to country and 
also within the different regions of a country make the assessment 
of pharmaceuticals a troublesome job for the environmental scien-
tist. The interactions between pharmaceuticals and natural stress-
ors of aquatic and terrestrial communities remain to be unexplained. 
Along with that, the proper risk assessment of mixtures of pharma-
ceutical products is another area where more introspection is 
required in present times. 

 In this book chapter, the hazardous effects of the most com-
mon therapeutic classes of pharmaceutical to the living ecosystems 
and environment are discussed. Furthermore, specifi c information 
on the sources, fate, and effects of pharmaceuticals in the environ-
ment and their possible negative impact on different ecosystems 
are explored. There is a lack of suffi cient information and scientifi c 
data on effects of long-term exposure to nontarget organisms. It is 
also important to assess the presence of pharmaceuticals and their 
metabolites and transformation products in several environmental 
compartments. One can fi nd only a few reports on the quantitative 
effects of pharmaceuticals, but the effects of metabolites are not 
suffi ciently explored by the scientifi c community. One has to accept 
that the identifi cation of risk assessment and management are not 
suffi cient if they are not properly implemented in right way. In 
these perspectives, the major role should be played by government 
authorities and agencies by implementing various guidelines and 
rules for the reduction of toxicity of pharmaceuticals to the 
environment. 

 Scarcity of adequate ecotoxicity data related to the diverse 
classes of pharmaceuticals and their metabolites has stalled appro-
priate computational modeling and development of expert sys-
tems. As a consequence, there are only a very limited number of 
models developed so far for the risk assessment of pharmaceuticals 
and their metabolites as well as for the pharmaceutical mixtures. 
Hence, a suffi cient number of models should be developed to 
address the risk assessment and risk management in an effi cient way 
by minimizing the requirement of time, animal testing and cost. 
This will also help in gathering the ecotoxicity data as soon as a 
new pharmaceutical product comes to the market. In this perspective, 
expert systems are more reliable and results may be easily available 
in no time. There is a need of more expert systems for prediction 
of toxicity of pharmaceuticals from diverse classes of therapeutic 
actions and their metabolites against different endpoints. It is true 
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    Chapter 13   

 Use of Read-Across Tools                     

     Serena     Manganelli      and     Emilio     Benfenati     

  Abstract 

   Read-across has become popular since the introduction of regulations, such as the European REACH 
regulation. This chapter provides instructions on how to use ToxRead, new freely available software for 
read-across analysis, and on how to interpret its output predictions for mutagenicity assessments. 

 This tool offers two seminal sources: a set of rules/structural alerts, which may explain the toxicity, 
and a similarity tool, associated with a large database of chemicals with their properties.  

  Key words     Read-across  ,   ToxRead  ,   SAR  ,   Structural alerts  ,   Rules  ,   Mutagenicity  ,   REACH  

1      Introduction 

   Mutagenicity is one of the most important endpoints to evaluate 
toxicity towards humans; indeed, it is part of the CMR 
(Carcinogenic, Mutagenic, Reprotox) regulatory assessment. As 
discussed in Chapter   5    , the most common assay to assess experi-
mentally mutagenicity is the Ames test [ 1 ]. The Ames test makes 
use of genetically engineered  Salmonella typhimurium  and  E. coli  
bacterial strains and it has an estimated inter-laboratory reproduc-
ibility of 85–90 % [ 2 ]. In Chapter   5    , the involvement of mutagen-
icity assessment in different fi elds, such as drug discovery, is 
discussed along with the importance of characterization of this 
endpoint to fulfi ll European regulation requirements. 

 Human experts usually estimate toxicity by means of the iden-
tifi cation of structural fragments known to be responsible for the 
toxic property under investigation. The knowledge of the bio-
chemical mechanism of action of chemicals helps the expert in the 
determination of these fragments’ activity. Once these moieties are 
found to be the reason for an effect, such chemical moieties can be 
codifi ed into rules called structural alerts (SA), toxicophores, etc. 
In the last decades, many lists of fragments have been discovered 
and codifi ed. Some of these lists of fragments have been extracted 

1.1  Use of  Structural 
Alerts  for Mutagenicity 
Assessment
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manually, such as rules extracted by Ashby [ 3 ,  4 ], Benigni–Bossa 
[ 5 ], and DEREK [ 6 ], while in other cases computer programs have 
been used, as in the case of Kazius [ 7 ], SARpy [ 8 ], MultiCASE [ 9 , 
 10 ], and Ahlberg [ 11 ]. 

 However, when the SA is lacking we cannot conclude that the 
chemical is not mutagenic: it is possible that the chemical contains 
a SA that is not yet identifi ed; this may lead to false negatives. Also 
for this reason, the guidance on the use of models for mutagenicity 
for impurities within pharmaceuticals asks users to apply two inde-
pendent approaches: one based on SA and one based on statistical 
criteria, such as quantitative structure–activity relationships 
(QSAR) [ 12 ]. 

 It is also possible that there are chemicals, which contain the 
SA, but are non-toxic. Computer programs may also extract frag-
ments related to the lack of effects. Differently from the detection 
of toxic fragments, which can be mechanism-based, the meaning 
of non-toxic fragments may be purely statistical, indicating that 
substances with those particular fragments are non-toxic. 

 One of the most recently developed software providing a use-
ful application of probably the largest collection of SA for the 
mutagenicity assessment is ToxRead [ 13 ]. ToxRead is a program 
for read- across which offers guidance to the user for identifying 
similar chemicals that share the same fragments with the target 
compound.  

   Read-across is a method for data-gap fi lling where information 
from one or more chemicals is used to predict the same endpoint 
for a target chemical, which is similar in some key aspects related to 
that endpoint. 

 Two main problems can be encountered when fi lling data gaps 
with read-across. The fi rst one is the diffi culty in assessing the 
absence of toxicity, which seems to require a greater burden of 
proof for justifi cation. The second one is how to deal with uncer-
tainty and to what extent results are to be considered reliable. 
Different elements contribute to reliability: the quality and num-
ber of the experimental data used to perform read-across; the 
chemical similarity measures used; knowledge about how chemi-
cals interact with biological systems; and supplementary data from 
other properties or in vitro assays. This information is not always 
available, but each element may contribute in a weight of evidence 
(WoE) approach [ 14 ]. 

 A read-across approach may fulfi ll REACH information 
requirements, in order to avoid unnecessary testing, only if it meets 
the following criteria set out in Annex XI:

    1.    Results are adequate for the purpose of classifi cation and label-
ing and/or risk assessment.   

1.2  Read-Across
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   2.    Results have adequate and reliable coverage of the key param-
eters addressed in the corresponding test methods.   

   3.    An exposure duration comparable to or longer than the cor-
responding test method is covered, if this parameter is 
relevant.   

   4.    Adequate and reliable documentation of the applied method is 
provided.     

 Read-across approaches may also be used to defi ne further 
testing needs in integrated testing strategies to allow effi cient tar-
geting of testing. These approaches can also support a conclusion 
for a REACH endpoint using a WoE method. 

 The strategies to perform read-across based prediction are 
essentially four:

    1.    One-to-one (one analogue used to make an estimation for a 
single chemical).   

   2.    One-to-many (one analogue used to make estimations for two 
or more chemicals).   

   3.    Many-to-one (two or more analogues used to make an estima-
tion for a single chemical).   

   4.    Many-to-many (two or more analogues used to make estima-
tions for two or more chemicals).     

 In general, strategies based on the assessment of a number of 
analogues may be more effi cient and accurate than one-to-one 
approaches [ 15 ]. 

 The crucial step of read-across is the identifi cation of similar 
compounds. This is performed by means of the following approaches:

 ●    “Analogue approach,” which is based on a very limited num-
ber of chemicals (e.g., target substance + source substance).  

 ●   “Category approach,” which is based on a more extensive 
range of analogues (e.g., three or more members) and 
there may be an apparent trend in property.    

 A strategy for grouping the chemicals in terms of similarity can 
be based on chemical structure, or on other common properties 
such as common precursor and/or breakdown products, or a con-
stant pattern in the changing potency of the properties across the 
group (in the case of a quite consistent number of compounds). 
These criteria can be adopted one by one or can be integrated to 
strengthen the grouping hypothesis. 

 A straightforward way to fi nd analogues of the target com-
pound is to check its presence in existing categories or to apply 
expert knowledge to link this compound to an existing category. 
Different web-sources contain information on existing categories, 
such as US EPA (  http://cfpub.epa.gov/hpv-s/    ), OECD (  www.
oecd.org/env/existingchemicals/data    ), Canada (  http://www.

Read-Across Tools 

http://cfpub.epa.gov/hpv-s/
http://www.oecd.org/env/existingchemicals/data
http://www.oecd.org/env/existingchemicals/data
http://www.chemicalsubstanceschimiques.gc.ca/plan/index-eng.php


308

chemicalsubstanceschimiques.gc.ca/plan/index-eng.php    ), 
eChemportal  (  http://www.echemportal.org    ), and OECD QSAR 
Toolbox (  www.qsartoolbox.org    ). 

 If this condition does not occur, similar compounds search can 
make use of a similarity assessment approach (pair-wise similarity or 
similarity to a group). This procedure is helpful even if the chemi-
cal is associated with an existing category, since it may lead to the 
identifi cation of new information and more analogues. In one type 
of grouping (descriptor-based grouping), the structural similarities 
of the analogues can be explored by means of statistical approaches 
such as principal component analysis (PCA) or pattern recognition 
approaches (e.g., Kohonen neural maps). A wide array of descrip-
tors is generated (constitutional, topological, and geometrical 
descriptors, molecular connectivity indices, physicochemical prop-
erties) for all the analogues; then, a suitable plot (e.g., PCA plot) 
allows visualizing similarities, trends and possible outliers. A sec-
ond type of grouping (endpoint-based grouping) makes use of dif-
ferent experimental data and/or QSAR predictions generated for 
all the analogues and endpoints of interest. This information can 
predict trends as well as breakpoints in trends, and therefore pos-
sible subcategories. There are several available tools to identify ana-
logues, such as ToxRead [ 13 ], OECD QSAR Toolbox [ 16 ], 
AMBIT [ 17 ], ToxMatch [ 18 ], Leadscope [ 19 ], AIM [ 20 ], and 
ChemIDplus [ 21 ]. 

 The collection of experimental data for relevant analogues in a 
data matrix is the preliminary step for the subsequent read-across 
approach. Toxicological information on the analogues can be 
obtained from the available in-house databases, and from querying 
external databases. 

 Finally, endpoint information for the target compound can be 
obtained using the corresponding information for relevant ana-
logues [ 22 ,  23 ]. 

 The expert attempts to identify the most similar cases with 
respect to the chemical structure, presence of functional groups, 
applicability of specifi c alerts, reasons for considering the parent 
compounds or its metabolites, and other approaches. This process 
is time-consuming and not easy to replicate. 

 To improve this, some automatic systems have been developed 
to assist the expert in performing read-across based analysis. 

 The QSAR Toolbox is a standalone software application, devel-
oped by the Organization for Economic Co-operation and 
Development (OECD) with the aim of fi lling gaps in (eco)toxicity 
data needed for chemicals’ hazard assessment. The Toolbox integrates 
information and tools from different sources into a workfl ow [ 23 ]. 

 The features of the Toolbox to perform read-across are the 
following:

    1.    “Profi ling” based on the identifi cation of relevant structural 
features and potential mechanisms or mode of action of a tar-
get substance.   
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   2.    “Grouping” based on the identifi cation of other chemicals 
sharing the structural characteristics and/or mechanism/mode 
of action recognized for the target.   

   3.    Data gap(s) fi lling, which makes use of existing experimental 
data.     

 Toolbox contains databases with results from experimental 
studies, plus regulatory inventories, and accumulated knowledge 
for structural alerts that can indicate the presence of hazardous and 
other properties. These alerts, named “profi lers,” encode SAR type 
information. Some examples are profi lers for “DNA Binding,” 
“Protein Binding,” “Aquatic toxicity MOAs,” etc. Aside from 
tools for read- across- based-estimations, the Toolbox also contains 
tools to perform trend analysis, and (Q)SAR models to predict 
missing experimental values [ 23 ]. 

 AMBIT is a software for chemoinformatic data management, 
resulting from a Long-range Research Initiative of the European 
Chemical Industry Council (CEFIC LRI), and developed in col-
laboration with Procter & Gamble. The AMBIT system consists of 
a database and functional modules allowing a variety of searches and 
mining of data stored in the database. The AMBIT database stores 
more than 450,000 chemical structures and their identifi ers such as 
CAS and EINECS numbers and InChI. It also contains attributes 
such as molecular descriptors, experimental data together with test 
descriptions, and literature references. The quality assured data is 
organized in searchable templates, offering features on chemicals 
information (structure, data, text), including REACH applicable 
PBT/vPvB and analogues assessment. AMBIT Discovery performs 
chemical grouping usable for read-across, and evaluates the applica-
bility domain of a QSAR offering a variety of methods, including 
the use of different approaches for similarity assessments [ 17 ]. 

 Under the EC funded projects CALEIDOS [ 24 ] and PROSIL 
[ 25 ], ToxRead, a new standalone application for read-across analy-
sis, has been developed. ToxRead contains databases of compounds 
with their experimental activities, currently for two endpoints: 
mutagenicity and bioconcentration factor (BCF). From its data-
bases, ToxRead arranges similar molecules sharing structural alerts 
and rules with the target compound, thus providing the expert an 
interactive tool for studying the target compound and performing 
a solid read- across analysis.   

2    Materials 

   A number of existing databases can be helpful to obtain quality 
assurance chemical structures, expressed as “Simplifi ed Molecular 
Input Line Entry Specifi cation” (SMILES) starting from a chemi-
cal identifi er, such as CAS number ( see   Note 1 ). Additionally or 

2.1  Optional 
Software for Structure 
Search 
and Normalization
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alternatively, any software application can be useful for chemical 
structure drawing and conversion into SMILES ( see   Note 2 ) and 
for SMILES normalization ( see   Note 3 ).  

   ToxRead aims to be an easy way to obtain and integrate the avail-
able knowledge, a systematic tool to indicate the uncertainty of the 
result, and a reproducible program to categorize the substances. 
ToxRead provides evidence on the evaluation of the relevance of 
the different structural alerts for the specifi c chemical of interest, 
indicating at the same time the most similar compounds, which 
contain these structural alerts [ 14 ]. The developed tool is based on 
an application supported by libraries of fragments, which visualize 
the substances and the structural alerts.  

   Currently, the experimental values for mutagenicity are referred to 
6,065 compounds extracted from the ANTARES project [ 26 ], 
which refers to the data from Hansen et al. [ 27 ], checked and 
pruned. The dataset contains (1) chemical structure, (2) CAS 
number, (3) common name as identifi ers of each compound, and 
(4) experimental mutagenic activity. The structures are represented 
as SMILES strings, and the corresponding Ames test value (muta-
genic or not mutagenic) is derived from several well-known sources 
such as Chemical Carcinogenesis Research Information (CCRIS) 
[ 28 ], Helma et al. [ 29 ], Kazius et al. [ 7 ], Feng et al. [ 30 ], VITIC 
[ 31 ], and the GeneTox databases [ 32 ].  

   Currently, the program includes the following libraries of rules on 
mutagenicity:

    1.    Benigni–Bossa rules implemented within the Toxtree software 
[ 33 ].   

   2.    SARpy rules [ 8 ].   
   3.    281 alerts manually extracted by human experts at Istituto di 

Ricerche Farmacologiche Mario Negri (IRFMN).   
   4.    Rules automatically extracted by the Center for Advanced 

Studies, Research and Development in Sardinia (CRS4) within 
the LIFE PROSIL project [ 25 ].     
 The fi rst two sets of rules are also present in the VEGA soft-

ware [ 34 ]. The SARpy and Toxtree algorithms generating rules 
have already been described in Chapter   5    . SARpy, CRS4 and 
IRFMN rules can be associated with both mutagenicity and non-
mutagenicity. These are conceptually similar to the exclusion rules 
present in the Benigni–Bossa rulebase, but the exclusion rules 
within Toxtree are always associated with a positive toxic rule, 
while the rules for “non- toxicity” listed by SARpy, CRS4, and 
IRFMN can be more general and apply to all chemicals. 

 The rules for mutagenic and non-mutagenic activity are 
expressed as “SMiles ARbitrary Target Specifi cation” (SMARTS) 

2.2  ToxRead: 
The Software

2.3  Database

2.4  The 
Implemented Rules

Serena Manganelli and Emilio Benfenati

http://dx.doi.org/10.1007/978-1-4939-3609-0_5


311

strings [ 35 ]. This notation is an extension of the widely used 
SMILES notation (described in the introduction Chapter   1    ), add-
ing the possibility of describing generic molecular patterns that can 
match with several compounds. Overall, 759 rules are present 
within the ToxRead program for mutagenicity.   

3    Methods 

   ToxRead has been designed to be user-friendly. The simple work-
fl ow of ToxRead is described below. The user should insert the 
target molecule, encoded as a SMILES string in the blank space at 
the top of the user interface (Fig.  1 ). The user can choose the 
maximum number of similar compounds, which is three by default. 
These chemicals are identifi ed using the algorithm implemented in 
VEGA and the similarity value is calculated as the weighted combi-
nation of a fi ngerprint, three structural keys based on molecular 
descriptors, and a series of other descriptors (constitutional, het-
eroatoms and specifi c functional groups considering the number of 
some features or functional groups and not only their presence/
absence). The description of the similarity algorithm has been pre-
sented by Floris et al. [ 36 ].

3.1  ToxRead: 
The Workfl ow

  Fig. 1    Graphical user interface (GUI) of the ToxRead software       
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   After the choice of the endpoint of interest (in this case muta-
genicity), the user can run the software for the read-across analysis 
by clicking the “Run read-across” button. 

 Once the calculation has been performed, ToxRead displays 
the interactive chart (Fig.  2 ) showing the structural alerts for the 
specifi c chemical of interest, and indicating at the same time the 
most similar compounds which contain these structural alerts. The 
chemical in the fi rst example is the same as reported in Chapter   5    . 
The overall evaluation supports the prediction results obtained by 
VEGA. The second example is more challenging and it advices the 
reader about more complex cases. It will take advantage of an inte-
grated approach based on QSAR predictions and read-across. The 
purpose of this section is to provide an insight into the critical 
assessment of read-across predictions, to highlight relevant aspects 
that should be taken into account when analyzing ToxRead out-
puts, and to make clear how these aspects can be merged with the 
information from QSAR predictions by means of a synergistic 
approach.

   The next paragraph provides an explanation on how to inter-
pret SMARTS encoding rules through some practical examples.  

  Fig. 2    ToxRead screen showing the similar compounds (represented by  circles ) and the rules (represented by 
 triangles ) found in the analysis of nifuratel       
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   Systematic Name: 2-Oxazolidinone, 5-((methylthio)methyl)-3-
(((5- nitro- 2-furanyl) methylene)amino)-. 

 CAS Registry Number: 4936-47-4. 
 SMILES: O=C2OC(CN2(N=Cc1oc(cc1)[N+](=O)[O–]))

CSC. 
 Experimental activity: Mutagenic in Ames test [ 37 ]. 
 The overall evaluation should keep into account the occur-

rence of rules/structural alerts in common (or not) between the 
target compound, and the similar chemicals, and this is provided 
by ToxRead. The target chemical is drawn at the center of the 
 visualization panel; it is represented by a blue circle ( see  the exam-
ple given in Fig.  2 ), with outgoing links to N similar chemicals (in 
this case three). The size of the circle of any similar compound is 
proportional to the similarity index in order to make the user aware 
of the relevance of each chemical. The color of the circle indicates 
whether the chemical is mutagenic (red) or not (green). This color-
coding refers to the experimental value in the internal database. If 
one chemical is present more than once, the circle line is dashed. 
Moreover, all the available experimental values, such as BCF, Log  P  
values, carcinogenicity, etc., appear allowing the user accomplish-
ing evaluations that are more robust. Clicking on a chemical, the 
user can see its structure, CAS number, the similarity and experi-
mental values associated with it. 

 The user should evaluate the similarity of the related chemi-
cals, look at the structures and evaluate the similarity index. More 
relevance should be given to the most similar compounds, and par-
ticular attention is necessary if the similarity is below 0.75. The 
three most similar chemicals to the target nifuratel are shown in 
Fig.  3 , according to their similarity indices, which have quite high 
values, respectively, 0.922, 0.899, and 0.882. The target chemical 
is also linked to several structural alerts ( see  Fig.  4 ), represented by 
triangles; those pointing upward are non-mutagenic and those 

3.2  Example 1: 
Nifuratel
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  Fig. 3    The three most similar compounds of nifuratel found by ToxRead. From  left  to  right  the similarity index 
values are 0.922, 0.899, and 0.882       
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pointing downward are mutagenic. In addition, mutagenic alerts 
are red while non-mutagenic are green. Another immediate visual 
detail about the “validity” of a certain alert is that the saturation of 
the color is proportional to the percentage of toxic or non-toxic 
chemicals. The size of the triangles is proportional to the number 
of chemicals containing that SA in the training set. The rules are 
presented clockwise, starting at the top from the most accurate 
rule related to non- toxicity, proceeding with less accurate toxicity 
rules, and fi nally with more accurate toxicity rules. By clicking on 
a structural alert, the user can visualize its chemical structure, its 
explanation, the encoding SMARTS, its accuracy, and the  p -value 
relative to the toxicity. By clicking on a specifi c button of a struc-
tural alert, it is also possible to visualize up to 100 similar chemicals 
presenting that structural alert. In this example, one rule of non-
toxicity appears, indicated by a green triangle and seven of toxicity 
indicated by red triangles. This gives a fi rst indication that there are 
reasons of possible concern.

  Fig. 4    ToxRead screen showing the chemical fragments encoded by the rules in the analysis of nifuratel       
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    The non-toxicity rule is a quite generic alert, generated by 
CRS4, and is expressed by the SMARTS “CSC,” indicating an ali-
phatic thioether. Proceeding clockwise two SARpy alerts, with 
60 % and 80 % mutagenic activity appear. These are defi ned respec-
tively by the SMARTS “C(OCC)N” indicating an aliphatic amine 
linked to an alkoxy chain with at least two carbon atoms, and 
“NNCC” encoding a  N -alkyl hydrazine group with a chain of at 
least two aliphatic carbons. The mutagenic activity (%) increases in 
the subsequent two alerts by IRFMN and Benigni–Bossa both 
referring to the generic nitroaromatic ring; the Benigni–Bossa alert 
does not include chemicals with  ortho - distribution and with a sul-
phonic group on the nitroaromatic ring. This leads to a slight dif-
ference in the accuracies of these fragments, which are respectively 
85 % and 87 %. The most accurate fragments with 100 % muta-
genic activity are shown on the left of the graph. These fragments 
have a better coverage of the target compound, so we believe they 
better explain the behavior of the compound of interest. Two of 
these are the SARpy and IRFMN alerts both encoding the 2-nitro-
furan ring, while the last one indicates 2-nitrofuran with a metha-
nimine group in position 5. This rule is marked with a “+” symbol. 
Clicking on this symbol, the sequence of hierarchically related 
rules appears. The rules appear in sequence from the most specifi c 
to the other, more generic ones, which may be fi red for the target 
compound. This rule is connected to a series of more generic ones, 
such as the alert defi ned by the 5-alkyl-2-nitrofuran moiety. It is 
common to have confl icting results: similar compounds, which are 
both toxic and non-toxic, for instance, or the presence of both 
toxicity and non-toxicity structural alerts. In this case, the alert of 
non-toxicity is very generic and the similar compounds linked to it 
have a medium-low similarity index (<0.75). All these chemicals 
lack the mutagenic alerts reported for the most similar alerts. In 
particular, they do not have the nitroaromatic ring, and especially 
the nitrofuran, in their structures, which is responsible for the 
mutagenic activity of this molecule. This does not mean that the 
thioether fragment does not affect the mutagenic activity. However, 
in this case the alerts for toxicity seem to be prevalent and appear 
to be crucial in the activity exploitation. Thus, the overall conclu-
sion from read-across is towards mutagenicity according to the 
Ames test. This evaluation supports results from QSAR predictions 
provided in Chapter   5     for this target compound.  

   Systematic Name: 17-Hydroxy-7alpha-mercapto-3-oxo-17alpha- 
pregn- 4-ene-21-carboxylic acid, gamma-lactone acetate. 

 CAS Registry Number: 52-01-7. 
 SMILES: O=C1OC3(CC1)(CCC2C5C(CCC23(C))

C4(C(=CC(=O)CC4)CC5SC(=O)C)(C)). 
 Experimental activity: unknown. 

3.3  Example 2: 
Spironolactone
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 The target compound is shown in Fig.  5 . For this compound 
QSAR predictions from the VEGA software will require the sup-
port of ToxRead for a better understanding of structural alerts pro-
vided by SARpy and Toxtree models and to get more information 
from the set of rules implemented in ToxRead which are not pres-
ent in VEGA.

     The output of QSAR predictions from VEGA is equivocal because 
the models predictions are in disagreement and show very low val-
ues of ADI.

 ●     CAESAR results :  Prediction is non-mutagenic but the 
result may not be reliable .    

 Although similarity, concordance, and accuracy indices are 
high (respectively, 0.893, 1, and 1), ADI is equal to 0.567, and 
therefore, spironolactone could be out of the Applicability Domain 
of the model. This lack of reliability is caused by a low (0.6) value 
of the ACF index. The presence in the molecule of the thioacetyl 
group ( see  Fig.  6 )—a fragment never found in the model’s training 
set—is mainly responsible for this low ACF index.

 ●      SARpy results :  Prediction is non-mutagenic but the result 
may not be reliable .    

 The model identifi es 13 inactive fragments. Some of these 
fragments are the same as those identifi ed for Dexamethasone in 
Chapter   5    , Fig.  10 . 

 The values of similarity, concordance, accuracy, and ACF indi-
ces are the same as those observed when using CAESAR, produc-
ing the same ADI.

3.3.1  VEGA Results

  Fig. 5    Chemical structure of the target compound spironolactone       

S O

  Fig. 6    The thioacetyl fragment, identifi ed by CAESAR in spironolactone, which is 
not present in the training set molecules       
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 ●     TT-VEGA results :  Prediction is mutagenic but the result 
may not be reliable .    

 The model identifi es the presence of the Benigni–Bossa struc-
tural alert SA10, indicating the generic α, β unsaturated carbonyl 
( see  Chapter   5    ) as cause of mutagenicity of the target compound. 

 The predictions yielded by CAESAR and TT-VEGA are in dis-
agreement since CAESAR does not contain the SA10 fragment in 
its subset of rules. 

 The unreliability of the TT-VEGA prediction is highlighted by 
the poor value of its ADI (0) that is determined by low values of 
the concordance, accuracy, and ACF indices (0, 0.496, and 0.6, 
respectively). 

 Indeed, even if the prediction yielded by TT-VEGA is charac-
terized by a similarity index which is greater (0.8) than the corre-
sponding index of CAESAR and SARpy, the experimental and the 
predicted values are in disagreement for all the similar compounds 
in the output.  

   This example can benefi ts from the support of ToxRead, which 
provides an insight into the analysis of the structural alerts obtained 
from SARpy and Toxtree. 

 Figure  7  shows the graph of the second example.
   The three most similar compounds are non-toxic and their 

similarity indices are greater than 0.75 ( see  Fig.  8 ). The target 
chemical is also linked to several structural alerts. The fi rst rule is 
expressed by a non-toxicity alert generated by IRFMN, not pro-
vided by VEGA, indicating “1,2,6,7,8,9,10,11,12,13,14,15,16,17
- dodecahydrocyclopenta[a]phenanthren-3-one”, which is present 
in the non-mutagenic similar compounds as well. This rule has a 
non-mutagenic activity of 100 % and a  p -value of 0.00183. 
Proceeding clockwise, nine quite generic SARpy alerts of non-tox-
icity appear (three of these are shown in Fig.  7 ) which are hierar-
chically related to other rules for non-toxicity ( see  Fig.  9 ). The nine 
fragments, identifi ed by VEGA as well, have non- mutagenic activ-
ity ranging from 69 % to 97 % and  p -values <10 −6 .

    One of these rules, indicating the alkylthio- group, is linked to 
a mutagenic compound containing a bromine in position 3 of the 
cholestane and an ethylenedisulfonyl group ( see  Fig.  10 ). These 
two chemical moieties are not present in the target spironolactone. 
Two more alerts by CRS4 with low accuracy values come next the 
SARpy fragments. The last alert is the “α, β unsaturated carbonyl” 
Benigni–Bossa rule for mutagenicity (already provided by VEGA) 
with a very low prevalence of mutagenic activity of 49 % and  p -value 
of 0.015. Thus, the overall evaluation highlights more reasons for 
non- mutagenicity than for mutagenicity through an integrated 
approach based on QSAR predictions, the fi red structural alerts, 
similarity assessment, and chemical reasoning.

3.3.2  ToxRead Results
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   In this example, ToxRead has enabled to perform a more 
detailed analysis of rules infl uencing VEGA predictions, and to 
identify a new key rule for the non-mutagenicity assessment. This 
highlights the need to avoid the use of QSAR and read-across as 
mutually exclusive methods and to combine them to obtain greater 
evidence for toxicity/non-toxicity.    

  Fig. 7    ToxRead screen showing some chemical fragments encoded by the rules in the analysis of the 
spironolactone       

  Fig. 8    The three non-mutagenic most similar compounds to spironolactone found by ToxRead. From  left  to  right  
the similarity index values are 0.9, 0.897, and 0.882       
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  Fig. 9    ToxRead screen showing the similar compounds ( circles ) and the hierarchical rules ( triangles ) found in 
the analysis of spironolactone       
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  Fig. 10    The only mutagenic similar compound to spironolactone found by 
ToxRead       
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4    Conclusions 

 Read-across requires experts in toxicology, chemistry, biology, envi-
ronmental sciences, and other fi elds. Experts may use different sets 
of rules and they may over-rely on past experience and miss new 
evidence. That is why expert reasoning may be irreproducible. In 
this chapter, we proposed two examples of read-across analysis, using 
ToxRead, which organizes the different elements for reasoning in a 
reproducible hierarchical structure. The most representative rules, 
sharing a larger sub-structure with the target compound, are indi-
cated fi rst, but the user can visualize the complete family of more 
general rules. Some rules within the same family may have an oppo-
site label, because they are exceptions to toxic rules. These rules are 
related to a toxic effect, or lack of effect, and some act on the effect. 
This also introduces a more complex approach, than with existing 
software. In this way, the software assists the user in the read-across 
evaluation, pointing out the reasons for toxicity, lack of toxicity, and 
effects on toxicity. This means that ToxRead aims to improve the 
current issues related to the irreproducibility of read-across.  

5    Notes 

     1.    ChemIDplus [ 21 ], ChemSpider [ 38 ], OECD QSAR Toolbox 
[ 16 ] for searching structures expressed as “Simplifi ed Molecular 
Input Line Entry specifi cation” (SMILES).   

   2.    Additionally or alternatively, any software application for chem-
ical structures drawing and conversion into SMILES. Several 
programs can perform this task: VEGA [ 34 ], ACD/ChemSketch 
[ 39 ], MarvinSketch [ 40 ], OECD QSAR Toolbox [ 16 ].   

   3.    istMolBase for SMILES normalization [ 41 ].     
 The list of databases/software is not exhaustive. Moreover, 

these applications are subject to different software licenses and 
terms, and conditions of use.     
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    Chapter 14   

 Adverse Outcome Pathways as Tools to Assess 
Drug-Induced Toxicity                     

     Mathieu     Vinken      

  Abstract 

   Adverse outcome pathways (AOPs) are novel tools in toxicology and human risk assessment with broad 
potential. AOPs are designed to provide a clear-cut mechanistic representation of toxicological effects that 
span over different layers of biological organization. AOPs share a common structure consisting of a 
molecular initiating event, a series of key events connected by key event relationships, and an adverse out-
come. Development and evaluation of AOPs ideally complies with guidelines issued by the Organization 
for Economic Cooperation and Development. AOP frameworks have yet been proposed for major types 
of drug-induced injury, especially in the liver, including steatosis, fi brosis, and cholestasis. These newly 
postulated AOPs can serve a number of purposes pertinent to safety assessment of drugs, in particular the 
establishment of quantitative structure-activity relationships, the development of novel in vitro toxicity 
screening tests, and the elaboration of prioritization strategies.  

  Key words     AOP  ,   Drug safety  ,   Steatosis  ,   Fibrosis  ,   Cholestasis  

1      Introduction 

 Predictive toxicology, based upon mechanistic information, has 
become a critical aspect of human risk assessment in the last decade. 
A major step in this direction came with the introduction of the 
mode-of- action concept, which relates to a series of key events 
(KEs) along a biological pathway from the initial chemical interac-
tion to the adverse outcome (AO) [ 1 ]. The mode-of-action con-
cept was originally used by the US Environmental Protection 
Agency (EPA) in the cancer fi eld [ 2 ] but seemed equally exploit-
able for non-cancer points [ 3 – 6 ]. Another milestone was the well-
known report published by the US National Academy of Science in 
2007, outlining a vision on toxicology in the twenty-fi rst century 
and placing toxicity pathways on the foreground [ 7 ]. These toxic-
ity pathways denote cellular pathways that, when disturbed, can 
lead to adverse health effects [ 1 ]. Toxicity pathways align with 
adverse outcome pathways (AOPs), which have their roots in the 
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area of ecotoxicology. An AOP refers to a conceptual construct 
that portrays existing knowledge concerning the linkage between a 
direct molecular initiating event (MIE) and an AO at a biological 
level of organization relevant to risk assessment (Fig.  1 ) [ 1 ,  8 ]. In 
comparison with the mode-of-action, the scope of an AOP is 
broader, as it starts with the exposure and can go up to the popula-
tion level. Thus far, AOPs have been designed for a number of 
different human-relevant toxicological endpoints. In response to 
the increasing use of AOPs, the Organization for Economic 
Cooperation and Development (OECD) together with the US 
EPA, the US Army Engineer Research and Development Center, 
and the European Joint Research Center has initiated a project to 
facilitate the use of AOPs in assessing the safety of chemicals, called 
the AOP Knowledge Base (AOP-KB). The AOP-KB consists of 
four modules, namely, the AOP Xplorer, Effectopedia, the 
Intermediate Effects Database and the AOP Wiki. The AOP 
Xplorer is a computational tool that enables automated graphical 
representation of AOPs and networks among them. Effectopedia is 
a modeling platform designed for collaborative development and 
utilization of AOPs. The Intermediate Effects Database hosts 
chemical-related data derived from non-apical endpoint methods 
and informs how individual compounds trigger MIEs and KEs. 
The AOP Wiki is a module of the AOP-KB that provides an open-
source interface for rapid, widely accessible and collaborative 

  Fig. 1     Generic structure of an AOP.  Each AOP consists of two anchors, namely the molecular initiating event 
(MIE), which refers to the interaction of a chemical with a biological system at the molecular level, and the 
adverse outcome (AO), which is the actual apical toxicological endpoint. The entire response matrix between 
the MIE and AO is fi lled with key events (KEs), which represent changes in the biological state that are both 
measurable and essential to the progression of a defi ned biological perturbation leading to a specifi c 
AO. Subsequent KEs are connected by key event relationships (KERs), defi ning a link between both KEs and 
that facilitate inference or extrapolation of the state of the downstream KE from the known, measured or 
predicted state of the upstream KE (adapted from [ 10 ,  11 ])       
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sharing of established AOPs and building new AOPs [ 9 ]. The AOP 
Wiki was launched in late 2014 and yet contains about fi fty AOPs 
for several human-relevant toxicological endpoints, including 
 drug- induced hepatotoxicity. These AOPs on liver toxicity will be 
scrutinized in this chapter while discussing AOP development, 
assessment and applications in drug safety evaluation.

2       AOP Development and Assessment 

   The MIE is considered as the fi rst anchor of an AOP and refers to 
the interaction of a chemical with a biological system at the molec-
ular level, such as ligand-receptor interactions or binding to pro-
teins and nucleic acids. It hereby is of utmost importance to defi ne 
the site of action of the MIE, as this directly dictates the nature of 
the AO. The latter is envisaged as the second AOP anchor and 
describes the actual apical toxicological endpoint. The AO may be 
located at different levels of biological organization, ranging from 
the cellular to the population level, and can relate to either a 
chronic or a systemic toxicological outcome or an acute or local 
adverse effect. A KE is defi ned as a change in biological state that 
is both measurable and essential to the progression of a defi ned 
biological perturbation leading to a specifi c AO. KEs do not pro-
vide a comprehensive molecular description of every aspect of the 
biological process involved per se. Rather, a limited number of KEs 
should be selected. These are normally those for which there is the 
most information to support assessment of weight-of-evidence in a 
regulatory context. The identifi cation of the MIE, KEs and AO 
may be the result of an in-depth survey of relevant scientifi c litera-
ture or may be retrieved from experimental studies. Basically, any 
type of information can be fed into an AOP, including structural 
data, “omics-based” data,  in chemico  data, in vitro data, and in vivo 
data [ 1 ,  9 – 12 ].  

   A KER is a scientifi cally based relationship that connects two KEs, 
defi ning a link between both KEs and that facilitates inference or 
extrapolation of the state of the downstream KE from the known, 
measured or predicted state of the upstream KE. Description of 
the KERs is a critical step in AOP development, which sets the 
stage for assessment of the AOP. KERs may either refer specifi cally 
to a direct linkage between a pair of KEs that are adjacent in an 
AOP or may indicate indirect linkages between a pair of KEs for 
which the relationship is thought to run through another KE or a 
gap in current understanding. At present, the vast majority of 
KERs in the AOP Wiki are rather of qualitative nature. However, 
from the risk assessment point of view, establishing quantitative 
KERs might be more desirable. These quantitative KERs may be 
defi ned in terms of correlations, dose-response relationships, 

2.1  Identifi cation 
of the MIE, KEs and AO

2.2  Description 
of the KERs
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dose-dependent transitions or points of departure. They may take 
the form of simple mathematical equations or sophisticated bio-
logically based computational models that consider other modulat-
ing factors, such as compensatory responses or interactions with 
other biological variables [ 9 – 11 ].  

   Assessment of AOPs and evaluation of their suitability for applica-
tion for regulatory purposes relies on (1) the confi dence and preci-
sion with which the KEs can be measured, (2) the level of confi dence 
in KERs based on biological plausibility, empirical support for the 
KER, and consistency of supporting data and among different bio-
logical contexts and (3) weight-of-evidence for the hypothesized 
pathway. Therefore, overall assessment of AOPs is best supported 
by providing thorough descriptions of the KEs and KERs as well as 
robust consideration of weight-of-evidence for the essentiality of 
KEs and KERs [ 9 – 11 ]. Basically, AOP assessment relies on two sets 
of questions, which should be answered in an in-depth and scien-
tifi cally sound way by AOP developers. The fi rst set of questions 
focuses on weight-of-evidence assessment based on the Bradford-
Hill criteria (Table  1 ), defi ning the minimal requirements for 
establishing a causal link between the different information blocks 
of the AOP [ 1 ,  13 ]. The second set of key questions has been pro-
posed by the OECD and rather envisages a confi dence assessment 
(Table  2 ) [ 1 ,  12 ].

2.3  AOP Assessment

   Table 1  
  Bradford-Hill criteria for AOP weight-of-evidence assessment [ 1 ,  9 ,  13 ]   

 – Concordance of dose-response relationships 

 – Temporal concordance among the KEs and AO 

 – Strength, consistency, and specifi city of association of the AO and the MIE 

 – Biological plausibility, coherence and consistency of the experimental evidence 

 – Alternative mechanisms that logically present themselves and the extent to which they may distract 
from the postulated AOP 

 – Uncertainties, inconsistencies, and data gaps 

   Table 2  
  Key questions for testing AOP confi dence [ 1 ,  9 ]   

 – How well characterized is the AOP? 

 – How well are the MIE and KEs causally linked to the AO? 

 – What are the limitations in the evidence in support of the AOP? 

 – Is the AOP specifi c to certain tissues, life stages or age classes? 

 – Are the MIE and KEs expected to be conserved across  taxa ? 
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3         Liver Toxicity AOPs 

   Steatosis is a prototypical type of drug-induced liver injury that 
refers to the process of abnormal retention of lipids, mainly triglyc-
erides, within hepatocytes. It refl ects the impairment of normal 
synthesis and elimination of triglycerides and is triggered by a 
plethora of drugs, such as valproic acid [ 14 ]. Steatosis can develop 
further into nonalcoholic steatohepatitis, which is characterized by 
hepatocellular injury and infl ammation [ 15 ,  16 ]. Liver steatosis 
may occur in a microvesicular or in a macrovesicular pattern. In 
microvesicular steatosis, numerous small lipid droplets are present 
in the hepatocyte cytoplasm, which do not displace the cell nucleus. 
By contrast, large droplets that move the hepatocyte nucleus to the 
periphery are observed in macrovesicular steatosis [ 14 ,  17 – 19 ]. 
Since interaction of drugs with nuclear receptors is a frequent 
mechanism observed in liver steatosis, it has been considered as the 
main MIE in an established liver steatosis AOP (Fig.  2 ). In particu-
lar, activation of the liver X receptor induces an array of effects, 
such as enhanced transcription of genes encoding mediators of 
cholesterol and lipid metabolism. This leads to the increased infl ux 

3.1  Liver Steatosis
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  Fig. 2     AOP for drug-induced liver steatosis . Activation of the liver X receptor (LXR), which is the MIE ( blue ), 
induces a number of transcriptional changes, including activation of the expression of carbohydrate response 
element binding protein (ChREBP), sterol response element binding protein 1c (SREBP-1c), fatty acid synthase 
(FAS) and stearoyl-coenzyme A desaturase 1 (SCD1). As a result, de novo synthesis of fatty acids is enhanced 
in the liver. At the same time, fatty acid translocase (CD36) production is upregulated, which mediates increased 
hepatic infl ux of fatty acids from peripheral tissues. All together, these intermediate steps drive accumulation 
of triglycerides, which is considered a key event ( dark green ). At the organelle level, this evokes cytoplasm 
displacement, distortion of the nucleus, and mitochondrial disruption. This ultimately burgeons into the appear-
ance of fatty liver cells ( orange ) and further into the clinical diagnosis of liver steatosis ( red ) (adapted from [ 20 ])       
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of fatty acids from peripheral tissues into the liver and equally drives 
de novo synthesis of fatty acids. Consequently, triglycerides tend to 
accumulate in hepatocytes, which is considered as a KE in this 
AOP. At the organelle level, hepatocellular lipid accumulation may 
provoke cytoplasm displacement, nucleus distortion, mitochon-
drial toxicity and endoplasmic reticulum stress. All together, these 
effects underlie the acquisition of the typical fatty liver cell pheno-
type, which in turn causes a clinically relevant increase in liver 
weight [ 20 ]. This AOP has been generated according to OECD 
guidelines, including critical consideration of the Bradford-Hill 
criteria for weight-of-evidence assessment and the OECD key 
questions for evaluating AOP confi dence [ 9 ,  20 ].

      Liver fi brosis is a reversible wound-healing response to either acute 
or chronic cellular injury that refl ects a balance between liver repair 
and scar formation. It can be activated by a number of drugs, such 
as methotrexate. A central event in liver fi brosis is the activation of 
hepatic stellate cells, which occurs in two phases, namely, the initia-
tion stage and the perpetuation stage [ 14 ,  21 – 23 ]. In the initiation 
phase, quiescent hepatic stellate cells become responsive to growth 
factors. This may be triggered by a variety of signals, including 
reactive oxygen species and apoptotic bodies originating from 
dying hepatocytes. In the  perpetuation phase, the primed hepatic 
stellate cells undergo several changes related to proliferation, con-
tractility, fi brogenesis, chemotaxis, extracellular matrix degradation 
and retinoid loss, whereby they adopt a myofi broblast-like pheno-
type. Hepatic stellate cell activation may be counteracted in a reso-
lution phase through apoptosis, senescence or reversion to the 
quiescent phenotype [ 21 ,  22 ]. Protein alkylation is considered as 
the MIE in an established AOP on liver fi brosis (Fig.  3 ), whereas 
the obvious AO at the organ level is liver fi brosis. Different steps at 
the cellular and tissue level have been defi ned, including hepato-
cyte injury and cell death, activation of Kupffer cells, expression of 
transforming growth factor beta 1, activation of hepatic stellate 
cells, oxidative stress and chronic infl ammation, collagen accumu-
lation and changes in hepatic extracellular matrix composition. 
The postulated AOP has been assessed by evaluation of the strength 
of evidence that supports the MIE, the KEs and the AO [ 9 ,  20 ].

      Cholestasis is another manifestation of drug-induced liver injury 
for which an AOP has been introduced (Fig.  4 ). Cholestasis can be 
caused by drugs, such as bosentan. The MIE in this AOP is the 
direct   cis - inhibition of the bile salt export pump. As a result of this, 
toxic bile acids accumulate into hepatocytes or bile canaliculi. 
These bile salts trigger a direct deteriorative response and an adap-
tive response [ 14 ]. At the cellular level, the deteriorative response 
is accompanied by the formation of the mitochondrial permeability 
pore, which leads to mitochondrial impairment, infl ammation, the 

3.2  Liver Fibrosis
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production of reactive oxygen species and ultimately to the onset 
of cell death by both apoptotic and necrotic mechanisms [ 24 ,  25 ]. 
Because of the latter, cytosolic enzymes start to leak from hepato-
cytes and cholangiocytes and become measurable in the serum 
[ 26 ,  27 ]. A hallmark of cholestasis at the cellular level includes the 
induction of an adaptive response, which is aimed at counteracting 
bile accumulation and thus cholestatic liver injury. Accordingly, a 
complex machinery of transcriptionally coordinated mechanisms 
involving nuclear receptors is activated by bile acids, which collec-
tively decrease the uptake and increase the export of bile acids and 
bilirubin into and from hepatocytes, respectively. Simultaneously, 
detoxifi cation of bile acids is enhanced, while their synthesis 
becomes downregulated [ 28 – 30 ]. The increased effort of choles-
tatic hepatocytes to remove bilirubin causes bilirubinuria and 
hyperbilirubinemia. As a result, a yellowish pigmentation of the 
skin and the conjunctival membranes over the sclera becomes visi-
ble, known as jaundice. Furthermore, the elevated presence of bile 
acids in the serum is thought to account for the typical skin itching 
in cholestasis patients [ 26 ,  27 ,  30 ]. The development of this AOP 
was performed according to OECD guidance, including consider-
ation of the Bradford-Hill criteria for weight-of-evidence assess-
ment and the OECD key questions for evaluating AOP confi dence. 
Proposed KEs are the accumulation of bile, the induction of oxida-
tive stress and infl ammation and the activation of nuclear 
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  Fig. 3     AOP for drug-induced liver fi brosis . The MIE ( blue ) is considered protein alkylation and covalent protein 
binding in the liver. This serves as a trigger to provoke hepatocyte injury, including apoptosis, which in turn 
activates Kupffer cells. As a result, transforming growth factor beta 1 (TGF-β1) expression is induced, which is 
a key factor for stellate cell activation. The latter goes hand in hand with the occurrence of infl ammation and 
oxidative stress. The different events at the cellular level ( green ) are interconnected in several ways. The over-
all end result is accumulation of collagen and changes in the extracellular matrix composition in the liver 
( orange ), which becomes clinically manifested as the AO, namely, liver fi brosis ( red ) (adapted from [ 20 ])       
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  Fig. 4     AOP for drug-induced cholestasis . The response matrix between the MIE ( dark blue ) and AO ( red ), the 
inhibition of the bile salt export pump (BSEP) and cholestasis, respectively, spans over the cellular and organ 
levels. Identifi ed KEs ( dark green ) include the accumulation of bile, the induction of oxidative stress and infl am-
mation, and the activation of the nuclear receptors pregnane X receptor (PXR), farnesoid X receptor (FXR) and 
constitutive androstane receptor (CAR). Together with a number of intermediate steps, these KEs drive both a 
deteriorative cellular response ( yellow ), which underlies directly caused cholestatic injury, and an adaptive 
cellular response ( purple ), which is aimed at counteracting the primary cholestatic insults. Direct inducing and 
inhibiting effects are indicated with green and red arrows, respectively. Secondary inducing and inhibiting 
effects of oxidative stress and/or infl ammation are indicated with blue and orange arrows, respectively [ 31 ] 
(5′-NT, 5′-nucleotidase; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; CYP2B10/3A4/7A1, cytochrome P450 2B10/3A4/7A1; GGT, gamma-glutamyl transpeptidase; MPP, 
mitochondrial permeability pore; MRP2/3, multidrug resistance-associated protein 2/3; NTCP, sodium/tauro-
cholate cotransporter; OATP1B1, organic anion transporter 1B1; OSTα/β organic solute transporter α/β; SHP, 
small heterodimeric partner; SULT2A1, dehydroepiandrosterone sulfotransferase; UGT2B4, uridine 5′-diphos-
phate-glucuronosyltransferase 2B4)       
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receptors. Furthermore, the AOP distinguishes direct adverse and 
indirect adaptive effects and takes a number of alternative MIE 
mechanisms into account [ 9 ,  31 ].

4        AOP Applications 

   As the MIE in each AOP involves a rather specifi c interaction of 
chemicals with biological systems, it can be used as the basis for 
generating structure-activity relationships, whether or not quanti-
fi able. In turn, such information can be used for chemical group-
ing and read-across approaches, thus facilitating predictive and 
mechanism-based toxicology [ 1 ]. Using quantitative structure-
activity relationship (QSAR) approaches, it has been demonstrated 
that chemicals with an ester bound to a carbon atom of a hetero-
cyclic group or carbocyclic systems with a least one aromatic ring 
positively contribute to bile salt export pump inhibition, being the 
MIE in the AOP on drug-induced cholestasis, while the presence 
of hydroxyl groups bound to aliphatic carbon atoms has a negative 
contribution [ 32 ,  33 ]. In silico modeling further showed the role 
of hydroxyl groups in the interaction of chemicals with the bile salt 
export pump [ 34 ]. Two-dimensional and three- dimensional 
QSAR studies have also been performed on ligands of the liver X 
receptor, which constitutes the MIE in the AOP on drug-induced 
steatosis. By doing so, a number of chemical features, such as the 
presence of phenyl rings, chloro groups and methyl moieties, have 
been identifi ed as determinants of liver X receptor binding and 
activation [ 35 ].  

   Prioritization of chemicals denotes the process in which less com-
plex, cheaper and faster assays are used to determine which chemi-
cals are subjected fi rst to more complex, expensive, and slower 
testing [ 36 ]. AOPs have great potential with respect to prioritiza-
tion strategies. Indeed, they can increase confi dence in the integra-
tion of information, such as obtained from in vitro assays, for 
prioritizing chemicals for further assessment. The use of AOPs for 
the hepatotoxic endpoints described in this chapter in the context 
of the prioritization has not yet been described in current scientifi c 
literature. However, there are some examples for other adverse 
effects, including developmental toxicity. At present, the most 
promising alternative vertebrate models for screening of chemicals 
for developmental toxicity are fi sh embryos, in particular zebrafi sh. 
Using paraoxon, an acetylcholinesterase inhibitor, as a reference 
chemical, an AOP providing quantitative linkages across levels of 
biological organization during zebrafi sh embryogenesis has been 
proposed. Based on a series of experiments, it was found that nor-
mal acetylcholinesterase activity is not required for secondary 
motor neuron development and that acetylcholinesterase 
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inhibition, the MIE, may not be associated with an increased fre-
quency of spontaneous tail contractions following paraoxon expo-
sure. This AOP may support chemical screening and prioritization 
strategies with respect to developmental toxicity testing [ 37 ].  

   An essential step during AOP development is the labeling of KEs. 
In turn, this may serve as the basis for the characterization of bio-
markers and simultaneously for the establishment of ex vivo, but 
especially in vitro, toxicity screening assays applicable for regula-
tory testing purposes. Furthermore, such new non-animal tests 
might be implemented into integrated testing strategies, thereby 
contributing to the refi nement, reduction and replacement of con-
ventional in vivo testing. Reversely, by linking proposals for the 
development of in vitro test methods to KEs in an AOP, the rela-
tionship to hazard endpoints relevant for regulatory purposes can 
be established [ 1 ,  12 ].   

5    Conclusions and Perspectives 

 Although conceptually not entirely new, AOPs have found their 
way to the human risk assessment arena in recent years, including 
the safety evaluation of drugs. The potential use of AOPs in this 
fi eld is indeed considerably larger than the mode-of-action con-
cept, as, at least ideally, it considers an exposure aspect and because 
it is not restricted to the tissue and individual level. However, 
despite the introduction of OECD guidance on AOP development 
and evaluation [ 1 ,  9 ], this area is still in its infancy and will greatly 
benefi t from fi ne-tuning in the upcoming years (Table  3 ). A major 
criticism on AOPs nowadays is their simplicity and thus their poor 
refl ection of complex toxicological processes. AOPs are presented 
as stand-alone linear events, yet the reality is likely to be much less 
straightforward, since parallel cascades and crossing of pathways 
may be involved. It is important that the overall toxicological sce-
nario does not become lost when using AOPs. Furthermore, AOPs 
are to be considered as open and fl exible structures that should be 
continuously refi ned by feeding in old and new data. Such iterative 
refi nement exercises should ideally include the elaboration and 
quantifi cation of the KERs as well as the specifi cation of toxicoki-
netic conditions governing the activation of an AOP. Thus, classi-
cal kinetic determinants, like absorption, distribution, metabolism 
and excretion, as well as more specifi c events, such as hormonal 
infl uences and adaptive responses, must be considered in AOP 
development. Another hurdle to overcome in the near future 
relates to the weight-of-evidence of data that are proposed to sub-
stantiate an AOP. Basically, anyone can propose an AOP, but not 
all AOPs are suffi ciently supported by data. In order to develop 
confi dence in the accuracy and utility of AOPs, there needs to be a 

4.3  Development 
of In Vitro Tests
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transparent evaluation process that includes all stakeholders. In 
addition to hazard identifi cation and the establishment of dose- 
response relationships, the risk assessment paradigm also includes 
implementation of exposure data. Thus far, this has gained little 
attention in the context of AOP development, thereby defi ning 
another challenge lying ahead. Several efforts are currently ongo-
ing around the globe to tackle these issues, including at the OECD 
level [ 1 ,  9 ], the US Hamner Institutes of Health [ 38 ], the US 
Center for Alternatives to Animal Testing [ 39 ] and the European 
research program called Safety Evaluation Ultimately Replacing 
Animal Testing [ 40 ,  41 ]. Such projects are anticipated to yield 
robust and reliable AOP tools that can be used for a variety of pur-
poses pertinent to toxicology and risk assessment, including the 
safety evaluation of new drug candidates.
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Chapter 15

A Systems Biology Approach for Identifying Hepatotoxicant 
Groups Based on Similarity in Mechanisms of Action 
and Chemical Structure

Dennie G.A.J. Hebels, Axel Rasche, Ralf Herwig, Gerard J.P. van Westen, 
Danyel G.J. Jennen, and Jos C.S. Kleinjans

Abstract

When evaluating compound similarity, addressing multiple sources of information to reach conclusions 
about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this 
chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 
compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto 
coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform 
meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., 
the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not 
result in a satisfactory grouping of compounds considering their known toxic mechanism as described in 
literature. However, a combined analysis of multiple data types may hypothetically compensate for missing 
or unreliable information in any of the single data types. We therefore performed an integrated clustering 
analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping 
results. The compound clusters that were formed by means of iClusterPlus represent groups that show 
similar gene expression while simultaneously integrating a similarity in structure and protein targets, which 
corresponds much better with the known mechanism of action of these toxicants. Using an integrative 
systems biology approach may thus overcome the limitations of the separate analyses when grouping liver 
toxicants sharing a similar mechanism of toxicity.

Key words Systems biology, 3D Tanimoto, Protein targets, Meta-analysis, iClusterPlus, Hepatotoxicity, 
Chemical structure, Mechanism of action, Similarity, diXa

1 Introduction

Systems biology is an interdisciplinary field of study that focuses on 
complex interactions within biological systems. It uses a holistic 
approach that aims at integrating data from multiple sources to 
study the interactions between the components of biological systems 
and gain a wider understanding of how these interactions give rise to 
the function and behavior of that system, e.g., a pathway, a cell, etc. 
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In other words, instead of taking apart a system and studying each of 
its individual components, systems biology focuses on integrating all 
these parts to reach a new level of understanding under the assump-
tion that the whole is more than the sum of its parts.

Omics technologies are particularly useful for this purpose 
since they cover a large part of the changes in a certain part of the 
system, such as the transcriptome, the proteome, or the metabo-
lome, thereby aiding the systems biology approach. However, 
despite the vast amount of information obtained from omics tech-
niques, single omics analysis still does not always provide sufficient 
information to understand the behaviors of, for example, a cellular 
system. Therefore, a combination of multiple omics analyses and/
or other data sources, the multi-omics (or multi-data source) 
approach, is needed to acquire a more precise picture of a system 
[1–5]. Combining multiple data types also has the advantage of 
being able to compensate for missing or unreliable information in 
any of the single data types and decreases the likelihood of false-
positive findings.

In the field of hepatotoxicity, systems biology approaches are 
also receiving much attention [6–11]. Given the liver’s vital role as 
a detoxification organ, it is not surprising that hepatotoxicity is the 
most prominent adverse reaction against drugs. As a result many 
newly developed candidate drugs fail in preclinical or clinical trials 
which is associated with a huge financial drain considering that the 
costs to develop a fully approved drug are around $800 million 
[12]. Failure to pick up hepatotoxicity in early stages is also con-
tributable to the idiosyncratic nature of many adverse reactions, 
i.e., unusual individual reactions with very low frequency likely 
associated with differences in genetic make-up between individuals 
[13]. New screening methods, able to detect (idiosyncratic) drug-
induced liver injury in the early stages of the research process, rep-
resent an important step toward efficient new drug development. 
Despite their poor predictive accuracy, animal models are still con-
sidered the gold standard toxicological approach for evaluating 
chemical toxicity and contribute substantially to the high costs 
involved in drug development [14]. In vitro systems are therefore 
increasingly studied with the ultimate goal of replacing animal 
models. Because of the time-saving nature and practicality of such 
systems, they are especially well suited to study drug metabolism, 
measure enzyme kinetics, evaluate toxicity mechanisms, and exam-
ine dose–response relationships using systems biology approaches 
[15]. The systems biology “map” of a hepatotoxic compound of 
interest may serve as a profile of its (idiosyncratic) toxicological 
mechanism. Studying large compilations of such compound pro-
files can thus assist in finding groups of compounds with similar 
(toxicological) mechanisms of action by comparing profiles and 
thereby assist in the early identification and elimination of com-
pounds with a potential hepatotoxic effect.
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In this chapter we will demonstrate a systems biology approach 
focused on compiling compound profiles from multiple data 
sources in order to group toxic compounds based on similarity. 
There are many data types available which can be used to obtain 
such similarity  measures. Here, transcriptomics and proteomics 
data are of particular interest. While such omics data are excellent 
sources to explore the biological signaling cascades involved in 
hepatotoxic responses, including sources that focus more on the 
chemical similarities of the compounds may contribute significantly 
to the grouping of compounds with comparable hepatotoxic 
mechanisms. Given the crucial role of chemical structures with 
respect to xenobiotic metabolism in the liver, quantifying the 
chemical similarity of molecules is a very active field of research. In 
our multi-data source systems biology approach, we will therefore 
focus on a combination of these two approaches. A test data set 
will be used to illustrate an integrative analysis approach of a tran-
scriptomics analysis and two chemical structure-based analyses. 
These three analysis approaches will first be explained in more 
detail separately. They involve a chemical structure similarity analy-
sis based on the 3D Tanimoto coefficient, a chemical structure-
based protein target prediction analysis, and a comprehensive 
transcriptomics meta-analysis. A hierarchical clustering-based 
grouping of the analysis results will be used to discuss the limita-
tions of the individual methods by comparing the outcome with 
the known mode of action as described in literature. The multi-
omics tool iClusterPlus will subsequently be presented as a means 
of overcoming these limitations and integrating multiple sources of 
information to improve grouping of similarly acting hepatotoxic 
compounds.

2 Data Set

To demonstrate the application of multisource data analysis on 
hepatotoxicity data, we queried the Data Infrastructure for 
Chemical Safety Assessment (diXa) data warehouse [16]. diXa is a 
recently created robust and sustainable infrastructure designed for 
storing toxicogenomics data. The warehouse is designed to store 
any type of omics data for every disease of interest and currently 
mostly contains transcriptomics data on hepatotoxicants and neph-
rotoxicants. The warehouse is connected to a portal with links to 
chemical information and molecular and phenotype data. diXa is 
publicly available through a user- friendly web interface, and new 
data can be readily deposited into diXa (http://wwwdev.ebi.ac.uk/
fg/dixa/index.html, Fig. 1).

A selection of studies stored within diXa was downloaded to 
present as a use case in this chapter. The selection was based on an 
initial exploration of the data sets where we set out to include data 
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covering a wide range of experimental conditions (several doses 
and exposure times, in vitro and in vivo studies) and multiple spe-
cies (rat and human). To improve data comparability, only studies 
using the same microarray platform (Affymetrix) were considered. 
Gene annotations were adjusted to their corresponding ortho-
logues between species where needed. Using these criteria, nine 
studies were selected covering a total of 33 compounds as shown 
in Table 1.

Fig. 1 The diXa data warehouse web portal provides immediate access to a wide range of transcriptomics 
studies

Table 1 
Overview of studies included in analysis and the full list of hepatotoxic compounds

Project Species In vitro/in vivo Cell/tissue type

carcinoGENOMICS Homo sapiens In vitro HepaRG

Homo sapiens In vitro HepG2

Rattus norvegicus In vitro Primary rat 
hepatocytes

DrugMatrix Rattus norvegicus In vitro Primary rat 
hepatocytes

Rattus norvegicus In vivo Liver tissue

(continued)
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3 Tanimoto Similarity Score

Structural similarities between compounds may reflect similar 
mechanisms of action. Quantifying the similarity of two molecules 
is therefore a key concept in cheminformatics and pharmaceutical 
research. Although a close similarity between compounds can 
never guarantee an overlap in the mechanism of action, there is a 
strong correlation between the presence of certain structural sub-
units in a molecule and the eventual biological effect, which is a 
relationship that is often explored during the development of new 
pharmaceutical compounds. The Tanimoto coefficient [17] is a 
frequently used measure of chemical similarity and will be applied 
here to focus purely on the overlap in chemical properties of the 
compounds in the test data set.

Calculation of Tanimoto coefficient similarity scores can be per-
formed in PubChem, which is an open repository for small mole-
cules and their experimental biological activities [17]. Generating 

3.1 Tanimoto 
Coefficient Procedure

Project Species In vitro/in vivo Cell/tissue type

Predictomics Homo sapiens In vitro HepG2

TG-GATEs Homo sapiens In vitro Primary human 
hepatocytes

Rattus norvegicus In vitro Primary rat 
hepatocytes

Rattus norvegicus In vivo Liver tissue

Hepatotoxic compounds

1-Naphthyl isothiocyanate Cyclophosphamide Gemfibrozil Phenobarbital

Acetaminophen Danazol Ketoconazole Pirinixic acid

Aflatoxin B1 Diclofenac Lomustine Simvastatin

Allyl alcohol Doxorubicin Methapyrilene Sulindac

Amiodarone Ethanol Nifedipine Tamoxifen

Azathioprine Ethinyl estradiol Nimesulide Tetracycline

Carbon tetrachloride Fenofibrate N-nitrosodimethylamine Tolbutamide

Clofibrate Fluphenazine Pemoline Valproic acid

Clomipramine

Elaborate descriptions of all studies can be found in the diXa data warehouse (http://wwwdev.ebi.ac.uk/fg/dixa/index.
html)

Table 1
(continued)
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Tanimoto scores is a very straightforward procedure and requires a 
list of compounds  (compound name, PubChem compound data-
base identifier (CID)) which can be uploaded. Subsequently struc-
tural similarity data will be calculated between each pair of 
compounds (https://pubchem.ncbi.nlm.nih.gov/assay/assay.
cgi?p=clustering, Fig. 2). This resulting structure similarity matrix 
is then clustered using the single-linkage clustering algorithm.

The structural similarity in PubChem is either based on the 
Tanimoto score calculated from the 2D structure fingerprint or the 
3D shape/feature similarity [17, 18]. The 2D structure fingerprint 
is based on an ordered list of binary substructures (i.e., fragments 
of a chemical structures) for chemical structures, in which each 
substructure is counted as either present or not present in the com-
pound under investigation (e.g., an atomic element count, a type 
of ring system, atom pairing, atom neighbors, etc.). These finger-
prints are used by PubChem for similarity neighboring and similar-
ity searching [17].

A defining characteristic of 3D similarity methods, compared 
to 2D methods, is that they are applied at a conformer level instead 
of a compound level, thereby making it possible to consider the 
various distinct molecular conformations a compound can adopt in 
3D space which may have biological relevance [19]. PubChem3D 
makes a distinction between two 3D similarity measures, i.e., 

Fig. 2 The PubChem chemical structure clustering tool which generates a clustering dendrogram based on 
calculated Tanimoto scores (2D and 3D) for any list of compounds
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shape-Tanimoto (ST) and color-Tanimoto (CT). The ST score is a 
measure of shape similarity, while the CT score quantifies the simi-
larity of 3D orientation of functional groups or features by check-
ing the overlap of fictitious “color” atoms which represent the six 
functional group types: hydrogen- bond donors, hydrogen-bond 
acceptors, anion, cation, hydrophobes, and rings. The ST and CT 
similarity metrics attempt to cover key aspects important for locat-
ing chemical structures that may have similar biological activity. In 
other words, the ST helps to identify compounds that can adopt a 
particular 3D shape (e.g., of a neurotransmitter bound in a par-
ticular conformational orientation in a postsynaptic membrane 
protein pocket), while the CT helps to identify compounds with 
similar 3D orientation of molecular features (e.g., necessary for 
making a hydrogen or ionic bond interaction of a neurotransmitter 
with its receptor). The assumption is then that compounds with 
highly similar 3D shape and feature orientations may also display 
similarities in their biological activity [19].

Given the importance of biological activity with respect to 
hepatotoxicity, in this chapter we will focus on the 3D Tanimoto 
scores. CID identifiers of the 33 compounds in our test data set 
were retrieved from PubChem, and 3D Tanimoto scores were cal-
culated using the default options of a combined shape (ST) and 
feature (CT) similarity score (optimized for shape), which was fol-
lowed by a clustering analysis (see paragraph 6).

4 Protein Target Analysis

Biological relevance and investigation of mode of action require an 
understanding of the proteins to which the compounds bind. 
Based on the chemical structure of the compounds, we can predict 
their interaction partners (protein targets) in an organism. This is 
done by comparing the structure of the compound to large curated 
literature-based databases of known compound–protein interac-
tions such as DrugBank, ChEMBL, the Human Metabolome 
Database, and the Therapeutic Target Database [20–23]. In this 
chapter, we use the data in the ChEMBL database release 17 con-
taining approximately 12 million data points [24, 25].

A multi-category naive Bayes statistical model trained on ChEMBL 
database release 17 was used for target prediction [25]. The com-
pound structural features were encoded using extended-connectiv-
ity fingerprints with a diameter of six covalent bonds (ECFP6) as 
implemented in Pipeline Pilot (version 8.5, Accelrys Software Inc.) 
[26]. Target classes were limited to single protein targets with at 
least 30 active compounds (to ensure a robust model). Active was 
defined as having an activity better than 10 μM where the activity 
type was restricted to Ki, Kd, IC50, AC50, or EC50. In total 

4.1 Protein Target 
Procedure
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690,853 data points were used to construct the model. A multi-
category model was then built for each of these proteins; herein 
relevant molecular features correlated to activity were identified by 
comparing the structure of actives per protein versus all of the 
other compounds (assumed inactive). Subsequently, each com-
pound was scored with all 1282 models, and a ranked list of up to 
the top ten predicted protein targets for each compound was 
generated.

However, due to large differences in available data points per 
target (e.g., adenosine A2A receptor versus solute carrier organic 
anion transporter 1B1) and differences in average compound size 
per target (e.g., metabotropic glutamate receptors versus throm-
bin), the raw Bayesian score can differ significantly per protein tar-
get (per model class). To make the scores comparable, they were 
standardized in the form of z-scores [27]. The score per com-
pound–protein pair was obtained for predictions by subtracting 
the mean score for the protein considered from the raw score and 
dividing this over the standard deviation for that protein (e.g., 
[1]). To obtain these values, after model training, the model was 
used to score all compounds in ChEMBL release 17 (1.3 million 
compounds). From this, a mean score per target and standard 
deviation per target were derived. Similarly, the mean score and 
standard deviation of compounds known to be active on a protein 
were calculated. After model predictions, targets with a standard 
score ≥2 were considered as a significant protein target for the 

Fig. 3 Example output from the protein target analysis for the compound doxorubicin, showing compound 
structure and InChI key and the top 15 protein target z-scores and z-score actives
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compound in question and reflect the enrichment of the score over 
randomness (i.e., all compounds in ChEMBL release 17) for the 
specific target of that compound in terms of standard deviations. 
Likewise z-score actives are calculated which show the difference a 
compound scores on this target compared to the average score of 
known actives for that protein. An example output for the com-
pound doxorubicin is shown in Fig. 3. For further analyses as pre-
sented in paragraph 6, all calculated z-scores (significant and 
nonsignificant) were taken into account.

5 Gene Expression Meta-Analysis

An inherent problem of heterogeneous data sets is the experiment- 
specific variation which cannot be controlled for in a post hoc anal-
ysis. These variations stem from a variety of sources such as the use 
of different cell culture assays, differences in compound concentra-
tion and exposure time, and the use of different species (Table 1). 
To compensate for such variations, cross-study/cross-platform 
gene expression meta- analysis is a valid strategy to extract consis-
tent information from a set of individual studies across a wide 
range of experimental conditions, including in vitro and in vivo 
data. In fact, combining data from in vitro and in vivo studies on 
liver carcinogens with gene expression data from human liver can-
cers was shown to improve carcinogenicity prediction [28]. Meta-
analysis has been frequently applied in diseases with complex 
phenotypes such as cancer [29], Down syndrome [30], and diabe-
tes mellitus type 2 [31]. A meta-analysis approach on hepatotoxic-
ity-associated transcriptomics data can therefore be very valuable 
given the vast amount of heterogeneous data sets available in 
literature.

All experiments in the data set (see Table 1) have a case–control 
design comparing two groups of replicate samples. These groups 
are denoted as treatment and control, respectively, and constitute 
a test case. For a test case, the generated chips are normalized with 
each other using the R/Bioconductor framework.

The normalization accounts for three major influence factors 
in the hybridization data: background expression, probe binding 
affinity, and measurement variation. GC-RMA corrects for such 
effects [32]. In the background correction, it takes into account 
the GC content of the probe sequences, i.e., the number of G or C 
nucleotides in the sequence. A higher GC content is associated 
with a higher binding affinity of the probes due to three instead of 
two covalent bindings for single nucleotides. GC-RMA contains a 
position-specific model correcting the binding affinity between 
probes. Between chips unwanted effects are introduced by RNA 
extraction, pipetting, temperature fluctuations, hybridization 

5.1 Meta-analysis 
Procedure
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efficiency, and more. To reduce these effects, the quantile normal-
ization is implemented in GC-RMA. Finally probe intensities are 
summarized into probe set expressions. GC-RMA uses median 
polish which proposes a linear model of a baseline hybridization 
with two factors, a probe effect and an array effect [33]. The model 
is fitted robustly with a median decomposition.

An advantage of the Affymetrix array design is the possibility 
to calculate a presence tag, i.e., the probability that the corre-
sponding gene is effectively expressed and active in the sample 
under study. Non- expressed genes confuse the results with low 
intensities leading to high, unmotivated fold changes. The pres-
ence tag, or detection p-value, is based on a comparison of raw 
perfect-match values and corresponding mismatch values. Using a 
robust Wilcoxon test yields a p-value for each probe set which indi-
cates whether or not the perfect-match probe signals are different 
from the mismatch probe signals and thus allows judging the 
expression of the corresponding gene.

Necessary for any meta-analysis is the consolidation of the dif-
ferent identifier types, different species, or different arrays [34]. The 
Ensembl database provides a stable reference for microarray studies 
(http://www.ensembl.org; version 74) and enables orthologue 
gene searches to allow for the combination of human and rat data. 
Since comparability of chip studies is hindered by the total number 
of probes and preprocessing issues between manufacturers, the 
analysis in this chapter constrains on Affymetrix arrays for case–con-
trol studies. Expression results from the arrays are mapped to 
Ensembl by the custom chip definition file (CDF) annotations [35].

The computation of gene expressions and presence tags is fol-
lowed by a gene-wise evaluation of treatment versus control expres-
sions. Expressions are assessed by two criteria: presence and 
alteration. For the approach of a meta-analysis, as presented in this 
chapter, the two criteria are condensed into a single score for every 
gene. The test case score St of a gene is computed as follows:
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So we sum up the gene scores over all test cases related to com-
pound c. The sum is weighted by the quotient of Tg the number of 
test cases with gene scores divided by Tgc the number of test cases 
with scores for gene g and compound c. This weight compensates 
for genes which are not represented on every Affymetrix array, 
which is, for example, relevant for nonhomologous genes between 
human and rat. The results are discussed in the next paragraph 
together with the results of the other two analysis approaches.

6 Results of Individual Data Analysis Approaches

The Tanimoto 3D similarity scores are automatically processed in 
a clustering analysis, the results of which are shown in Fig. 4a. For 
comparison purposes the protein target z-scores and meta-analysis 
gene scores were also hierarchically clustered; this is shown in 
Fig. 4b, c (both Ward’s clustering, using the “minimum increase in 
the sum of squares for error” method). This also allows for a more 
straightforward comparison of the individual analysis results with 
the integrative analysis covered in the next paragraph.

If we compare the two analysis methods based on chemical 
structure, i.e., the Tanimoto similarity scores and protein target 
z-scores, there is a number of subclusters that appear to corre-
spond with certain protein target clusters. However, it is also 
apparent that the protein target scores tend to cluster into more 
distinct groups of compounds, whereas the Tanimoto dendrogram 

Fig. 4 Clustering dendrograms of the Tanimoto similarity scores (a), the protein target z-scores (b), and the 
meta-analysis gene scores (c)
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does not form any separate groups with the exception of the duo 
clusters ethanol/allyl alcohol and amiodarone/tamoxifen. These 
two duo clusters can also be readily recognized in the protein tar-
get dendrogram. Other small clusters which can also be distin-
guished in the Tanimoto dendrogram include ethinyl estradiol/
danazol and pemoline/phenobarbital.

Strong disagreements between analyses become apparent when 
the meta-analysis is taken into account. Its dendrogram’s clusters 
are quite inconsistent with the Tanimoto and protein score den-
drograms, and no immediate overlap can be seen (Fig. 4). So the 
question arising is which one of these analyses is right? There is of 
course no straightforward answer to this. If we consider some of 
the grouped compounds in these dendrograms and compare them 
with what can be found in literature regarding known mechanism 
of action, we see that all three analyses cluster compounds as might 
be expected. We will use the following examples to illustrate this:
 (a) Fenofibrate and pirinixic acid.

The meta-analysis suggests that fenofibrate and pirinixic acid 
induce a similar gene expression response, which indeed makes 
sense given the fact that they are both peroxisome proliferator- 
activated receptor alpha (PPARA) agonists [36]. The Tanimoto 
score analysis does not consider these compounds to be struc-
turally related. Of course structural dissimilarity does not exclude 
the possibility of having a similar biological effect and vice versa. 
Small identical substructures in two molecules can already be 
enough to exert a similar effect even when the overall composi-
tion is very different. Conversely, a good example of compounds 

Table 2 
List of significant protein targets (z-score >2) for fenofibrate and pirinixic acid compounds

Fenofibrate Pirinixic acid

Structure
Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score Structure

LSS 3.23 GLP1R 2.42 TRPA1 2.28 PTGES 4.82

PPARA 2.94 IGFBP3 2.39 CACNA1H 2.24 ALOX5 3.00

FFAR2 2.93 PPARD 2.39 P2RY1 2.22 PLA2G7 2.32

SCN2A 2.80 AKR1C2 2.39 CTSG 2.21 AKR1C2 2.24

SCN10A 2.79 CYP26A1 2.36 ELOVL6 2.20 CSNK2A2 2.16

PPARG 2.79 VCAM1 2.34 SRD5A2 2.13 PPARG 2.16

GIPR 2.60 ICAM1 2.29 SELE 2.06 CXCR2 2.10

ELANE 2.59 UTS2 2.28 MMP14 2.04 CTSA 2.00
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with high structural similarity but entirely different effects are 
the enantiomers of thalidomide; S-thalidomide is a severe terato-
gen, while R- thalidomide is a sedative with no teratogenic 
action. This difference in structure between fenofibrate and piri-
nixic acid also partially explains why the protein target analysis 
does not group these compounds together since this analysis is 
also based on the chemical (2D) structure using the ECFP6 fin-
gerprints. However, if we take a closer look at the calculated 
z-scores of this analysis, there are also some inconsistencies with 
literature. Despite the fact that both compounds are PPARA 
agonists, PPARA is only a significant protein target for fenofi-
brate, not pirinixic acid. Another interesting observation is the 
significance of PPARD and PPARG for fenofibrate when this 
compound is usually not considered an agonist for these two 
PPARs [37]. The two top-scoring protein targets for pirinixic 
acid, prostaglandin E2 synthase-1 (PGES-1) and 5- lipoxygenase 
(ALOX5), also show an inconsistency with literature (Table 2). 
PGES and ALOX5 are only protein targets for pirinixic acid after 
substantial modification of the structure to an aminothiazole-
featured pirinixic acid [38]. It thus appears that protein targets 
do not always reflect literature accurately, which may be related 
to drawbacks of the manual curation on which the algorithm is 
dependent.

 (b) Clofibrate, gemfibrozil, valproic acid, and simvastatin.
The compounds clofibrate, gemfibrozil, valproic acid, and 

simvastatin form an obvious cluster in the meta-analysis but are 
completely scattered across the Tanimoto and protein target 
dendrograms. Clofibrate and gemfibrozil are PPARA agonists, 
while simvastatin, a statin compound, increases expression of 
PPARA and as such can have a similar effect [39]. Indeed there 
appears to be a cross-talk of statin signaling pathways and 
(agonist- induced) PPARA activity, and combination therapies 
of fibrates and statins are being used to treat dyslipidemia [40–
42]. Valproic acid has a different mechanism of action and is 
used as an anticonvulsant and mood-stabilizing drug which has 
been attributed to the blockade of voltage-dependent sodium 
channels and increased brain levels of gamma-aminobutyric 
acid (GABA) [43]. However, it has also been found to be an 
activator of PPARD, but not PPARA or PPARG, although it is 
not a direct PPARD ligand [44, 45]. Valproic acid can there-
fore interact in the PPAR signaling cascades, which explains its 
similarity in gene expression with the other three compounds. 
Despite this similarity in gene expression and evidence in litera-
ture for overlap in mechanism of action, the Tanimoto and 
protein target analyses do not consider these compounds to be 
similar in their effect. However, a visual inspection of the 
molecular structures of these compounds does reveal a struc-
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tural similarity, especially between clofibrate and gemfibrozil 
(Fig. 5). Moreover, the carboxylic (pentanoic) acid moiety in 
these two compounds is also present in valproic acid. This moi-
ety is essential for fibrates to function as PPAR agonists [46]. 
Since both the 3D Tanimoto analysis and the 2D ECFP6-
based protein target analysis take the entire structure into 
account, essential substructures that convey the similarity in 
working mechanism could be masked by a dissimilarity in the 
remainder of the molecule. Smaller molecules with structural 
similarities can therefore be expected to cluster together more 
readily as can be seen in the next example.

 (c)  Allyl alcohol, ethanol, carbon tetrachloride, and 
N-nitrosodimethylamine.

The compounds allyl alcohol, ethanol, carbon tetrachloride, 
and N-nitrosodimethylamine form clusters in the Tanimoto and 
protein target dendrograms but are completely scattered across 
the meta- analysis. Indeed their structures are very similar as 
shown in Fig. 6 which also contributes to the overlap in protein 
targets. While structural similarity does not guarantee similar 
gene expression responses, literature review does suggest that 
these compounds should share some common mode of action. 
For example, all four compounds are metabolized by the cyto-
chrome P450 metabolizing enzyme CYP2E1 and/or alcohol 
dehydrogenase (ADH) causing oxidative stress which (partially) 
explains their hepatotoxic effects [47–52]. An explanation for 
the scattered clustering in the meta- analysis could lay in the fact 
that some essential information in the gene expression meta-
analysis may get lost since we found that some compounds did 
cluster similarly to the protein target z-scores and Tanimoto 
scores when a distinction was made based on, for example, dose 
and exposure time (results not shown). Of course this is inher-
ent to the approach of the meta-analysis, but could lead to prob-
lems with group identification if transcriptomic responses differ 
greatly between experimental conditions.

Fig. 5 Molecular structures of clofibrate, gemfibrozil, valproic acid, and simvastatin
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7 Combined Analysis Using iClusterPlus

The individual analyses presented above reveal a number of short-
comings, which include (a) disagreements with the described 
mechanisms of action of compounds with respect to identified pro-
tein targets, (b) important similarities in compound substructures 
which are missed, and (c) a loss of important information when 
performing a cross-study/cross-platform meta-analysis. These lim-
itations may be overcome by running an integrative clustering that 
takes into account all data in one single analysis and can resolve the 
considerable heterogeneity present in individual data sets. iCluster-
Plus is an R-based tool specifically designed for such a multi-data 
source integration using a joint latent variable model [53]. It is 
designed to perform pattern discovery that can integrate diverse 
data types such as binary values (e.g., somatic mutation data), cat-
egorical values (e.g., copy number gain, normal, loss), and con-
tinuous values (e.g., gene expression, protein levels) (Fig. 7).

Given multiple data types (e.g., gene expression, Tanimoto scores, 
protein target data, etc.) measured in the same set of samples and 
specified sparsity parameter values, iClusterPlus uses generalized linear 
regression to fit a regularized latent variable model-based clustering 
that generates an integrated cluster assignment based on joint infer-
ence across data types. The common set of latent variables represents 
distinct driving factors, which, geometrically speaking, form a set of 
principal coordinates that span a lower dimensional integrated sub-
space and collectively capture major biological variations, enabling 
rigorous analysis of the integrated genomic data [53]. The iCluster-
Plus package is available for download from the open-source software 
framework Bioconductor (http://www.bioconductor.org/).

Compounds with similar toxicity and/or mode of action were 
grouped using iClusterPlus by integrating meta-analysis gene scores, 
structural similarities, and protein target predictions. In order to 
guarantee that each data type has the same weight in the analyses, 
scaled Euclidian distances were used for meta-analysis gene scores 
and target predictions in the range of 0–1 (0 = most similar; 1 = most 
dissimilar), and for structural similarities the 3D Tanimoto scores 
were used in the range 0–2 (0 = most dissimilar; 2 = most similar).

7.1 iClusterPlus 
Results

Fig. 6 Molecular structures of allyl alcohol, ethanol, carbon tetrachloride, and N-nitrosodimethylamine
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The iClusterPlus analysis was performed using default settings 
except for the number of CPUs used for parallel computing (30 
CPUs) and the lasso parameter λ which was rescaled to be between 
0 and 0.1. These settings were used to determine the optimal 
number of clusters by calculating the percentage of total variation 
explained by the model for 2–21 clusters. The percentage explained 
variation typically increases as more clusters are introduced. The 
optimal number of clusters is where the curve of percentage 
explained variation levels off. Figure 8 shows the curve for the 
analysis with the three data types combined, where 16 clusters are 
indicated as the optimum number of clusters.

Fig. 8 Percentage explained variation curve for the analysis with the three data 
types combined. The arrow indicates the optimal number of clusters

Fig. 7 The basic principle of iClusterPlus analysis. Adapted with PNAS permission from Ref. [53]
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There indeed appears to be a better grouping of compounds 
when all three approaches are combined (Fig. 9). For example, 
fenofibrate and pirinixic acid now cluster together (cluster #9) 
where they previously did only in the meta-analysis (Fig. 4). Protein 
targets in this case did not fully reflect the literature (which pro-
vides sufficient evidence for a similar mechanism of action), and the 
structures, while having some similarities, were found to be con-
sidered as different when taking into account the whole structure 
in the Tanimoto score analysis.

Clofibrate, gemfibrozil, simvastatin, and valproic acid previ-
ously grouped together in the meta-analysis which was supported 
by literature to a certain degree (all involved in peroxisome signal-
ing), but structurally they are more dissimilar, and their protein 
targets are different because they work through different mecha-
nisms (i.e., clofibrate and gemfibrozil are PPARA agonists, while 
simvastatin increases PPARD expression and valproic acid affects 
PPARD signaling). This is now much better reflected by the clus-
tering in Fig. 9 where clofibrate and gemfibrozil cluster together 

Fig. 9 iClusterPlus results, showing the grouping of the 33 compounds in the data set based on an integrated 
multisource analysis of protein target z-scores (Euclidian distances), meta-analysis gene scores (Euclidian 
distances), and 3D Tanimoto scores. The order of the compounds in the table corresponds with the column 
order in the clustering heatmap
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(cluster #12), gemfibrozil forms a separate group (cluster #7), and 
valproic acid is clustered together with a set of other compounds 
(cluster #13). These compounds include the COX-2-selective, 
nonsteroidal anti-inflammatory drug nimesulide which is known 
to affect both GABA neurotransmission and PPARD signaling just 
like valproic acid [43, 54, 55] and phenobarbital, which is also an 
anticonvulsant that interacts with the GABAergic response [56].

According to literature, allyl alcohol, carbon tetrachloride, 
ethanol, and N-nitrosodimethylamine all have a somewhat similar 
metabolic mechanism and toxicity (CYP2E1/ADH metabolism, 
oxidative stress). Indeed these compounds had similar protein tar-
gets and a similarity in structure (Fig. 4, ethanol and allyl alcohol 
form a group and carbon tetrachloride and N-nitrosodimethylamine), 
but this was not reflected by the meta-analysis data. However, 
when separate doses and time points were investigated, this group-
ing was better (results not shown). The iClusterPlus analysis now 
also shows a much better grouping of these compounds with only 
NDEA forming a separate group (#11).

It thus appears that an integrated analysis of data from multiple 
sources potentially leads to an improved clustering of related hepa-
totoxic compounds.

8 Conclusion

In this chapter, we have presented an approach that focuses on 
integrating hepatotoxic compound-induced gene expression and 
(protein target- directed) chemical structural patterns in order to 
evaluate whether they can complement each other. The presented 
examples show that grouping compounds based solely on cross-
study/cross- platform gene expression, 3D chemical structure, or 
protein targets can result in wrongly clustered compounds which 
have different toxicity or mode of action. To overcome these limi-
tations, iClusterPlus is shown to be a promising tool for integrat-
ing data from several distinct sources and improving the clustering 
of related compounds which share a common mechanism of action. 
It should be pointed out though that evaluation of the identified 
groups is needed by (literature-based) expert judgment. Still, a sys-
tems biology approach where multiple data sources are used, espe-
cially when these data types focus on different aspects of compound 
(hepato)toxicity and/or chemistry, appears to be a promising way 
of handling big data sets and promoting the development of new 
pharmaceutical compounds. The flexibility of iClusterPlus with 
regard to data set types (e.g., binary, categorical, and continuous 
values) allows for many data sets to be included in the analysis if 
considered toxicologically relevant. Inclusion of other data sources, 
such as proteomics or fragment-based fingerprint methods, is likely 
to further improve the grouping of similar compounds.
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Chapter 16

In Silico Study of In Vitro GPCR Assays by QSAR Modeling

Kamel Mansouri and Richard S. Judson

Abstract

The US EPA’s ToxCast program is screening thousands of chemicals of environmental interest in hundreds 
of in vitro high-throughput screening (HTS) assays. One goal is to prioritize chemicals for more detailed 
analyses based on activity in assays that target molecular initiating events (MIEs) of adverse outcome path-
ways (AOPs). However, the chemical space of interest for environmental exposure is much wider than 
ToxCast’s chemical library. In silico methods such as quantitative structure-activity relationships (QSARs) 
are proven and cost- effective approaches to predict biological activity for untested chemicals. However, 
empirical data is needed to build and validate QSARs. ToxCast has developed datasets for about 2000 
chemicals ideal for training and testing QSAR models. The overall goal of the present work was to develop 
QSAR models to fill the data gaps in larger environmental chemical lists. The specific aim of the current 
work was to build QSAR models for 18 G-protein-coupled receptor (GPCR) assays, part of the aminergic 
family. Two QSAR modeling strategies were adopted: classification models were developed to separate 
chemicals into active/non-active classes, and then regression models were built to predict the potency 
values of the bioassays for the active chemicals. Multiple software programs were used to calculate consti-
tutional, topological, and substructural molecular descriptors from two-dimensional (2D) chemical struc-
tures. Model-fitting methods included PLSDA (partial least square discriminant analysis), SVMs (support 
vector machines), kNNs (k-nearest neighbors), and PLSs (partial least squares). Genetic algorithms (GAs) 
were applied as a variable selection technique to select the most predictive molecular descriptors for each 
assay. N-fold cross-validation (CV) coupled with multi-criteria decision-making fitting criteria was used to 
evaluate the models. Finally, the models were applied to make predictions within the established chemical 
space limits. The most accurate model was for the bovine nonselective dopamine receptor (bDR_NS) 
GPCR assay, for which the classification balanced accuracy reached 0.96 in fitting and 0.95 in fivefold CV, 
with only two latent variables. These results demonstrate the accuracy of QSAR models to predict the 
biological activity of chemicals specifically for each one of the studied assays.

Key words QSAR, GPCR, ToxCast, Toxicity, Machine learning

1 Introduction

Thousands of manufactured chemicals find their way to the envi-
ronment, leading to the potential for exposure to humans and 
wildlife species. For most of these environmental chemicals, very 
limited toxicity information is available [1–6]. Time, costs, animal 
welfare issues related to traditional toxicology studies, and lack of 
regulatory authority are the main causes of this data gap.
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For the US Environmental Protection Agency (EPA) and 
other regulatory agencies, there is a pressing need to develop new 
methods capable of quickly evaluating large numbers of environ-
mental chemicals for potential toxicity at reasonable costs [7]. This 
need is being partially addressed by the use of high-throughput 
screening (HTS) approaches that have been developed by the 
pharmaceutical industry as drug discovery screening tools [8, 9]. 
Over the past decade, HTS has gained popularity as an adjunct to 
traditional toxicology testing methods. Since 2007, the EPA has been 
evaluating this approach through its ToxCast program [7, 10, 11]. 
ToxCast is being implemented in a phased approach and based on 
the fundamental hypothesis that toxicity is driven by interactions 
between chemicals and biomolecular targets such as receptors, ion 
channels, and kinases and on the capacity of in vitro data to reliably 
predict in vivo toxicity [11]. The ToxCast program uses in vitro 
biochemical assays to build large collections of toxicity data on 
environmental chemicals with potential human exposure, includ-
ing pesticides, cosmetics, pharmaceuticals, and industrial chemicals 
[7]. The relevance of these classes to the environmental toxicity 
community as well as the high number of tested chemicals differ-
entiates this program from any previous such efforts. Through its 
two first phases, 1063 chemicals were tested in a set of ~200 assays. 
The technologies used in these assays include cell-free systems, cell 
lines and primary cells, complex culture systems, and small model 
organisms [11–17].

From these data, several models have been developed that pre-
dict in vivo effects from the in vitro HTS data [18–22]. However, 
there is a long-acknowledged need to screen tens of thousands of 
chemicals for their potential toxicity in a fast and cost-effective way 
[23]. Therefore, the goals of the multiyear, multimillion dollar 
ToxCast program are not only identifying in vitro assays that can 
reliably indicate alterations in biological processes of relevance to 
in vivo toxicity but also to develop computational models based on 
multiple assays along with chemical properties to achieve higher 
predictive accuracy than single assays or molecular descriptors alone 
[24] and to combine in vitro bioassay-based predictive toxicity 
signatures with in silico models to allow prioritization of very large 
numbers of environmental chemicals for more detailed testing.

The use of in silico approaches for virtual screening and data 
gap filling is growing within the scientific community [3, 25]. 
Quantitative structure-activity relationships (QSARs) are recog-
nized alternatives to empirical testing because of their ability to pre-
dict relevant toxicological and environmental endpoints in a rapid 
and cost-effective way [26, 27]. The conceptual basis of these mod-
eling techniques is the congenericity principle, which is the hypoth-
esis that similar structures are expected to exhibit similar biological 
behavior [28]. This leads to the possibility to predict biological 
activity of new chemicals based on existing experimental data for 
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 structurally similar chemicals. Several guidance documents to build 
QSAR models have been published in the literature [3, 29, 30].

To demonstrate the utility of the ToxCast HTS data for 
constructing QSAR models, we focused on assays that measure 
chemical binding to G-protein-coupled receptors (GPCRs). The 
GPCR assays are a subset of cell-free HTS assays run in ToxCast, 
summarized by Sipes et al. These authors performed a cluster anal-
ysis of the cell-free assays and showed that the cluster of assays with 
the highest number of actives was a family of 18 aminergic GPCRs 
[17], which makes them interesting to model. To model these 18 
assays, two QSAR strategies were applied. First we used all tested 
chemicals to build binary classification models; then regression 
models were applied on the active chemicals to estimate their activ-
ity concentration (defined as AC50 or concentration at which 50 % 
of maximal activity was seen). 2D chemical structures were curated 
and prepared for modeling, after which several classes of molecular 
descriptors were calculated, including constitutional, topological, 
and substructural descriptors. To pick the appropriate and most 
information-rich descriptors, genetic algorithms (GAs) were 
applied as a variable selection technique. Several different methods 
such as PLSDA, SVM, kNN, and PLS were used to fit the models 
for the 18 GPCR assays. All models were validated in fivefold cross-
validation, and the applied methods were compared to select the 
best performing models to be used for the prioritization of untested 
chemicals. These chemicals represent a large fraction of those to 
which humans may be exposed through their inclusion in manu-
factured products.

2 Materials

The cell-free assays in ToxCast, described by Sipes et al. [17], consist 
of 331 assay endpoints largely testing the potential of chemicals to 
bind receptors or to inhibit enzymatic activity. These assays included 
77 GPCRs, 32 of which are in the aminergic class [17]. A total of 
~1000 chemicals were tested in these assays and included in an 
unsupervised hierarchical cluster analysis. The aminergic GPCR cat-
egory was associated with the highest number of active chemicals, 
and especially a cluster of 18 aminergic assays, listed in Table 1, that 
was considered for this study. For more details about the assays and 
chemicals, as well as access to the data used, see Sipes et al. 2013 
[17] and the ToxCast dashboard [31].

The chemicals tested in these assays include marketed and failed 
pharmaceuticals, air pollutants, antimicrobials, pesticides, and food 
additives. These chemicals were selected based on several criteria 
defined by EPA and other federal agencies (e.g., National 
Toxicology Program/National Institutes for Environmental 

2.1 ToxCast 
GPCR Assays

2.2 Training Set

In Silico Study of In Vitro GPCR Assays by QSAR Modeling
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Health Sciences, National Center for Advancing Translational 
Sciences/National Institutes of Health, US Food and Drug 
Administration) as well as international organizations such as the 
Organisation for Economic Co-operation and Development.

For this study, only the 1005 compounds tested for all 18 end-
points were considered in the training set so that all models could 
be calibrated on the same set of chemicals. After selecting the best 
QSAR model to be applied, missing values corresponding to the 
non-tested ToxCast chemicals were filled with predictions.

Assay-assay unsupervised hierarchical clustering of the 18 
assays on the training set data (log-AC50 values) was performed 
using Euclidean distance as the similarity metric and Ward’s link-
age method for assembling clusters. The clustering dendrogram 
applied to a heatmap of the bioactivity of training chemicals shows 
two large clusters of the most similar GPCR assays, where one of 
them represents the cholinergic receptor group of five first assays 
from the left in Fig. 1: hM1 to hM5.

When collected from different public sources, chemical structures 
usually contain duplicates and inconsistencies in the molecular 
 representations which could lead to inaccuracies in modeling and 
the predictions of QSARs. Thus, a cleaning and standardization 
procedure is needed to prepare a set of unique QSAR-ready struc-
tures. A curation workflow was designed to process all chemical 
structures using the free and open-source data-mining 

2.3 Standardization 
and Curation 
of Chemical Structures

Table 1  
Listing of 18 cell-free assays from the aminergic GPCR family

Assay Gene symbol Target name

hM1 to hM5 (five assays) CHRM Cholinergic receptor, muscarinic 1–5

gMPeripheral_NonSelective M1 Muscarinic receptor peripheral

hAdrb2 ADRB2 Adrenergic receptor, beta-2, surface

bDR_NonSelective DRD1 Dopamine receptor D1

h5HT2A HTR2A 5-Hydroxytryptamine (serotonin) receptor 2A

rAdra1A,B Adra1a,b Adrenergic receptor, alpha-1A-B

rAdra1_NonSelective Adra1a Adrenergic receptor, alpha-1A

hH1 HRH1 Histamine receptor H1

gH2 Hrh2 Guinea pig histamine receptor H2

rAdra2_NonSelective Adra2a Adrenergic receptor, alpha-2A

hAdra2A ADRA2A Adrenergic receptor, alpha-2A

rmAdra2B Adra2b Adrenergic receptor, alpha-2B

Kamel Mansouri and Richard S. Judson
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environment KNIME [32]. The workflow performed the series of 
steps described below [33]:

 1. The original files containing structures in different formats 
were parsed and checked for valence imbalances relative to a 
set of rules and for the integrity of the required structural 
information to render the molecules. Invalid entries were cor-
rected, if possible, or compared to structures retrieved from 
online databases for consistency using web services [34, 35] 
and removed if ambiguous.

 2. A check was applied to remove inorganic compounds.
 3. The structures were desalted, and inorganic counterions were 

removed.
 4. A series of transformations was applied on the structures to 

standardize tautomers to unique representations (e.g., nitro 
zwitterionic form and azide mesomers, keto-enol tautomers, 
enamine-imine tautomers, ynol-ketene, and other conversions) 
[36–38].

 5. Charged structures were neutralized, when possible, and then 
stereochemistry information was removed.

 6. Explicit hydrogen atoms were added, and structures were aroma-
tized according to Hückel’s rules implemented in KNIME [32].

 7. The duplicates were removed using standard InChI codes, 
because these are unequivocal identifiers.

 8. A final filter was applied to remove chemicals containing metals, 
which often cause problems in molecular descriptor calculations.

After the structure standardization procedure and duplicate 
removal of the ToxCast data, we obtained a final set of 1005 
QSAR- ready structures as a training set.
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The previously curated molecular structures were used to calculate 
molecular descriptors using the free and open-source software 
PaDEL and the commercial proprietary toolkit MOE [39, 40]. In 
PaDEL only 2D descriptors were selected. The use of 3D molecu-
lar structures could add valuable chemical information about the 
molecules. Thus, MOE descriptors were calculated after an energy 
minimization and geometry optimization of the 3D structures. 
However, there is a risk that the use of 3D descriptors can affect 
the predictability of the models on new molecules because the dif-
ference between conformers can lead to different 3D descriptor 
values, especially with very flexible molecules.

A total number of 1022 molecular descriptors were calculated 
including constitutional, topological, functional group counts; 
fragmental, atom-type E-state indices; and calculated physico-
chemical properties. In order to reduce collinearity among descrip-
tors, a correlation filter with a threshold of 0.96 was applied. For 
each pair of descriptors with a correlation coefficient higher than 
the threshold, the one showing the largest pair correlation with all 
the other descriptors was excluded. Then, descriptors with con-
stant, near constant, or at least one missing value were removed. 
The remaining reduced set consisted of 470 descriptors used for 
the subsequent modeling analysis.

Genetic algorithms (GAs) were then applied to find the opti-
mal subset of molecular descriptors [41]. GAs start from an initial 
random population of chromosomes, which are binary vectors rep-
resenting the presence or absence of molecular descriptors. An 
evolutionary process is simulated to optimize a defined fitness 
function, and new chromosomes are obtained by coupling the 
chromosomes of the initial population with genetic operations 
(crossover and mutation). This process was repeated 100 times for 
each one of the 100 runs with 0.01 probability of mutation and 
0.5 probability of crossover on 30 chromosomes. The goodness of 
fit function to optimize the models was calculated in cross-valida-
tion. The final set of descriptors was picked based on the frequency 
of selection during the 100 GA runs.

3 Methods

Three classification methods were applied in order to estimate the 
best relationship between chemical information, encoded in molec-
ular descriptors, and the modeled activity of chemicals: k-nearest 
neighbors (kNNs) [42], partial least square discriminant analysis 
(PLSDA) [43, 44], and support vector machines (SVMs) [45]. 
The application of these methods, based on different mathematical 
strategies, aimed to better explore the chemical space and balance 
potential biases inherent in each single modeling algorithm. All 
calculations were carried out in MATLAB 8.2 (glnxa64) [46].

2.4 Descriptor 
Calculation 
and Variable Selection

3.1 Categorical 
Models

Kamel Mansouri and Richard S. Judson
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The kNN classification rule is conceptually quite simple: each 
predicted chemical is classified according to the classes of the 
k- closest chemicals, which means it is classified according to the 
majority of its k-nearest neighbors in the selected descriptor space 
[42]. In this work, the Euclidean metric was used to measure dis-
tances between molecules. The k value giving the lowest classifica-
tion error in cross-validation was selected as the optimal one.

PLSDA is a classification technique that inherits the properties 
of partial least square (PLS) regression with the discrimination 
power of a classification technique [43, 44]. It finds fundamental 
relations between the matrix of descriptors and the class vector by 
calculating latent variables (LVs), which are orthogonal linear 
combinations of the original variables. PLSDA models optimize in 
cross-validation to find a compromise between the classification 
performance and the number of selected LVs.

SVM is a method that defines a decision boundary that opti-
mally separates two classes by maximizing the distance between 
them [45, 47]. The decision boundary can be described as a hyper-
plane that is expressed in terms of a linear combination of func-
tions parameterized by support vectors, which consist in a subset of 
training molecules. SVM algorithms search for the support vectors 
that give the best separating hyperplane using a kernel function. 
During optimization, SVM searches the decision boundary with 
maximal margin among all possible hyperplanes, where the margin 
can be intended as the distance between the hyperplane and the 
closest point for both classes. This procedure was carried out by 
means of a kernel based on a radial basis function; the learning level 
is governed by a cost (c) parameter. SVMs were calibrated using 
the library LIBSVM3.1 implemented in C [48].

PLS is a powerful statistical method applied in chemometrics and 
other fields of scientific research [44]. A major advantage of this 
method is its ability to overcome the problem of singularity in a 
transformed matrix when the number of columns (variables) is 
larger than the number of rows (samples). PLS also compensates 
for the collinearity of the variables. This latter problem is solved by 
decomposing the descriptor matrix into orthogonal scores and 
loadings. Then, the modeled biological activity is correlated to the 
first columns of the scores instead of the original variables. In this 
way, PLS includes information from both the variables and the 
observed response in the calculation of the scores and loadings and 
aims to explain the maximum variance in the original variables as 
well as in the observed biological activity of the training samples. 
There are several implementations of PLS algorithms in the litera-
ture that give similar results, especially in the case of a single vector 
response. These may differ slightly when dealing with multivariate 
responses [49, 50].

3.2 Continuous 
Models

In Silico Study of In Vitro GPCR Assays by QSAR Modeling
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Due to the very low number of active chemicals, the initial set was 
not divided into a training and a test set for external validation. 
However, not all of the chemicals within the list were used to select 
molecular descriptors and to build the models. During model opti-
mization and descriptor selection, a cross-validation procedure 
with five groups was performed. Thus, this procedure is similar to 
constantly dividing the initial set into training and test sets, con-
taining 80 and 20 % of the total number of chemicals, respectively. 
The selection was performed maintaining the class proportions, 
that is, the number of active test chemicals was proportional to the 
number of active training chemicals.

The classification models were evaluated on the basis of sensi-
tivity (Sn) and specificity (Sp), which are the ability to correctly 
predict active and inactive chemicals, respectively. In particular, Sn 
and Sp were calculated using the number of true negatives, true 
positives, false negatives, and false positives. In addition, the bal-
anced accuracy (BA) was calculated as the average of Sn and Sp. 
These indices were used in order to better estimate classification 
performance in the presence of a dataset with an unequal number 
of samples in each class. In this study BA, specificity, and sensitivity 
are expressed as ratios and not as percentages. The quality of regres-
sion models was evaluated using two groups of statistical indices:

 – The goodness of fit parameters measuring the fitting ability. 
These indices are used to measure the degree to which the 
model is able to explain the variance contained in the training 
set. The coefficient of determination R 2 is one of the most 
used parameters. It is the square multiple correlation coeffi-
cient given by
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 – where ŷi is the estimated response and y  is the average observed 
response over the n training compounds.

 – The second parameter used is the root-mean-square error 
(RMSE ) calculated as follows:
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 – The goodness of prediction parameters measures the true 
predictive ability of a model; these are related to the reliability 
of prediction in the validation step. These parameters are used 

3.3 Evaluation 
and Validation Criteria
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in the validation step, the most important being the predictive 
squared correlation coefficient Q2. Different ways of calculating 
this parameter are available in the literature [30, 51]. In this 
work, the following formula was considered:

 

Q

y y n

y y n

n

i

i i

n

i

i

2

1
2

1
2

1= -
-( )

-( )

å

å

=

=
EXT

TR

EXT

TR

˘ /

/
 

 – where nEXT is the number of test compounds and nTR is the 
number of training compounds.

 – The second parameter commonly used is the root-mean-square 
error in prediction (RMSEP ) calculated as follows:
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4 Results

A preliminary analysis of the dataset was performed using the self- 
organizing map (SOM) technique implemented in the Kohonen 
and CPANN Toolbox [52, 53]. Since all 18 GPCR assays are bio-
logically similar and part of the same cluster [17], all GPRC active 
chemicals were considered in a supervised learning analysis to 
generate a categorical SOM based on the complete set of 470 
descriptors. The resulting map (Fig. 2) demonstrates that there is 
a clear structure- activity relationship between the chemical infor-
mation encoded in the descriptors and the observed biological 
activity in the in vitro assay results. The map’s calculated BA in 
classifying actives and inactives was high in both calibration and 
fivefold cross-validation, with values of 0.82 and 0.67, respectively. 
Consequently, this demonstrated that activity in these assays has a 
strong structural component and that building more detailed 
QSAR models should lead to higher prediction scores.

In order to select an appropriate modeling method to be applied 
on the training set to build the models, three QSAR approaches 
were compared. GA coupled with PLSDA, kNN, and SVM was 
used to select the optimal subset from the list of 470 descriptors. 
These methods were applied first on assay hH1, which is associ-
ated with an average number of actives (37 actives out of a total of 
1005 chemicals); second, on the combination of the five assays 
from the  cholinergic receptor group shown as similar by the clus-
ter analysis (Fig. 1) (a chemical active in any of the five assays is 

4.1 Structure- 
Activity Relationship 
Analysis

4.2 Comparison 
of Modeling 
Approaches
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considered to be active); and third, on the combination of all 
18 assays for a maximum number of active assays (a chemical active 
in any of the 18 assays is considered to be active). The best models 
of each approach were selected by maximizing the BA and mini-
mizing the number of descriptors. The results are summarized in 
Tables 2, 3, and 4.

All three methods showed high performance on the three 
modeled datasets. However, PLSDA showed the highest BA in 
cross- validation. Both PLSDA and kNN are highly stable as they 
are associated with similar BAs in fitting and cross-validation. SVM, 
on the other hand, seems to overfit the models even with a 

Fig. 2 Supervised SOM of all training set chemicals on the set of 470 descriptors. All active chemicals in the 
18 assays were considered. The nodes are in gray scale indicating the number of active chemicals present in 
each node. The darker the node the more active chemicals it contains. In the nodes, "1" and "2" symbolize 
inactive and chemicals, respectively. The most similar chemicals situated in the same location on the map 
have overlapping symbols

Table 2  
Statistics of the PLSDA test models. LVs: number of latent variables for PLS, BA: balanced accuracy

Endpoint (number of actives) Descriptors LVs BA fitting BA five-fold CV

hH1 (37) 26 5 0.92 0.91

hM1-5 (76) 15 3 0.84 0.85

All (115) 20 5 0.84 0.82

Kamel Mansouri and Richard S. Judson



371

relatively low number of descriptors. This could be due to a high 
number of super vectors employed. PLSDA and kNN demonstrate 
higher performances on hH1 compared to hM1-5 and the full list 
of 18 assays. This decrease in BA is probably due to the increased 
heterogeneity of the data after combining the assays. Thus, the 
models are expected to perform better on the single assays.

PLSDA was selected as the modeling approach in order to build 
individual QSAR models for the 18 GPCR assays. GA was used to 
pick the minimum set of the most information-rich descriptors for 
each of the assays. In addition, the modeling procedure aimed at 
building models minimizing the number of LVs and keeping a balance 
between Sn and Sp in both fitting and cross-validation to avoid 
overfitting and to maximize the predictive ability of the models.

Table 5 summarizes the 18 PLSDA models for the individual 
18 GPCR assays. All models showed high performance with a high 
stability. The highest BA reached 0.96 in fitting and 0.95 in cross- 
validation for the bovine nonselective dopamine receptor bDR_
NS. Even the model with the lowest BA shows good performance 
and stability (BA = 0.87 human muscarinic hM2). However, note 
that Sn is slightly higher than Sp which means that false positives 
can be expected in the model predictions. This behavior is, never-
theless, not  contradictory to the general aim of this in silico study 
which is prioritizing new chemicals for testing.

In order to have a precise estimate of the potency of the active 
chemicals in terms of log-AC50 values (concentrations at which 

4.3 Selected Models

Table 3  
Statistics of the kNN test models. k: number of nearest neighbors, BA: 
balanced accuracy

Endpoint (number of actives) Descriptors k BA Fitting BA fivefold CV

hH1 (37) 27 1 0.81 0.81

hM1-5 (76) 19 4 0.77 0.79

All (115) 22 1 0.77 0.78

Table 4  
Statistics of the SVM test models. c: cost of SVM fitting, BA: balanced 
accuracy

Endpoint (number of actives) Descriptors c BA fitting BA fivefold CV

hH1 (37) 30 5 0.88 0.68

hM1-5 (76) 12 10 0.95 0.77

All (115) 16 10 0.94 0.76
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activity is seen), regression models were built based on only the 
active compounds of each assay. For this purpose, GA was coupled 
with PLS to calibrate a continuous model corresponding to each of 
the 18 GPCR assays. Descriptors were selected from the same ini-
tial set used for categorical models. The resulting models are sum-
marized in the same Table 5. Most models show high performance 
with relatively low numbers of descriptors and LVs. However, R2 
in fitting and Q2 in cross-validation are not balanced for all models. 
This can be explained by the large difference in potency between 
the weak and strong actives that could present different chemical 
features that are not always easy to capture by machine learning 
algorithms when there are low number of chemicals used in the 
training process.

The machine learning and variable selection algorithms were applied 
independently to build the 18 assays. However, certain descriptors 
were selected in more than a single model. This redundancy between 
the models can be explained by the similarity between the assays 
since they belong to the same aminergic GPCR family. The selection 
of these descriptors highlights the importance of the encoded infor-
mation to this class of GPCR assays. Table 6 lists the descriptors that 
were included in the categorical PLSDA models more than five 
times. Most of these descriptors are describing the electronic profile 
of the chemicals such as the electronegativity (e.g., AM1_LUMO 
and PEOE _VSA14) as well as certain structural features and func-
tional groups (e.g., nBase and MDEC-22).

4.4 Molecular 
Descriptors

Table 6  
The most selected descriptors in categorical models

Descriptor Description Software
Number  
of models

nBase Number of basic groups defined by a list of SMARTS PaDEL 12

GCUT_SLOGP_0 Eigenvalues of a graph adjacency matrix (GCUT) descriptor 
weighted by Crippen logP (SLOGP_0)

MOE 8

BCUT_SLOGP_0 Eigenvalues of the burden matrix (BCUT) weighted by 
Crippen logP

MOE 8

GCUT_PEOE_0 GCUT descriptor weighted by partial equalization of 
orbital electronegativity (PEOE) charges

MOE 7

AM1_LUMO The energy (eV) of the lowest unoccupied molecular orbital 
calculated using the AM1 Hamiltonian

MOE 7

maxssCH2 Maximum atom-type E-state: -CH2- PaDEL 7

MDEC-22 Molecular distance edge between all secondary carbons PaDEL 7

PEOE _VSA14 PEOE descriptor based on van der Waals surface area (VSA) MOE 6
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Table 7 lists the descriptors that were included in the continu-
ous PLS models more than five times. Most of these descriptors 
were also included in the categorical models. These descriptors 
encoded similar chemical information as in the categorical models: 
electronic profile described in terms of electronegativity (AM1_
LUMO and PEOE _VSA14) and polarizability (SMR_VSA3) as 
well as substructural features (e.g., nBase and MDEC-22). In both 
types of models, nBase was selected the highest number of times 
which is an indication of the importance of the presence of these 
functional groups that can be captured by the following SMARTS 
notations: “[$([NH2]-[CX4])],” “[$([NH](-[CX4])-[CX4])],” 
“[$(N(-[CX4])(-[CX4])-[CX4])],” “[$([*;+;!$(*~[*;-])])],” 
“[$(N=C-N)],” and “[$(N-C=N)].” In Table 7, the frequency of 
selection of the overlapping descriptors between categorical and con-
tinuous models was higher than in Table 6. Also the total number 
of descriptors selected more than five times was higher in the case of 
continuous models. This could be explained by the promiscuity of 
the active chemicals among the studied group of in vitro assays.

Table 7  
The most selected descriptors in continuous models

Descriptor Description Software
Number 
of models

nBase Number of basic groups defined by a list of SMARTS PaDEL 15

GCUT_PEOE_0 GCUT descriptor weighted by partial equalization of 
orbital electronegativity (PEOE) charges

MOE 13

BCUT_SLOGP_0 BCUT descriptor weighted by Crippen SlogP MOE 10

PEOE_VSA14 PEOE descriptor based on van der Waals surface area (VSA) MOE 9

GCUT_SLOGP_0 GCUT descriptor weighted by Crippen SlogP MOE 8

AM1_LUMO The energy (eV) of the lowest unoccupied molecular orbital 
calculated using the AM1 Hamiltonian

MOE 8

minaasC Minimum atom-type E-state: :C:- PaDEL 7

maxssCH2 Maximum atom-type E-state: -CH2- PaDEL 7

MDEC-22 Molecular distance edge between all secondary carbons PaDEL 7

SMR_VSA3 Atomic contribution to VSA using molar refractivity to 
capture polarizability

MOE 6

ATSc5 Centered Broto-Moreau autocorrelation – lag 5/ weighted 
by charges

PaDEL 6

maxaasC Maximum atom-type E-state: :C:- PaDEL 6

hmin Minimum H E-state PaDEL 6

XLogP XlogP PaDEL 6
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The ToxCast dataset was demonstrated to be containing several 
promiscuous chemicals from different chemical categories [17]. 
Examples of training set chemicals of different degrees of promiscuity 
(18/18, 17/18, 11/18, 5/18) are rendered in Fig. 3. This figure 
shows the number of assays in which the chemicals are actives, the 
average AC50 values, and the chemical structures and names. With 
some exceptions, the general trend we noticed is that the promiscu-
ity increases with the potency of the chemicals; chlorpromazine 
hydrochloride, active in 17/18 assays, is more potent than 
1,3- diphenylguanidine, which is active in only 5/18 assays. The 
common feature among these chemicals seems to be the two aro-
matic rings. The two most potent and promiscuous chemicals have 
in common a long chain in addition to the two phenyl groups.

The categorical models were applied to an additional 778 
ToxCast chemicals that were not tested in the 18 studied assays, but 
which are of environmental/toxicological interest. Predicted actives 
using the QSAR models could then be candidates for in vitro test-
ing. Additionally, AC50 values of actives were estimated using the 
continuous models. Figure 4 shows some chemicals of different 
degrees of promiscuity (18/18, 15/18, 10/18, 4/18) in the pre-
dicted ToxCast chemicals. Similarly to what was noticed in the tested 
ToxCast chemicals used as training set, the predictions also show a 
correlation between potency and promiscuity of the chemicals; 

4.5 Chemical 
Promiscuity

Fig. 3 Example structures from the training set. (a) Ethyl (2R,3S)-3-amino-2-phenyl-2,3-dihydro-1- benzofuran-
2-carboxylate. Active in 18/18 assays, mean AC50 = 4.25 μM. (b) Chlorpromazine hydrochloride. Active in 
17/18 assays, mean AC50 = 1.77 μM. (c) Haloperidol. Active in 11/18 assays, mean AC50 = 5.58 μM. (d) 
1,3-Diphenylguanidine. Active in 5/18 assays, mean AC50 = 12.34 μM
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bromocriptine mesylate active in 18/18 assays is more potent than 
N-phenyl-1- naphthylamine active in 4/18 assays. Except for trifo-
rine, these promiscuous chemicals also seem to have in common 
the presence of aromatic rings. The list of the most promiscuous 
predicted chemicals is given in Table 8. Some chemicals from the 
778 list were subsequently tested and confirmed to be actives as 
shown in Table 8 for hydramethylnon, emamectin benzoate, and 
chlorhexidine diacetate [31].

5 Conclusions

The ToxCast program was initiated by the EPA to develop the 
methods that forecast toxicity of chemicals based on their bioactivity 
profiles and hence to set priorities for further testing of environ-
mental contaminants [11]. The number of chemicals being simul-
taneously analyzed using a large number of HTS technologies 
represents ToxCast’s major departure from traditional toxicology 
testing. Hence, the central foundational element of the ToxCast 
effort is its chemical library. The current work demonstrates one 
approach to use the ToxCast assay data to help evaluate a large 
number of chemicals by building specific QSAR models for each of 
the studied 18 GPCR assays based on approximately 1000 ToxCast 
chemicals.

This QSAR modeling study focused on GPCRs, part of the 
largest class of human proteins that regulate vital biological and 

Fig. 4 Example structures of predicted chemicals. (a) Bromocriptine mesylate. Active in 18/18, mean AC50 = 7.89 
μM. (b) Rhodamine B. Active in 15/18, mean AC50 = 10.42 μM. (c) Triforine. Active in 10/18, mean AC50 = 11.19 μM. 
(d) N-Phenyl-1-naphthylamine. Active in 4/18, mean AC50 = 16.56 μM
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physiological functions [54]. GPCRs are also regarded as major 
targets for drug discovery [55]. We built categorical and continuous 
models of 18 aminergic GPCR assays associated with the highest 
number of actives among the GPCR assays. A comparison of differ-
ent QSAR methods found PLSDA to best predict in the categorical 
modeling procedure, followed by a similar method, PLS, for the 

Table 8  
The most promiscuous predicted chemicals

CASRN Chemical name

Number  
of active 
assays

Subsequently tested 
in the 18 assays

22260-51- 1 Bromocriptine mesylate. Dopamine receptor 
agonist drug (Parlodel)

18 Non-tested

67485-29- 4 Hydramethylnon 18 Tested in 1/18, active 
in 1/18 (hM1)

155569- 91- 8 Emamectin benzoate 17 Tested in 11/18, active 
in 11/18 assays

2353-45-9 FD&C Green no. 3 17 Non-tested

2390-60-5 Basic blue 7 17 Non-tested

27090-63- 7 N,N,N′,N′-tetrabutyl-1,6-hexanediamine 16 Non-tested

3734-33-6 Denatonium benzoate 16 Non-tested

56-95-1 Chlorhexidine diacetate 16 Tested in 1/18, active 
in 1/18 (hM1)

67564-91- 4 Fenpropimorph 16 Non-tested

95-38-5 1H-Imidazole-1-ethanol, 2-(8-heptadecenyl)- 
4,5-dihydro-

16 Non-tested

10081-67- 1 4-(2-Phenylpropan-2-yl)-N-[4-(2-phenylpropan- 
2-yl)phenyl]aniline

15 Non-tested

25155-18- 4 Methylbenzethonium chloride 15 Non-tested

5137-55-3 N-methyl-N,N-dioctyloctan-1-aminium chloride 15 Non-tested

63449-41- 2 C8-18-Alkydimethylbenzyl ammonium chlorides 15 Non-tested

68959-20- 6 N,N-didecyl-N-methyl-3-(trimethoxysilyl)
propanaminium chloride

15 Non-tested

8001-54-5 Benzalkonium chloride 15 Non-tested

81-88-9 Rhodamine B 15 Non-tested

41372-20- 7 Apomorphine hydrochloride hydrate 14 Non-tested

51229-78- 8 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane, 
1-(3-chloro-2-propenyl)-, chloride

14 Non-tested
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continuous models. GAs were coupled with these methods and 
used for feature selection to pick the most appropriate molecular 
descriptors for each model. High-accuracy classification and regres-
sion models were built using the curated data and then validated 
in fivefold cross-validation. In order to minimize the risk of over-
fitting that could affect the predictability of the models, a mini-
mum number of descriptors and balance between fitting and 
validation performance were maintained as much as possible. For 
categorical models, the balance between Sn and Sp was taken into 
consideration.

The active chemicals from the training set and the chemicals 
predicted to be active presented similar structural features and high 
promiscuity due to the high similarity among the 18 assays.

This modeling procedure will be first extended on the remaining 
GPCR assays and then all ToxCast assays with a sufficient number 
of actives to carry a QSAR study and build accurate models. 
The built models will be used to prioritize a list of ~32 k unique 
chemicals called the “human exposure universe,” which covers a 
wide range of man-made chemicals identified by the EPA as having 
significant potential for high exposure for humans.

Disclaimer

The views expressed in this paper are those of the authors and do 
not necessarily reflect the views or policies of the US Environmental 
Protection Agency.
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    Chapter 17   

 Taking Advantage of Databases                     

     Glenn     J.     Myatt      and     Donald     P.     Quigley     

  Abstract 

   Toxicity databases are a useful resource to support hazard and risk assessment. They are used to retrieve 
historical studies for compounds of interest and to support toxicity predictions where no data exists. 
Toxicity predictions are either based upon study results from similar chemicals or prediction models built 
from these databases.  

  Key words     Toxicity databases  ,   QSAR models  ,   Statistical-based  ,   Structural alerts  ,   Expert rule-based  , 
  Read across  ,   In silico methods  ,   Expert review  

1      Introduction 

 Toxicity databases are a critical resource to support making deci-
sions on the safety of new or existing chemicals. These databases 
can be used to identify whether a study has previously been per-
formed on a particular compound. By identifying the study, it may 
be possible to avoid unnecessarily repeating the study and make a 
hazard or risk assessment directly from the search results. Toxicity 
databases are also a critical resource to support predicting toxic 
effects where no studies exist. For example, suitable analogs may 
be identifi ed from the database and the results from studies on 
these similar compounds used to make a prediction. This approach 
is often referred to as  read across  [ 1 – 4 ]. Another common meth-
odology for making predictions is to use Quantitative Structure-
Activity Relationship ( QSAR ) models [ 5 ,  6 ]. These models are 
built using information derived from a toxicity database, including 
the chemical structures and an endpoint such as whether the com-
pounds are mutagenic or non-mutagenic. A second methodology 
commonly used for making predictions is referred to as  expert 
rule-based or alerts  [ 5 ,  7 ]. A prediction is made when an alerting 
structural feature is present in the test compound. Again, toxicity 
databases play an important role in quantitatively assessing the 
predictivity of any alert (that may have been identifi ed from the 



384

literature or other sources), supporting the identifi cation of new 
alerts as well as the refi nement of existing alerts. It is becoming 
commonplace to assess the predictions from these different meth-
odologies as part of an expert review that includes an  inspection of 
how the results were calculated as well as the results from analogs 
in toxicity databases. Toxicity databases are also being used in 
other ways such as supporting the validation of new in vitro meth-
ods [ 8 ], helping to understand the thresholds of toxicological 
concern (TTC) [ 9 ], supporting the prioritization of chemicals to 
test [ 10 ], and supporting electronic transfer of information to 
regulatory agencies [ 11 ]. 

 The primary users of toxicity databases are informaticians, tox-
icologists, and researchers developing new methods. Access to 
these databases is important to all three communities; however, 
their use is different. Informaticians use these databases to extract 
knowledge as expert alerts and to build predictive QSAR models. 
For toxicologists making safety decisions, identifying historical 
studies on the test compounds as well as analogs is a critical require-
ment as well as access to alerts and models to make predictions. 
Historical databases can also be used to help generate a study 
design as well as the interpretation of new study results, i.e., were 
there any historical studies with a particular fi nding under specifi c 
conditions? Toxicologists also need to generate reports, including 
submissions to regulatory agencies, which may also require the 
generation of electronic formats of study data from these data-
bases. Researchers developing new methods also make use of these 
databases to develop new approaches and to ensure these new 
approaches are validated against historical data. 

 To support the variety of uses and user communities, toxicity 
databases include a wide variety of information on the compounds 
tested alongside details on the toxicity studies performed. This 
study information describes the experimental design and protocols 
and individual test results such as histopathology fi ndings reported. 
Overall study calls, such as whether the compound tested positive 
or negative and what the No Observed Adverse Effect Level 
(NOAEL) was calculated to be, are also included. These databases 
cover different study types including acute toxicity, carcinogenicity 
and genetic toxicity, reproductive and developmental toxicity, as 
well as repeated dose studies. The databases may also contain calls 
for certain toxicity endpoints derived from multiple studies that 
may have been performed in different laboratories. The database 
may also contain links for studies performed on different tested 
forms for the same chemical (e.g., different salt forms) as well as 
links to actual publications. 

 The following chapter outlines a number of practical case stud-
ies describing how to take advantage of toxicity databases. The fi rst 
case study outlines how to look up information on a specifi c com-
pound. Next, a number of approaches to identifying chemical 
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analogs and using data on these analogs to assess the chemical’s 
hazard are reviewed. The next case study describes a series of steps 
to extract knowledge from toxicity databases and encode this 
knowledge as expert rules or alerts. Toxicity databases are used to 
build QSAR models that can be used to estimate toxic effects. Case 
studies illustrating how to build and use QSAR models are 
described. Since predictions from multiple methodologies are 
becoming increasingly common, expert reviews are needed to 
assess any confl icting data or predictions. These case studies will be 
illustrated using the Leadscope software and databases [ 12 ].  

2      Using Toxicology Database to Identify Historical Studies 

   Leadscope constructs and maintains a series of toxicity databases 
ranging from general toxicity to study-type-specifi c databases with 
graded experimental compound-level call data, to smaller source-
specifi c study-type databases from regulatory sources. 

 The Leadscope Toxicity Database is comprised of chemical 
structures and toxicity study data from RTECS [ 13 ,  14 ], US EPA 
DSSTox [ 15 ,  16 ], NIEHS NTP chronic studies [ 17 ], and the 
Master Table skin sensitization data set [ 18 ]. Together, these 
sources cover acute, multiple dose studies including subchronic 
liver toxicity, carcinogenicity, genetic toxicity, developmental and 
reproductive, and irritation endpoints. 

 There are two structure-activity relationship (SAR) databases, 
covering the carcinogenicity and genetic toxicity study types, that 
contain validated chemical structures where a SAR form of the 
chemical has been derived (removing salts, charges, etc.) from the 
parent form of the chemical and associated with graded endpoint 
calls calculated using the underlying study data [ 19 ]. The SAR 
Genetox Database contains the original (parent) compound 
records along with derived SAR records and genetox detailed study 
records from the US FDA’s Center for Drug Evaluation and 
Research (CDER) pharmacology/toxicology reviews for new drug 
applications (NDA), as publicly available approval packages [ 20 ], 
the FDA Center for Food Safety and Applied Nutrition (CFSAN) 
Food Additive Resource Management system (FARM) and prior-
ity-based assessment of food additives (PAFA) database [ 21 ], the 
National Toxicology Program’s (NTP) genetic toxicology data-
base [ 22 ], the Chemical Carcinogenesis Research Information 
System (CCRIS) [ 23 ], and other primary data sources [ 24 ]. The 
SAR Carcinogenicity Database also includes the parent and SAR 
forms of the chemical records with carcinogenicity data from FDA 
CDER NDA (new drug application), FDA CFSAN FCN (Food 
Contact Notifi cation), NIH NIEHS NTP, CCRIS, EPA DSSTox 
CPDB [ 25 ], and other primary data sources. 

2.1  Background
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 The regulatory databases include study-type-specifi c data cov-
ering acute toxicity, genetic toxicity, chronic/subchronic toxicity, 
and reproductive/developmental toxicity from the FDA CFSAN 
and CDER sources along with the Marketed Drugs Database. 

 In the Leadscope databases, there generally are three types of 
data—the chemical compound record, data linked to the chemical 
compound record, and detailed study data associated with the 
chemical compound organized using the ToxML format [ 26 ,  27 ]. 

 ToxML is a richly defi ned ontology including toxicity-based 
fi elds and controlled vocabulary that covers numerous toxicity 
endpoints (or study types) curated in the Extensible Markup 
Language (XML) [ 26 ,  27 ]. The goals of this publicly available 
schema are to capture, integrate, and standardize toxicity data 
down to the dose-treatment level while providing aggregated sum-
mary calls at the study and compound levels. Owing to the depth 
of the data recorded in this format, end users can perform a range 
of tasks spanning the retrieval of experimental results to incorpo-
rated aggregated calls in a data mining or predictive modeling role. 
In general, the ToxML schema partitions toxicity study data into 
compound, study, test, and treatment levels. This relationship links 
the chemical structure to aggregated endpoints for inclusion in a 
predictive model and to detailed experimental results supporting 
the call. 

 The toxicity databases represent numerous, disparate toxicity 
study sources that have been normalized and then transformed 
into the ToxML schema allowing multiple study types to be seam-
lessly merged for each compound record. All chemical structure 
records are validated and then verifi ed as chemically unique. This 
concurrent linking of compounds and toxicity studies followed by 
their transformation into a rigorous domain-specifi c ontology 
coalesces the once disparate sources into a format that can be 
searched in a more robust, consistent and repeatable manner. The 
toxicologist is consequently able to search, retrieve, and review 
compound and toxicity study records and extract specifi c dose-
treatment data that can be transformed to a summary response. 

 The Leadscope search tool, referred to as the Search View in 
the Leadscope client, allows users to query the Leadscope Toxicity 
Database using several query types including chemical structure 
queries (e.g., exact, substructure, and similarity searches), toxicity 
study queries using query forms constructed from the ToxML 
schema, an assortment of names and IDs (e.g., chemical name, 
trade name, Leadscope ID, or CAS Registry Number), text and 
numeric endpoint properties (e.g., SAR database toxicity calls, 
endpoint values, chemical calculated properties), and source. The 
search tool also provides a query editor where different search ele-
ments (e.g., combining chemical similarity structure search with 
specifi c toxicity study terms) can be combined into a single query 
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using Boolean logic. There is also an extensive set of visualization, 
exporting, and reporting options for investigating the search 
results. 

 The intent of this section is to become familiarized with the 
Search View interface by providing a functional overview of the 
interface, demonstrating example search queries, and covering 
options for reviewing and exporting search results.  
  
 The Search View is the search and retrieval interface in the 
Leadscope client. It is comprised of four main areas: a toolbar, the 
search type section, the search form section, and the search query 
editor (Fig.  1 ).

   The  toolbar  includes options for reviewing and manipulating 
search results and saving collections of compounds identifi ed as a 
project. The  search type  section is a hierarchically organized browser 
of the available search forms. This section includes the following 
groups of search forms:

 ●    By name—this includes search entry forms for compound 
ID (the Leadscope Registry ID), CAS ID, InChI, any 
name, and molecular formula.  

2.2  Search Overview

  Fig. 1    Leadscope Search View overview       

 

Taking Advantage of Databases



388

 ●   By structure—here you can select to search using chemical 
structure queries including exact, family, similar, and 
substructure.  

 ●   By data set values—this group includes property data sets.  
 ●   By genetox study types—here you will fi nd numerous 

genetox search forms (such as bacterial mutagenesis).  
 ●   By in vivo repeated dose study types—these include several 

chronic, subchronic, reproductive and developmental, and 
carcinogenicity search forms.  

 ●   By in vivo single-dose study types—here you will fi nd the 
acute toxicity search form.  

 ●   By skin sensitization study types—this section includes the 
local lymph node assay study search form.  

 ●   By known drug information—this section contains search 
forms relating to the Leadscope Marketed Drugs Database 
content module and includes search forms for therapeutic 
categories, drug product, and the Physician’s Desk 
Reference (PDR).  

 ●   By data set values—this section includes search forms for 
properties (either provided as Leadscope content or your 
own data).  

 ●   By collection—here you can limit your source to a library 
(source ID) or a Leadscope project.  

 ●   Other—this section includes a form named “text” where 
you can enter wildcard searches that are not included in any 
of the other search forms.    

 The  search form  section provides more detailed selection or 
entry of the search elements specifi c to the  search type . For exam-
ple, the  by genetox study type -> bacterial mutagenesis  search form 
contains search terms specifi c to bacterial mutagenesis categorized 
by study information, such as study source or study identifi ers, 
along with information pertaining to the test, including the test 
system, test conditions, and test results (Fig.  2 ). Each of these 
terms can be individually selected and included in the search query.

   The Search View allows complex search queries to be assem-
bled and refi ned with the  search query editor . Several edited search 
forms can be combined in the  query editor  and are represented as 
new rows in either the  Search For  or  Limit By  fi elds. Between each 
of these rows, an operator can be selected specifying the logic to 
combine the entries. There is no limit to the number or type of 
search elements that can be included in the query editor. 

 Each search form is added to the editor as either a  Search For  
or  Limit By  element (Fig.  1 ). Specifying a query element as  Search 
For  adds it to the set of query targets, while the  Limit By  element 
constrains the query results. This distinction allows a  Limit By  
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query element to be distributed across multiple  Search For  ele-
ments (following the distributive law). For instance, to retrieve 
chemical structures similar to a query substance that contain data 
for one of several different study types, each study type would be 
added to the  query editor  using the  Search For  operation, then the 
structure similarity query would be added with the  Limit By  opera-
tion, effectively applying parentheses around the query elements in 
the  Search For  fi eld and distributing the  Limit By  query to them as 
shown in Eq.  1 .

   Limit By Search For Search For Search ForAND AND AND( )    ( 1 )    

Each time a search element is added to the query editor with either 
the  Search For  or  Limit By  operation, it will be added to the query 
as a new row in the appropriate section with a choice of operators 
defi ning how the element relates to the previous row. The opera-
tors relating each query element are listed below.

  Fig. 2    Example search form terms for bacterial mutagenesis       
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 ●    AND—this will search for compounds containing both 
query elements.  

 ●   And in Study—this will search for both query elements 
occurring in the same study.  

 ●   OR—this will search for either query.  
 ●   Or in Study—this will search for either query in the same 

study.  
 ●   MINUS—this will fi nd all of the results from the fi rst query 

minus any that occur in the second query.    

 For example, in Fig.  3 , two search form elements in the  genetox 
study types -> bacterial mutagenesis  study type—the NTP source 
and  Salmonella typhimurium  species—were added to the  search 
query editor  with the  Search For  operation as separate rows allow-
ing for the selection of an operator between each row, in this case 
the operator chosen was  And in Study.  A structure similarity (40 % 
similar to acetylsalicylic acid) query was then added to the query 
with the  Limit By  operation (Eq.  2 ).

    

40%similar toAcetylsalicylic acid AND
having a bacterial mutagenessis study
from NTP AND IN THE SAME STUDY
with test results forSalmonellla typhimurium

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
   

( 2 )

    

When the query has been constructed, it can be executed by click-
ing the  Search  button. To modify the query, the elements can be 
modifi ed by clicking the  Edit  button at the end of the query row 
and then updated in the  search form  section by clicking the  Update 
Query  button. A query row can also be deleted by clicking the 
 Delete  button at the end of the row.  

   One of the most overlooked uses of a toxicity database is to be able 
to identify historical studies for a particular chemical that would 
help to avoid performing the test again. 

 The Search View allows searching by the registered compound 
ID (the Leadscope, or LS-ID), CAS Registry Number, name, or 
other ID. This example illustrates how to perform a basic search 
using the compound name. 

2.3  Searching 
by Compound Name or 
ID

  Fig. 3    Search query editor example       
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   This example will illustrate how to search across the toxicity data-
bases for compounds containing the name  naproxen .

    1.    To perform a query by chemical name, select the  by name  
search type in the Search View .    

   2.    There are several choices to search  by name  shown as links in 
Fig.  1 , including:

 ●    Compound ID—the unique identifi er used when the 
chemical was loaded into Leadscope.  

 ●   CAS—the Chemical Abstract Service (CAS) registration 
number.  

 ●   Other ID—this will search the Beilstein Handbook ID, 
EC-Number, DSSTox RID, DSSTox SID, DSSTox CID, 
or NIEHS NTP ID.  

 ●   Any ID—search against any of the IDs.  
 ●   Name—this will search for chemical names, trade names, 

and synonyms.  
 ●   InChI—this will search the InChI identifi ers.  
 ●   Molecular formula—this will search the molecular formula 

of a query chemical.      

2.3.1  Example: Search 
by Compound Name

  Fig. 4    Enter naproxen in name search form       
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   3.    Select the  name  link to open the corresponding  search form .   
   4.    In the  search form , enter the compound name  naproxen  such as 

in Fig.  4 .
       5.    Click the  Search  button at the bottom of the page to execute 

the query.    
  The results will be returned in a  Structure  table with each com-

pound record that contains the name  naproxen  in a grid view 
(Fig.  5 ). The underlying study information is retrieved by double-
clicking on the compound of interest (described in Subheading  2.7 ).

       A useful approach to take advantage of toxicity databases is to 
search for specifi c toxicity study data. To support read-across anal-
ysis for estimating toxicity, database searching for analogs with spe-
cifi c types of data is required [ 1 – 4 ]. These analogs may be based on 
a structure-based search (such as a similarity or substructure 
search); however, they may be based on a similar profi le of biologi-
cal properties. Substructure search results may include additional 
information on the mechanistic rationale (chemical category) that 
provides a level of confi dence that compounds containing this sub-
structure share a common mechanism. Searching for toxicity data 
can also help fi nd other studies where a specifi c fi nding was reported 
to support interpreting test results. 

2.4  Searching 
by Toxicity Study 
Details and Findings

  Fig. 5    Naproxen search results       
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 The  search form  section includes the search fi elds and terms for 
each of the study types. In the case of the toxicity study search 
forms, they are organized by study information including source 
and identifi ers along with test information including test system, 
test condition, and test results (study calls are included under the 
test results). Multiple selections can be made in a search form, and 
each element will be combined into the same line of the  query edi-
tor  with an “OR” statement. In this manner, the search form selec-
tions can be combined with other types of searches, such as by 
chemical structure (as described in the Search Overview section). 
Chemical similarity searching in Leadscope compares two com-
pounds based on the Leadscope set of chemical features (greater 
than 27,000 chemical fragments). This pair-wise comparison is 
performed using a Tanimoto coeffi cient—a ratio of the chemical 
fragments in common with the total fragments contained in both 
chemicals. 

   In this example, the toxicity databases will be searched for com-
pound records containing bacterial mutagenesis results from the 
NTP source that are chemically similar to the compound caffeine.

    1.    Open the structure similarity search form by clicking  by struc-
ture -> similarity  in the  search types  section; click browse in the 
search form to select the caffeine MOL fi le; and click  Search 
For  to add this form with the default search parameters to the 
query (Fig.  6 ).

2.4.1  Example: Search 
for Toxicity Study Data

  Fig. 6    Similarity search for caffeine       
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       2.    To add the bacterial mutagenesis study type, open the  genetox 
study types -> bacterial mutagenesis  form.   

   3.    The fi rst search fi eld in the bacterial mutagenesis form is the 
source fi eld; select the “ntp” term, and then click the  Search 
For  button to add this form to the query (Fig.  7 ).

  Fig. 7    Search bacterial mutagenesis studies by the NTP source       

  Fig. 8    Search results—records similar to caffeine with bacterial mutagenesis study data from the NTP       
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       4.    Now, click the  Search  button at the bottom of the  Search View  
page to execute the query.   

   5.    The results will be displayed as a series of chemical compounds 
in a grid view with the similarity score reported in the upper-
left corner of each record (Fig.  8 ).

           Search results in Leadscope display the chemical compound records 
matching the query. Results are organized by chemical compound 
and can be viewed in a structure grid, spreadsheet, or graph visual-
ization. Alternatively, the search results can be viewed using toxic-
ity study data as the key rather than chemical compound record.  

   The default search result visualization is the  Structures  view, where 
the compound records that match the search criteria are displayed in 
a grid. There are three visualization tabs for examining search results:

 ●    Structures—this is the default view, displaying each of the 
search result chemicals as individual cells.  

 ●   Spreadsheet—this tab displays the search results in a molec-
ular spreadsheet. Here you can add additional text or 
numeric property values, toggle the display of the chemical 
structures, sort by columns of data, and display chemical 
names and IDs. The molecular spreadsheet view is the most 
frequently accessed of the views and affords the most 
fl exibility.  

 ●   Graphs—here you can view the search results in either histo-
gram or scatterplot graphs plotted against numeric properties.    

 The ToxML study results can be displayed for each compound 
record by selecting the record and double-clicking. While this is use-
ful for drilling down into the individual compound record, it may 
also be desirable to view aggregated data from the underlying toxic-
ity studies in the spreadsheet. Consequently, any numeric or text 
data associated with the search result compounds can be added to 
the molecular spreadsheet or included as endpoints in the graph 
view. However, the utility of this visualization is limited to only com-
pound-level summary endpoints. Therefore, there is an option to 
 Display Studies  for the search results, populating the  Study Summary 
Table  with a view pivoted at the ToxML study level. In this view, the 
chemical compound records are repeated for each study entry. 

 The results can be exported in several of ways for all the results 
or a selected subset. The high-level information in the search result 
spreadsheet can be exported to a chemical structure fi le with or 
without data associated with the structures, without the chemical 
structure to a text or Microsoft® Excel spreadsheet fi le, as the 
Leadscope chemical fi ngerprint of the structures, or the current 
molecular spreadsheet itself to a text or Excel spreadsheet. The 
results can also be printed to a PDF fi le or included in a 

2.5  Search Results

2.6  Viewing 
and Extracting Study 
Summary Data
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preformatted report .  The detailed search results can be exported in 
a similar fashion using the  Export Table ,  Print PDF , or  Publish 
Report  options in the  Study Summary Table  toolbar. 

   To view study data in the spreadsheet view, there are two options 
depending on the level of data to be presented. For high-level data, 
such as high-level compound calls, chemical name, or identifi er, 
the user can choose to  Add/Remove Columns  to the search result 
spreadsheet. If the desired level is to display more detailed study 
data, test results, or treatment data in the spreadsheet, then the 
Display Studies function is available in the Search View toolbar. 

 To add high-level ToxML data or numeric/text properties to 
the spreadsheet, users can select the  Spreadsheet  tab and then right-
click the  Structure  column header and select  Add/Remove Columns.  
This will open the  Add/Remove Columns  interface where it is pos-
sible to select a column type (such as IDs, numeric data, etc.) and 
add them to the spreadsheet by clicking the  Add Column  button. 
For example, the  Chemical Name  column and a  Numeric Dataset  
could be added to the spreadsheet (Fig.  9 ).

   To add detailed ToxML study data to the spreadsheet, click the 
 Studies  button on the toolbar opening the  Study Summary Table  in 
a new window. The default view is to pivot the study data at the 
 Study  level of the underlying ToxML data; each compound record 
will be repeated for each study type and include the chemical struc-
ture, CAS Number, study type, study call, test calls, species, refer-
ences, and source columns (Fig.  10 ).

   For this example, to identify the  Bacterial Mutagenesis  test results 
for these structures, sort the  Study Type  column by clicking it (Fig.  11 ).

2.6.1  Example: View 
Study Summary Data

  Fig. 9    Add/Remove Columns       
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  Fig. 10    Study Summary Table       

  Fig. 11    Sorted Study Summary Table       
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   In these results, the test details ( Test Calls ,  Species ) with counts 
in parentheses will be shown as a list in the cell. For example, the 
CCRIS study (Kuboyama et al. entry) for the chemical LS-124738 
includes the test calls  Negative  [ 10 ] ,  indicating the study has ten 
test results reported as negative. 

 The high-level results can be exported as an SDF fi le and a 
molecular spreadsheet fi le or to a report in either RTF or PDF.   

    For a more detailed review of the ToxML study data available for 
an individual compound, the data is available in a drill-down fash-
ion by simply double-clicking the compound opening a new 
 Compound Details  window. 

   In this example, the full study details for a compound with the 
Leadscope ID LS-124738 are retrieved. Double-clicking the 
search result record for LS-124738 will open the  Compound 
Details  window. Here the structure image, along with a Compound 
tab containing IDs, names, and associated compound links and 
each of the study types with associated ToxML data, is presented. 
For LS-124738, there are tabs for the compound information and 
genetox, acute toxicity, multiple dose, reproductive/developmen-
tal toxicity and irritation study types (Fig.  12 ).

2.7  Accessing 
the Full Study 
Information

2.7.1  Example: Full 
Study Details

  Fig. 12    Compound details for LS-124738       
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   Each tab contains high-level numeric and text properties for 
the compound record from relevant endpoints along with a study 
table providing high-level summary data for each study. For 
instance, opening the genetox tab for the LS-124738 record will 
show the high-level data available from the SAR Genetox Database 
for the compound followed by a spreadsheet of the numerous 
study records (Fig.  13 ).

   Each of the studies can be displayed in a  tree view  showing the 
ToxML organization of the study by double-clicking the row or 
selecting the row and choosing the  Details  button. For this exam-
ple, selecting the fi rst study on the list in Fig.  13 —the CCRIS 
study from “Kadotani et al. (1984)”— will display all the details 
available for that study in the  tree view  (Fig.  14 ).

   The ToxML tree is generally organized by study, test, and 
treatment levels. In Fig.  14 , the study level contains the study type, 
study calls, study report number, and references. The test level 
contains test system details such as species, strain, and metabolic 
activation and test  conditions such as solvent vehicle, experiment 
ID, test ID, and assay technique, along with negative and positive 
test control information such as the control compound name and 
the treatment results for the control. The treatment level contains 
each of the doses and the treatment results including any com-
ments, precipitation, cytotoxicity, and treatment- related outcomes 
or effects.    

  Fig. 13    Genetox study data available for LS-124738       
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3    Extracting Knowledge from Databases 

   It is possible to take advantage of historical toxicity databases to 
identify different chemical classes that are associated with toxic 
effects or mechanisms. These relationships are often encoded as 
structural alerts and used to support the prediction of toxicity [ 5 , 
 7 ]. They can also be used to support the design of new compounds 
with a lower toxicity risk. Here we defi ne six steps for identifying 
alerts from a toxicity database (Fig.  15 ): (1) search the database; 
(2) prepare the reference set; (3) generate groupings for the chem-
icals; (4) assess any associations between the grouping of the chem-
icals and the toxicological response, for example, is there an usually 
high number of positive examples in the group; (5) further qualify 
the structural classes to determine whether there is a mechanistic 
rational for the alerting substructure; and (6) identify any activat-
ing or deactivating factors.

3.1  Background

  Fig. 14    ToxML Tree View       
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   The fi rst step is to search toxicity databases for relevant infor-
mation on the types of effects and/or chemicals that are the target 
of the project (as described in Subheading  2 ). In a similar way that 
a training set is prepared for building a QSAR model, a data set 
(sometimes referred to as a reference set) should be put together. 
This set should include the tested chemical structure along with a 
value for the overall call, such as positive or negative, or a No 
Observed Adverse Effect Level (NOAEL). The overall call for an 
individual compound may have been derived from one or more 
studies, based on either a series of rules or expert judgment or 
both. It is important to document the process and reasons for the 
individual calls. The linkage between the underlying study data and 
the overall compound call should also be retained as it will be par-
ticularly useful to help in understanding the data behind an identi-
fi ed chemical class of interest. 

 The next step is to group the chemicals. There are multiple 
approaches to grouping sets of chemical structures (illustrated in 
Fig.  16 ). A number of common approaches are summarized here:

 ●      Alerts from the literature : Various publications may have 
identifi ed one or more chemical structural features that are 
associated with either an effect or a specifi c biological 
mechanism. These alerting features can be coded as sub-
structure searches and used to group chemicals. As an 
example, the authors Ashby and Tennant published a series 
of substructures considered to be either directly or indi-
rectly DNA reactive [ 28 ].  

 ●    Predefi ned substructures : Dictionaries of predefi ned sub-
structures can also be used to group reference sets by 
chemical classes. Examples of these dictionaries include the 
MDL fi ngerprint [ 29 ] and the Leadscope 27,000 feature 
hierarchy [ 30 ,  31 ]. This approach to grouping the refer-
ence set is not based on any known relationships to the 
target effect or mechanism, and the compound will invari-
ably be a member of more than one chemical class; how-
ever, these attributes are useful in identifying new alerting 
structures (using the biological response data to prioritize 
the features of importance, described in a later step).  

1. Search
database

2. Prepare a
reference set

3. Group 4. Quantity
endpoint
associations

6. Refine
groups

5. Qualify
biological
significance

-Define and search for
compounds with
specific endpoint,
effects, or mechanism

- Grade overall call
- Normalize
- Generate SAR
structure forms

Literature alerts

Clustering
Decision trees
R-group analysis

Predefined
substructures
Automatically
generated
substructures

•
•

•
•
•

- Calculated
statistical tests

- Understanding of
biological mechanism
- Understanding
underlying data

- Identify activating
factors
- Identify
deactivating factors

  Fig. 15    Steps in identifying expert alerts from a toxicity database       
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 ●    Substructures generated on-the-fl y : Despite the availability of 
large dictionaries of available substructures, it is not possi-
ble or practical to generate a dictionary covering all possi-
bilities. Hence, methods for identifying larger and/or more 
complex substructure fragments to use in grouping pro-
vides a useful complementary approach. The generation of 
the scaffold fragments is usually directed toward some cri-
teria. One possible criterion is size, such as the largest sub-
structure that is common to a set of chemicals (e.g., 
maximum common subgraph). Another criterion is to use 
the biological response data to guide the generation, such 
as the generation of substructures containing compounds 
that are predominantly positive for the data of interest [ 32 ].  

 ●    Decision tree approaches : There are many approaches to 
generating decision trees, but all generally identify groups 
of chemicals based upon the presence and absence of one 
or more features. In the classic decision tree method, the 
fi rst step is to identify the feature (such as a chemical sub-

  Fig. 16    Example where a set of chemicals and associated data are grouped       
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structure) that most cleanly separates the chemicals into a 
set of predominantly positive and predominantly negative 
examples (in the case where the response data is binary) or 
predominantly high values and low values (in the case 
where the response data is continuous). The reference set is 
then split into two subsets, one subset containing the 
selected feature and the other subset containing the remain-
ing examples not containing the feature. Both these subsets 
are examined in a similar manner. Again a feature is identi-
fi ed that best splits the sets, and they are again divided 
based on the presence and absence of this feature. This pro-
cess of examining each generated subset to identify the 
“best” feature to split the set upon is repeated until some 
termination criteria is met (such as the set only contains all 
positive or all negative examples). A decision tree is gener-
ated with the criteria used to split the observation recorded 
on the branches of the decision tree. Each node in the tree 
is therefore a set of compounds, and the defi nition of the 
subset is derived from tracing the tree to the initial set. 
Hence, each node represents a set of compounds based on 
the presence or absence of one or more features [ 33 ].  

 ●    Clustering : This is an approach to grouping sets of chemi-
cal structures that are generally similar [ 34 ]. The most 
common approach to calculating structural similarity is to 
use a dictionary of predefi ned substructures. These sub-
structures are matched against all compounds in the set to 
produce a table where each row is an individual chemical 
and each column is an individual substructure. The pres-
ence or absence of an individual substructure is shown with 
a 1 representing presence and a 0 representing absence. A 
similarity score is then calculated based on the number of 
common or different values (the Tanimoto score is most 
often used as described in Subheading  2 ). All clustering 
approaches employ a measure of similarity between two 
examples as the basis for the clustering. Certain clustering 
approaches, such as agglomerative hierarchical clustering, 
will generate a hierarchical dendrogram showing the rela-
tionships between individual or groups of observations. A 
fi nal step is required to identify groups that are formed at a 
specifi ed distance value. Other approaches, such as Jarvis 
Patrick or k-means clustering, require that a specifi c num-
ber of clusters be identifi ed beforehand and will only gener-
ate this number of groups.  

 ●    R-group analysis : Where a series of chemicals share a com-
mon core substructure, then an R-group analysis may be 
appropriate to help understand what substituent or combi-
nation of substituents are of interest.    
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 Data from the entire reference set can be used as a baseline 
when considering the importance of each group. You would expect 
that any subset containing a random sample of observations from 
the entire set would have a similar mean value as the entire set. To 
help understand the importance of any group, it is useful to com-
pare the mean value for the group against the mean value for all 
observations. This helps determine any association between being 
a member of this group and a positive or negative outcome. 
Statistical tests can be used to quantify any association, such as a 
chi-square test,  t -tests, or a  z -score test, and used to prioritize the 
groups [ 35 ]. These tests help in understanding whether there are 
enough examples to conclude that a statistically signifi cant associa-
tion exists. 

 It is highly unlikely that any data set would have been specifi -
cally designed for this analysis. Hence, it is important to look in 
more detail at the chemicals, the data, and any mechanistic inter-
pretation from the literature or other sources. For example, there 
may be a statistically signifi cant association between a particular 
class and the biological response data; however, when inspecting 
the chemicals matching the group, a number of well-known alert-
ing substructures might also be present. The group identifi ed was 
merely coincidentally present in the same set of compounds and 
hence should be considered irrelevant. 

 Even when the group has a statistically signifi cant association 
with the data and a plausible biological explanation, it is still pos-
sible that subsets within the group are strongly associated and/or 
not associated with the biological response. This may be attribut-
able to factors that activate and/or deactivate the activity of the 
alert. A similar process is described to identify and qualify alerts 
that can also elucidate the reasons for activation and deactivation. 

   The following example illustrates how toxicity databases can be 
used to identify structural alerts for bacterial mutagenicity. 

  Step 1: Search the data . The Leadscope 2015 SAR Genetox 
Database [ 19 ] was searched for compounds containing bacterial 
mutagenicity studies. 

  Step 2: Prepare a reference set . The results from this search were 
prepared into a reference set to use in this analysis. This included 
generating a graded binary endpoint where 1 represents a positive 
bacterial mutagenicity study result and 0 a negative bacterial muta-
genicity study result. Where more than one study was performed 
on the same chemical in the same or different laboratory, a grading 
scheme was used to assign an overall call. In addition, where differ-
ent forms of the same parent chemical structure were tested, these 
results were also consolidated. 

  Step 3: Group . In this example, the Leadscope predefi ned fea-
tures were used to group the reference set generated, as illustrated 
in Table  1  [ 31 ]. Each row represents a group and the number of 

3.1.1  Example: 
Extracting Knowledge 
and Coding Alerts
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matching chemicals is also shown. For example, there are 754 
compounds in the reference set containing an aromatic nitro func-
tional group (Nitro, aryl-).

    Step 4: Qualify endpoint association . The number of positive 
and negative examples was determined for each of the groups and 
compared against the number of positive and negative examples in 
the entire reference set. To quantify any association, a  z -score test 
was calculated to determine the number of standard deviations the 
mean of the group is from the mean of the entire set. This  z -score 
is used to prioritize the features, and some features with high 
 z -scores are shown in Table  1  along with a count, the mean, and 
 z -score values. The fourth alerting structure in the table is an aro-
matic primary amine (Amine(NH2), aryl-) which matches 635 
chemicals in the reference set. 67.4 % of the examples in this set are 
positive since the mean is 0.674. A  z -score of 13.19 is used to 
quantify this association and prioritize the alerts. 

  Step 5: Qualify the biological signifi cance . A literature search 
was conducted to determine whether there is any evidence of their 
biological signifi cance such as whether there is a plausible mecha-
nism. It was published that primary aromatic amine mutagenicity 
initially involves metabolic activation, mediated by cytochrome 
P450 (primarily CYP1A2), to a hydroxylamine. This may undergo 
further activation (O-acetyltransferase, N-acetyltransferase, sulfo-
transferase) or direct hydrolytic disassociation resulting in forma-
tion of a nitrenium ion that forms covalent adducts with DNA 
[ 36 – 38 ]. This knowledge combined with the statistical association 
provides strong evidence of the importance of this class. In addi-
tion, there is evidence that some of the matching chemicals also 

    Table 1  
  Candidate mutagenicity alerts identifi ed using predefi ned structural features along with an 
assessment of the association with the bacterial mutagenicity data   

 Name 
 Frequency: bacterial 
mutation 

 Mean: bacterial 
mutation 

  z -Score: bacterial 
mutation 

 Nitro, aryl-  754  0.8064  22.28 

 Benzene, 1,2,3,4-fused  375  0.8827  18.33 

 Nitroso  171  0.883  12.2 

 Amine(NH2), aryl-  635  0.674  13.19 

 Chloride, alkyl, acyc-  288  0.7118  9.973 

 1,4-Benzoquinone  175  0.7886  9.788 

 Epoxide  222  0.7072  8.573 

 Bromide, alkyl, acyc-  103  0.7184  6.021 

Taking Advantage of Databases



406

contained other alerting substructures; however, even when these 
chemicals are not considered, there is still a suffi ciently strong asso-
ciation to qualify this alert as signifi cant. 

  Step 6: Refi ne group . Even though there is a strong association 
between chemicals containing a primary aromatic amine and posi-
tive bacterial mutagenicity data, there exist subclasses that both acti-
vate and deactivate aromatic amine mutagenicity. To explore this 
subset of aromatic amines in more detail, another grouping exercise 
was conducted on just the set of aromatic amines. In this example, 
the Leadscope predefi ned features were again used to group the 
chemicals. Again, the statistical association was quantifi ed using the 
 z -score and some of the results can be seen in Table  2 . This included 
three classes that appear to activate aromatic amine mutagenicity 
((1) benzene, 1-amino(NH2)-,3- amino(NH2)-; (2) benzene, 
1-amino(NH2)-,4-aryl-; (3) benzene, 1-amino(NH2)-,4-methyl-) 
as well as three classes that appear to deactivate aromatic amine 
mutagenicity. Again, the biological plausibility was considered by 
examining individual examples as well as fi nding a discussion of the 
biological signifi cance of these classes from the literature.

   The primary aromatic amine alert rule was encoded as part of 
the Leadscope expert alert system. This encoding included the 
structural features that both activate and deactivate aromatic amine 
mutagenicity. In Fig.  17 , two compounds were then predicted for 
bacterial mutagenicity using this expert alert system. Both com-
pounds were within the applicability domain of the expert alert 
system based on their similarity to compounds in the alert refer-
ence set. Compound LS-1806 contained an 1-benzene-sulfonate, 
3-amino(NH2)- that, based on the analysis, deactivates aromatic 
amine mutagenicity. Compound LS-1937 contains a benzene, 
1-amino(NH2)-,4-aryl- that, based on the analysis, activates 

   Table 2  
  Features identifi ed that activate or deactivate aromatic amine mutagenicity   

 Name 
 Frequency: 
bacterial mutation 

 Mean: bacterial 
mutation 

  z -Score: bacterial 
mutation 

 Benzene, 1-amino(NH2)-,3-amino(NH2)-  38  0.963  3.299 

 Benzene, 1-amino(NH2)-,4-aryl-  45  0.8889  3.188 

 Benzene, 1-amino(NH2)-,4-methyl-  26  0.8846  2.337 

 1-Benzene-sulfonate, 3-amino(NH2)-  21  0.2857  -3.857 

 1-Benzene-carboxylate, 2-amino(NH2)-  16  0.125  -4.741 

 1-Benzene-sulfonamide, 4-amino(NH2)-  15  0.06667  -5.075 
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aromatic amine mutagenicity. LS-1806 was correctly predicted to 
be negative [ 39 – 41 ], and LS-1937 was correctly predicted to be 
positive [ 42 – 44 ].

4         Using Toxicology Databases to Build QSAR Models 

   When combined with the toxicology databases, the Leadscope 
platform is a predictive analytics platform for toxicology. The 
Leadscope application for fully exploiting the toxicology databases 
is the set of Quantitative Structure-Activity Relationship (QSAR) 
predictive model tools, also referred to as the Predictive Data Miner 
(PDM) application. QSAR models are mathematical models that 
relate structure-derived features of chemical compounds as a set of 
predictors to a biological effect. The components of a QSAR pre-
dictive model include the chemical structure set, the response vari-
able data set, the predictors, and the model algorithm. In general, 
there are several approaches to QSAR modeling, and an in-depth 
discussion of each is beyond the scope of this chapter. Briefl y, varia-
tions in QSAR models occur due to the chemical structure infor-
mation used (e.g., 2D versus 3D), the type of response variable 
(e.g., continuous, binary, categorical), the model predictors (e.g., 
chemical fragments, 3D descriptors, numerical descriptors), and 
the algorithm employed (e.g., regression, classifi cation).  

   The Leadscope Predictive Data Miner (PDM) application module 
can be used to construct, edit, and review predictive QSAR 

4.1  Background

4.2  Constructing 
a Predictive QSAR 
Model

  Fig. 17    Prediction of aromatic amine mutagenicity based on an expert alert system       
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models. The modeling method used in the PDM leverages the 2D 
chemical fragments from the Leadscope feature library along with 
user-defi ned chemical features and calculated physicochemical 
properties as predictors of both continuous and discrete response 
variable data sets. The former response variable type is modeled 
using a nonlinear partial least squares (PLS) regression method 
[ 45 ] and the latter a partial logistic regression (PLR) method [ 46 ]. 
The PDM module streamlines the predictive model building work-
fl ow into a stair-step organization. This workfl ow begins with 
training set and response variable identifi cation and proceeds to 
the identifi cation of predictive features for inclusion in the model 
as knowledge, then to the assembly of the training feature set to 
model building and cross-validation, and fi nally the review of the 
prediction model (Fig.  18 ) [ 47 ].

   In addition to constructing predictive models, the PDM has 
functions for reviewing and editing models, assembling average 
models, applicability domain (AD) assessment, and model valida-
tion. Due to the complex nature of predictive model construction, 
other tools provided by the Leadscope platform are often employed 
including much of the functionality found in the  Project Browser  
such as the informatics tools  Clusters  and  Scaffolds , the  Property 
Function Editor , property fi lters, the molecular spreadsheet, and 
the subset generation tool [ 48 ]. Outside of the  Project Browser , the 
 SDF Editor  tool is often used for the creation of the QSAR-ready 
chemical structure training set .  

  Fig. 18    Leadscope PDM workfl ow       
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 The typical predictive data mining workfl ow in Leadscope has 
the following stages.

   Preprocessing—In this stage, the chemical structures and response 
variable data sets are cleansed. Both data and chemical struc-
ture outliers are identifi ed for possible removal, the chemical 
structure set is made “QSAR ready” through the stripping of 
salt fragments and deprotonation where necessary, and the 
fi nal training set is manually reviewed (Fig.  19 ).

     Model construction—The model construction phase involves the 
identifi cation of predictive features for inclusion and construc-
tion of the predictive model for review.  

  Model review, validation, and refi nement—The model is validated 
in a number of ways, against the actual values in the training 
set, using a cross-validation method, against an external valida-
tion set, and randomization of the response variable 
(Y-scrambling).    

   The Leadscope SDF Editor will be used to construct a chemical 
structure set from the US EPA Fathead Minnow (EPAFHM) train-
ing set available in the Leadscope Toxicity Database under the US 
EPA DSSTox source [ 12 ,  15 ]. The chemical structure set is 
intended to be used to train a QSAR model to predict freshwater 
aquatic toxicity and has been used to create models for narcosis. 
The potential training set initially includes 617 chemical structures 
associated with a 96-h fathead minnow LC 50  data set. 

       1.    The fi rst step is to open the EPAFHM project in the Leadscope 
Explorer by double-clicking it; this will open the  Project 
Browser  in a new window.   

4.2.1  Example: 
Assembling the Chemical 
Structure Set

 Preparing the Training Set

Potential (Q)SAR
model training

structures

Remove records
with no response

variable

Generate SAR
records

Manual review of
chemical records

(Q)SAR model
training structures

Remove
non-SAR
records

  Fig. 19    Chemical structure set refi nement for model building       
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   2.    In the project browser, chemical structures in the project with 
no Leadscope features can be rapidly identifi ed and removed. 
To do this, select the Compounds Without Features hierarchy 
node and then select the Exclude From Subproject option 
under the Subproject button in the  Project Browser  toolbar 
(Fig.  20 ).

       3.    There should now be 613 compounds in the subproject. Select 
the All Compounds hierarchy node and then export the proj-
ect to an SDF fi le using the  File -> Export -> Structures and 
Data  option, being sure to include the EPAFHM LC50 prop-
erty in the exported fi le (Fig.  21 ).

       4.    Launch the SDF Editor from the  Leadscope Explorer  and load 
the exported SDF fi le using  File -> Open SDF/MOL/SMILES…  
option. The structure fi le should open in the SDF Editor with 
the exported properties (Fig.  22 ).

          The SDF Editor is a collection of tools for manipulating chemical 
structure fi les based on chemical information and data. For the 
curation of the chemical structure training set, the SDF Editor is 
used to create SAR forms of the structure records. The SDF Editor 
will create a SAR form of the chemical structure by performing the 
following sequence of transformations on the record:

 ●    If a structure record has an empty connection table, or con-
tains a transition metal atom, or does not contain any car-
bon atoms, then a SAR form of the structure is not 
created.  

 ●   Inorganic salts, organic salts (from the Leadscope salt list), 
water fragments, explicit non-stereo hydrogen atoms, and 
duplicate fragments are removed from the structure.  

 ●   If the result has an empty connection table, or does not 
contain any carbon atoms or still contains multiple frag-
ments, then a SAR form is not created.  

 ●   All appropriate charges for the structure are neutralized, 
including some charge-separated species.  

 ●   Pentavalent nitrogen fragments are converted to charge-
separated species.    

 The following is an example procedure for cleaning the 
EPAFHM training structure set:

    1.    The fi rst step is to remove structure records from the SDF fi le 
with no response variable (EPAFHM LC50). To do this, sort 
the spreadsheet by the EPAFHM LC50 column, select 
the rows with no value, and choose the  Edit -> Delete  option 
(Fig.  23 ).

       2.    Generate single-component, neutral form (SAR forms) of each 
chemical record with the  Tools -> Create SAR Form of Structures  
option.   

 Cleaning the Training 
Structure Set
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  Fig. 21    Export EPAFHM set to an SDF fi le       

  Fig. 20    Remove compounds lacking Leadscope features       

   3.    Rename the chemical structures by applying a prefi x using  Edit 
-> Add Structure Name Prefi x  in order to avoid name collisions 
when reimporting the SDF fi le to Leadscope.   

   4.    Remove the remaining structures that could not be trans-
formed to a SAR form following visual review of the training 
compounds. The types of chemicals to remove include those 
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  Fig. 22    A sample of the EPAFHM set opened in the SDF Editor       

that contain multiple components, are empty structure records, 
inorganic, contain unknown attachment points, etc. (Fig.  24 ). 
These can be identifi ed using the search tool  Find Structures 
From Criteria -> Non-SAR Structures .

       5.    Since new SAR structures have been created, it is always rec-
ommended to identify and remove any duplicate structures. 
To do this, use the  Tools -> Find Duplicate Structures  option 
and remove any duplicate chemical structure records provided 
the endpoint values are similar.   

   6.    Save the EPAFHM structure set to an external SDF fi le, and 
import to Leadscope using the  Import Wizard  tool [ 5 ].      

   The training set response variable data should be normalized to a 
consistent endpoint data set. Due to the binary nature of the model 
predictors (the presence or absence of chemical features) and the 
variability of response data, classifi cation QSAR models in 
Leadscope frequently produce more accurate results. Therefore, 
the response variable will be transformed into a binary data set 

 Preparing Response 
Variable Data

 

Glenn J. Myatt and Donald P. Quigley



  Fig. 23    Delete records with no value for the EPAFHM LC50 property       

  Fig. 24    Chemical structures that no SAR form could be generated       

 

 



414

using a property function. In the following example, the Globally 
Harmonized System (GHS) Acute Aquatic Toxicity Environmental 
Hazard category 3 (less than or equal to 100 ppm 96-h fathead 
minnow LC 50 ) which is interpreted as “harmful to aquatic life” 
[ 49 ] was used as the cutoff for the binary endpoint. 

 This data set should be examined to ensure there is an accept-
able balance of active to inactive records (Fig.  25 ).

       This example shows how to transform the EPAFHM LC50 end-
point from a continuous property into a binary endpoint. 

       1.    In the Project Browser, open the  Tools -> Create Property 
Function  option; this will open the  Property Editor  window.   

   2.    Create an “If () Then () Else ()” function, and insert the 
EPAFHM LC50 data set along with the greater than or equal 
to operator (>=) and a constant for the upper limit of the GHS 
Acute Aquatic Toxicity (Acute 3) range (100 ppm) (Fig.  26 ).

       3.    Examine the active/inactive ratio for the binary response vari-
able in the  Project Browser  with the graph view (Fig.  27 ).
       This will result in an out-of-balance QSAR model in relation to 

the active/inactive (AI) response variable ratio. In order to eliminate 
bias in the training set, one strategy is to create a series of balanced 
submodels that will be constructed and coalesced into an overall aver-
age model. Each submodel will contain the inactive training com-
pounds and an equal size random selection of the active records. The 
predicted probability of a positive result for the fi nal average model is 
the mean of the predicted probabilities of the underlying submodels.  

4.2.2  Example: Refi ning 
the Training Response 
Variable Data Set

 Creating the Binary 
Response Variable
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  Fig. 25    Distribution of EPAFHM LC 50        
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  Fig. 26    Create binary response variable using the Create Property Function 
utility       
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  Fig. 27    EPAFHM GHS acute aquatic toxicity III binary response       
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   The PDM will automatically test predictive model when it is built 
against the actual training data using cross-validation. Whenever 
possible, it is also recommended to test the model against an exter-
nal validation set. The external validation set could be a separate set 
of chemicals and data with experimental results relevant to the train-
ing set. Sometimes, the validation set is a subset of the original train-
ing set that has been set aside for this purpose. For this example, the 
validation set was created as a random 20 % subset of the training set 
using the Leadscope Project Browser. This resulted in a training set 
of 520 compounds and an external validation set of 57 records.   

   In this example, the PDM will be used to generate a QSAR predic-
tive model employing the application’s automated feature and 
model parameter selection options (an automatic model) on the 
EPAFHM GHS Acute Aquatic Toxicity Class III endpoint.

    1.    In the Project Browser, select the  Automatically Build 
Statistical Model  option in the  QSAR Analysis  section of the 
 Tasks View .   

   2.    In the  Automatically Build Statistical Model  window, select the 
project that contains the model training set.   

   3.    In the next step, select the target property to use as the model 
response variable.   

   4.    The PDM will now identify an optimum number of submodels 
to create in order to achieve a balanced A/I ratio. The applica-
tion will automatically partition the training set and create the 
appropriate submodels (Fig.  28 ).

 Creating an External 
Validation Set

4.2.3  Example: Creating 
an Automatic QSAR 
Statistical Model

  Fig. 28    Select active to inactive ratio       
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       5.    In the fi nal step, name the predictive model to be generated 
and click the  Finish  button. After a few minutes, the QSAR 
model will be generated.       

   The PDM will generate a series of assessment metrics to review the 
models, for both the actual and cross-validated results. The metrics 
are listed below. 

  Concordance —the overall accuracy; it is also useful to use the bal-
anced accuracy calculated from the mean of the sensitivity and speci-
fi city for average models or those with out-of-balance A/I ratios. 

  Sensitivity —the true positive rate; calculated as the true posi-
tives/(true positives + false negatives). 

  Specifi city —the true negative rate; calculated as the true nega-
tives/(true negatives + false positives). 

  Positive predictivity —the positive predictive value, or precision; 
calculated as the true positives/(true positives + false positives). 

  Negative predictivity —the negative predictive value; calculated 
as the true negatives/(true negatives + false negatives). 

 In theory, the goal of the model builder is to construct a pre-
dictive model maximizing each of these metrics. In practice, this is 
almost never possible; however, it may be possible to achieve a 
minimum level of acceptance across these metrics while maintain-
ing a balance between them. This is often more desirable than 
focusing on one metric to determine whether the model is accept-
able and ready for assessing test compounds. Consider a model 
that when tested against the actual training compounds results in a 
specifi city of 80 % and sensitivity of 50 %; this would be reported 
as a balanced accuracy of 65 % which is not very high, but for the 
sake of argument, assume it meets the minimum criteria for the 
model builder, and the model is determined to be acceptable. This 
sort of singular focus should be avoided. In the example model, 
the metrics should indicate that under the best circumstances, the 
model is likely to produce an unacceptably high number of false-
negative results and few false positives. The combined use of these 
metrics is intended to assist the model builder in holistically iden-
tifying areas of concern in the model as opposed to using a single 
criterion which may be intrinsically biased. 

 While it is important to not focus on a single metric, it is also 
important not to focus only on the metrics themselves. The PDM 
reports the results when the model is tested for both the actual and 
cross-validated results. One should consider the performance dif-
ferences between these two results. There should not be a signifi -
cant drop- off in performance (typically a 10 % difference in the 
reported metrics) between the two or other inconsistencies as this 
might indicate overtraining of the model. The PDM also reports 
the prediction results for each compound and the weights, load-
ings, and residuals for the training features. Each of these should 
also be reviewed for outliers, holes, duplication, and relevance. 

4.3  Assessment 
of a QSAR model

Taking Advantage of Databases



418

   In this example, an automatic predictive QSAR model was gener-
ated for the EPAFHM QSAR-ready training chemical set and the 
EPAFHM GHS Acute Aquatic Toxicity Class III response variable. 
This example covers the basics of how to review that model.

    1.    The fi rst screen in the PDM that appears when reviewing the 
model is an analysis of the test results from the model against the 
actual results. This screen includes a two-class truth table along 
with two predictive probability graphs, one showing the results 
for the inactive and the other for the active training compounds. 
The truth table illustrates the number of true positives, false 
positives, false negatives, and true negatives as selectable buttons 
which highlight the corresponding compounds in the graphs. 
This screen also reports the performance metrics when the 
model is tested against the actual compounds and data (Fig.  29 ).

       2.    For this model, the  concordance  was reported as 88.3 %, the 
 sensitivity  as 85.9 %, and the  specifi city  as 94.1 %, meaning the 
balanced accuracy was 90.0 %. The  positive predictivity  is 
reported as 97.2 % and the  negative predictivity  as 73.3 %. While 
this seems out of balance, it is misleading as it is the value 
reported for the overall average model versus individual results 
from the submodels. Overall, these results seem acceptable, but 
there is still some concern  regarding the relative imbalance 
between the sensitivity and specifi city moving forward.   

4.3.1  Example: 
Assessing 
a Predictive Model

  Fig. 29    Model prediction results compared against the actual training results       
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   3.    The next screen reports the results in a similar manner but for 
the results from the model when tested using cross-validation. 
The cross-validated results are calculated by setting aside a subset 
of the model then rebuilding the model and testing the rebuilt 
model against the set aside subset. The cross-validated results are 
shown in Table  3  along with the actual results. It is not uncom-
mon for the cross-validated results to be worse than the actual 
results; as a matter of fact, it is anticipated since a portion of the 
original training set used to build the model has been removed. 
The results above are encouraging since there is not a signifi cant 
difference between the two results.

   Table 3  
  Actual versus cross-validated results   

 Actual results  Cross- validated results 

 Concordance (accuracy)  88.3  86.5 

 Balanced accuracy  90.0  88.0 

 Sensitivity  85.9  84.5 

 Specifi city  94.1  91.4 

 Positive predictivity  97.2  96.0 

 Negative predictivity  73.3  70.9 

  Fig. 30    Summary screen with prediction results for compounds       
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       4.    The next page in the PDM model review shows the com-
pounds and their actual and predicted values. This is useful to 
see how individual compounds were predicted (Fig.  30 ).

       5.    While the metrics are encouraging for this model, each of the 
submodels should be examined to further identify and poten-
tially remove training outliers and to remove overlapping and 
similar features with particular attention paid to the balance of 
active to inactive features and the selection of distinct and dis-
criminating features.       

   The PDM has the ability to publish predictive models for assessment 
of compound test sets. Predictive models can be packaged and dis-
tributed to end users in the Model Applier application or applied 
using the QSAR analysis tools in the Leadscope client. These tools 
provide a consistent, repeatable procedure for the creation of predic-
tions and tools for analyzing and reporting the prediction results. 

 The procedure for the application of predictive models will, by 
default, fi rst perform an assessment of the test chemical to the appli-
cability domain (AD) of the predictive model. If the test substance is 
determined to be within the domain of the model a prediction is 
created, if it is determined to not fi t in the domain of the model, the 
 prediction result is reported as  Not in Domain . If the test compound 
occurs in the model based on an exact match query of the test com-
pound to the training compound set, the training value will be 
reported as an experimental value, and the prediction will also be 
generated. If the test compound lacks any chemical features or cal-
culated properties cannot be calculated for it, no prediction will be 
generated, and the result will be reported as  Missing Descriptors . 

 The prediction output varies depending on the type of model algo-
rithm used to train the predictive models. Those created with a binary 
classifi cation endpoint response variable (employing partial logistic 
regression (PLR)) will generate a probability of a positive result predic-
tion, and those trained with a continuous endpoint response variable 
(employing partial least squares regression (PLS)) will generate a con-
tinuous property prediction. Prediction results from a PLR model will 
also have an  Indeterminate  range in the probability distribution (typi-
cally, where the probability of a positive result is between 0.4 and 0.6); 
if the prediction result falls in this range, it is reported as  Indeterminate.  
Otherwise, if the probability of a positive result is greater than or equal 
to the upper boundary of the  Indeterminate  range, it is reported as 
 Positive , and if the result is less than the lower boundary of the 
 Indeterminate  range, it is reported as  Negative.   

   The applicability domain (AD) of a QSAR model was conceptually 
defi ned at the Setubal workshop as the “physicochemical, struc-
tural, or biological space, knowledge or information on which the 
training set of the model has been developed, and for which it is 
applicable to make predictions for new compounds” [ 50 ]. In 

4.4  Applying QSAR 
Models for Hazard 
Assessment

4.5  Assessing 
Applicability Domain
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practice, there are numerous implementations of this concept 
potentially linked to the nature of the descriptors (predictors) used 
to train the model, the type of model algorithm used, the chemical 
space of the model training set. 

 Leadscope employs two criteria to assess the applicability domain 
fi t of a test chemical to the domain of a statistical predictive model. 
The fi rst criterion evaluates the test chemical in relation to the training 
descriptor set of the model (a local assessment), and the second 
assesses the fi t of the test chemical to the chemical space of the model 
(a global assessment). Specifi cally, the test chemical must contain at 
least one of the chemical features used to train the model, and it must 
have at least one analog in the training chemical set of the model. 

   The Leadscope PDM and Model Applier tools provide a series of 
prediction analysis utilities. In particular, the structural basis for a 
prediction is available in a transparent fashion with the  Explain  
tool. This example will cover the use of the  Explain  tool to exam-
ine a predicted result, and the training compound (Q)SAR-LS-14 
was chosen and then the  Explain  button selected opening the 
 Explain  interface; the option for compound feature-based explana-
tion was then selected and the  Structure Features  explanation page 
opened (Fig.  31 ). This interface provides an explanation of each 

4.5.1  Example: 
Assessing the Structural 
Basis for the Prediction

  Fig. 31    Explain results       
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prediction based upon each of the predictors (chemical feature, 
scaffold, or calculated property) the model used to make the 
prediction.

   There are three areas in the interface. The fi rst (top left) is a 
series of images of the test compound with features highlighted 
based on the correlation of their weights within the model training 
set (red is more positively correlated and blue-green more nega-
tively correlated) across three images (one for all of the features 
matched in the model training set, one for the positive features 
only, and one for the negative features only). The second (top 
right) section reports the model parameters such as the number of 
training compounds, the number of chemical features matched in 
the test compound, the number or calculated properties the test 
compound contained, the predicted value (the probability of a 
positive result in this case), the percent contribution to the predic-
tion of the matching features, the percent contribution of the non-
matching features, and the percent contribution of the calculated 
properties. The third section (lower half of screen) is a table listing 
each of the predictors sorted by their relative percent contribution 
(the % partial property) to the overall prediction.

    1.    For the test compound (Q)SAR-LS-14, the predicted value 
was 0.984, a positive result. From the table of features, the top 
contributing feature was the calculated property ALogP with a 
% partial property of 28.44 %, meaning it made that contribu-
tion to the predicted probability. While it is unusual for one of 
the highest- contributing positive predictors to be a calculated 
property, in the case of this model, it is not unexpected since 
the principle mode of action in the training set is relating lipo-
philicity to fi sh narcosis (Narcosis I, Narcosis II) [ 15 ]. The 
next most highly correlated feature was  benzene, 1-halo  which 
has 73  Training Positives  versus only 1  Training Negative  in 
the model and a 19.3 % contribution to the prediction result. 
Scrolling to the bottom of the table will reveal any negatively 
correlated features used in the prediction that were highlighted 
in the Negative Features image. In this manner, an expert can 
review the prediction in detail and arrive at an assessment of its 
validity.       

   A number of recent publications have highlighted the importance 
of reviewing the results from in silico models as part of an expert 
review [ 51 – 55 ]. Through this type of analysis, it is possible to 
increase the confi dence of a prediction since an expert review can 
provide additional knowledge in the assessment of the results. Such 
an expert review may refute both positive and negative predictions 
as well as help in assessing results that are inconclusive or confl ict-
ing when using multiple systems to make the prediction. A review 
may also provide a method for assessment of compounds that are 
not in the applicability domain of the (Q)SAR models. Such a 

4.6  Generating 
a Supplemental Expert 
Review
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review would need to inspect the results from the in silico models 
used to generate a prediction, including the features or descriptors 
used in the models as well as the underlying data in the training/
reference set or in the toxicity database from which this set was 
derived. This information is supplemented with domain knowl-
edge, such as a mechanistic interpretation based upon the struc-
tural basis of the prediction. It is also desirable to look at other 
information including taking advantage of databases through ana-
log and other searches. Any expert opinion is inherently subjective, 
yet this type of review is becoming a critical element of any hazard 
assessment using in silico approaches [ 56 ,  57 ]. 

 A general scheme for assessment of in silico results as part of an 
expert review is shown in Fig.  32 . In this case, it is assumed that the 
outcome is either positive or negative (e.g., positive or negative 
 bacterial mutagenicity study results); however, a similar scheme could 
be employed where predictions are continuous (e.g., predictions of 

  Fig. 32    Flowchart for completion of in silico analysis plus expert review       
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NOAEL values) or using more than two categories. The fi rst step in 
the process is to identify whether any laboratory data exists for the 
test compound. Looking up information in the database for the test 
chemical is a critical fi rst step. As part of the expert review, it will be 
important to assess whether the study is adequately performed by 
assessing the study protocol, whether the study was performed using 
good laboratory practices (GLP), and how the study fi nding was 
interpreted. When the study was adequate, it should be possible to 
use the information directly and bypass any computational predic-
tions. When no or inadequate data exists, one or more in silico mod-
els may be run and the results used to determine an overall prediction. 
A preliminary assessment of the results, including the structural basis 
for the prediction, may be suffi cient to conclude that no detailed 
expert review is required as the results are clearly positive or negative; 
however, in all other cases, a more detailed opinion may be war-
ranted especially when there are confl icting results across different 
systems or one or more systems do not calculate a prediction as the 
test chemical is not in the domain of the in silico model.

   In the following case study, an expert review is being generated 
for two compounds which are being evaluated for their mutagenic 
potential, as shown in Fig.  33 . The analysis will be done according 
to the ICH M7 guidance on pharmaceutical impurities [ 56 ,  57 ] 
and was performed using the Regulatory Submission Tool imple-
mented as part of the Leadscope software [ 58 ]. The guideline 
states that in the absence of any relevant data, a prediction from 
two complementary in silico methodologies (one expert rule based 
and one statistical based or QSAR) can be used, and an expert 
review can be provided as warranted.

   In this example, both compounds were predicted as negative, 
as shown in Fig.  33 ; however, it is indicated that data is available 
for the fi rst compound. To assess whether the available data is 

  Fig. 33    Two compounds that are the subject of an expert review       
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suffi cient to conclude the compound is negative, studies performed 
on this compound are identifi ed from the toxicity database [ 19 ]. 
The summary of the study may be suffi cient to conclude whether 
it was performed according to standard protocols and was per-
formed to GLP standards; otherwise, it may be necessary to view 
the full study report from the database. Answering yes to the ques-
tions shown in Fig.  34  is suffi cient to document (along with the 
full study report extracted from the database) that the fi rst com-
pound is negative in the bacterial mutagenicity assay.

   Despite the lack of any bacterial mutagenicity data for the sec-
ond compound, it could still be considered negative based on only 
in silico results. This compound was negative in both in silico 
methodologies recommended in the ICH M7 guidance [ 56 ,  57 ]. 
Two statistical QSAR models were used—(1)  Salmonella  and (2) 
 E. coli /Sal TA102—and the results were both negative. A second 
methodology was used (an expert rule-based system) and the result 
was negative as well. Therefore, the overall in silico result was neg-
ative. An expert review was written using the Leadscope Regulatory 
Submission Tool, and the opinion was generated based on six 
steps: (1) an examination of the  Salmonella  QSAR model features, 
weightings, and examples; (2) an examination of the  E. coli /Sal 
TA102 QSAR model features, weightings, and examples; (3) an 
evaluation of how the in silico results were combined to generate 
an overall assessment; (4) an assessment of analogs from the QSAR 
models’ training sets, the expert alerts’ reference set, as well as 
other databases; (5) an assessment of potentially reactive groups by 

  Fig. 34    Assessing whether the study data is suffi cient to conclude the compound is negative       
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examining different substructures in the test compound and look-
ing at the number of positive and negative historical studies for any 
compound matching the substructures from the toxicity database; 
(6) any other considerations. 

 Step 4 is shown in Fig.  35 , where a number of analogs are 
identifi ed. This analog search supports two questions that should 
be answered as part of an expert review. The fi rst question is: Does 
the test compound contain any potentially reactive groups? If all 
the analogs are negative, then this fact may provide supporting 
information. If any of the analogs are positive, then it is important 
to understand whether there are other reasons for the positive out-
come, such as the analog contains other potentially reactive groups 
not present in the test compound. The second question that will 
help to answer is whether the training or reference sets used to 
construct the QSAR models or alert have appropriate coverage of 
the test compound. The QSAR models and expert alerts in this 
example determined that the test compound was within their 
applicability domain and the analog search provides the opportu-
nity to apply expert judgment to the conclusion that there were 
suffi cient analogs to make this conclusion.

    Step 5 , which is shown in Fig.  36 , illustrates how toxicity data-
bases can support an assessment of potentially reactive groups. In 
this example, different substructure searches were performed over 
a large database of bacterial mutagenicity data. The database used 
a binary overall classifi cation where 1 represents a positive study 
call and 0 a negative study call. The average call over all compounds 
in the database was 0.4904. You might expect that if you take a 

  Fig. 35    Examining analogs from the toxicity database as part of an expert review       
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random sample from the database that the mean for the subset 
would be 0.4904. A systematic substructure analysis using the 
Leadscope features [ 31 ] (containing over 27,000 unique-named 
substructure searches) was performed, and those substructures 
that match both the test compound and one or more examples in 
the database are listed along with the number of  positive and nega-
tive examples from the database and the mean overall call for the 
subset. Any subset where the mean call value is signifi cantly greater 
than the mean of 0.4904 might be considered as representing a 
potentially reactive group. Where none of the substructures have 
an average call signifi cantly greater than the mean, this would sup-
port the expert review that there are no potentially reactive groups 
in the test compound.

   In addition to using toxicity databases to accept a negative 
result, analysis can also support refuting a positive result. For 
example, an analog search yielding very similar negative com-
pounds may provide suffi cient evidence to refute an in silico posi-
tive result.   

5    Conclusions 

 This chapter has outlined a number of ways to take advantage of 
toxicity databases, including retrieving information on the test 
chemical to avoid retesting as well as fi nding study data on analogs 
to estimate toxicity (read across) and explain study fi ndings. Various 

  Fig. 36    Systematic chemical substructure analysis using a toxicity database to identify any potentially reactive 
groups in the test compound       

 

Taking Advantage of Databases



428

in silico models, including expert alerts and QSAR models, are 
derived from information in toxicity databases. This chapter has 
outlined how these models are built and used to make predictions. 
Integration of toxicity databases with these models helps explain 
prediction results making the models more transparent. In addi-
tion, information from these prediction systems in combination 
with toxicity database searching can be included as part of an 
expert review. The quality, currency, and breadth of any toxicity 
database (including both the chemical and toxicity data) directly 
impacts the value of such searches as well as the usefulness and 
accuracy of any derived models. Generating quality toxicity data-
bases that cover many different toxic effects as well as the latest 
studies is expensive and time-consuming and needs to be continu-
ally updated with the most recent studies; however, such efforts are 
essential to support today’s safety assessments.     
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Chapter 18

QSAR Models at the US FDA/NCTR

Huixiao Hong, Minjun Chen, Hui Wen Ng, and Weida Tong

Abstract

Quantitative structure–activity relationship (QSAR) has been used in the scientific research community for 
many decades and applied to drug discovery and development in the industry. QSAR technologies are 
advancing fast and attracting possible applications in regulatory science. To facilitate the development of 
reliable QSAR models, the FDA had invested a lot of efforts in constructing chemical databases with a 
variety of efficacy and safety endpoint data, as well as in the development of computational algorithms. In 
this chapter, we briefly describe some of the often used databases developed at the FDA such as EDKB 
(Endocrine Disruptor Knowledge Base), EADB (Estrogenic Activity Database), LTKB (Liver Toxicity 
Knowledge Base), and CERES (Chemical Evaluation and Risk Estimation System) and the technologies 
adopted by the agency such as Mold2 program for calculation of a large and diverse set of molecular 
descriptors and decision forest algorithm for QSAR model development. We also summarize some QSAR 
models that have been developed for safety evaluation of the FDA-regulated products.

Key words FDA, Databases, Liver toxicity, Endocrine disruptors

1 Introduction

Quantitative structure–activity relationship (QSAR) is a relationship 
that can be presented as a mathematical function for predicting 
biological activities of compounds based on their chemical struc-
tures. QSAR dates back to the nineteenth century, when a very 
simple equation (1) was proposed by Crum-Brown and Fraser for 
the curare-like paralyzing properties of a set of quaternized strych-
nines [1]:

 F = ( )f C  (1)

In Eq. (1), f is a mathematical function that converts the relevant 
structural features characterizing the quaternizing group, C, to the 
biological activity, Φ. Richardson constructed a QSAR in a recipro-
cal function that can estimates the toxicity effect of ethers and alco-
hols based on their water solubility [2].

1.1 Brief History 
of QSAR
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In the twentieth century, the QSAR techniques were advanced 
to utilize multiple parameters and were applied to many fields by a 
lot of pioneers. The most notable contribution to the emerging 
QSAR field is the so-called Hansch equation [3]:

 Log constants1 2/ C a b c dE= + + + +p p s  (2)

In Eq. (2), the constants π, σ, and ES represent the hydrophobic, 
electronic, and steric substituents, respectively [4]. By the end of 
last century, the advancement in computer technology and the 
generation of a huge amount of scientific data [5, 6] progressed 
the field of QSAR to a new height. A lot of QSAR methods have 
been developed and applied by the scientific research community 
and in regulatory sciences [7–10], e.g., pharmacophore modeling 
[11–15], molecular docking [16–19], CoMFA [19], classification 
tree model [20], decision forest [21–27], and support vector 
machine [28], to name a few.

Most of the US FDA-regulated products contain chemicals such 
as drugs, food additives, and cosmetic ingredients. Both benefit 
and risk of a product are important to the agency to protect the 
public health of the Americans. When some specific efficacy and 
toxicological data are needed but not available from experi-
ments, alternative estimations are used to inform if further 
 evidence from experiments is required for regulatory decision-
making. With the advancements in computational technology 
and QSAR methods, QSAR can be used to make a reasonably 
accurate prediction quickly and plays more and more roles in 
regulatory sciences.

The rationale for applications of QSAR models to assess the 
efficacy and safety of the chemicals found in FDA-regulated products 
is illustrated in Fig. 1. When the data on the efficacy and safety 
are lacking for the chemicals, experimental data contained in the 
application or obtained through literature mining are used by the 
agency to inform regulatory actions as indicated by the dash-line 
arrows in Fig. 1. Alternatively, the efficacy and safety data are esti-
mated using QSAR models as depicted by the solid-line arrows. 
In order to construct QSAR models, endpoint data for other 
chemicals should be gathered as the training set. Tools and algo-
rithms are then applied to the training set to construct QSAR 
models to predict the required endpoint data for the chemicals in 
the FDA-regulated products. To facilitate the development of 
reliable QSAR models, the FDA had invested a lot of efforts in 
constructing chemical databases with a variety of efficacy and 
safety endpoint data, as well as in the development of computa-
tional algorithms.

1.2 The Role of QSAR 
at the FDA

Huixiao Hong et al.
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2 Databases

Many chemical databases have been constructed and have been/
could be used for developing QSAR models. In this chapter, we 
briefly discuss some of the often used databases.

Endocrine disruptors (EDs) are exogenous compounds that act 
like hormones in the endocrine system of humans and other verte-
brates. The endocrine activity of EDs has the potential to cause 
numerous adverse outcomes, e.g., disrupting the physiological 
function of endogenous hormones and altering homeostasis. The 
EDKB (Endocrine Disruptor Knowledge Base) (http://www.fda.
gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptor 
Knowledgebase/) is a database that was developed at the FDA’s 
National Center for Toxicological Research (NCTR) to address 
these concerns [6]. It can be used to identify, prioritize, and inform 
the need for further thorough safety evaluation of chemicals with 
endocrine disruption potential in FDA-regulated products.

The EDKB database contains experimental data of different 
assays including estrogen receptor (ER) binding [29], androgen 
receptor (AR) binding [30], uterotrophic, cell proliferation, and 
reporter gene assays for more than 1800 chemicals. Detailed infor-

2.1 EDKB

Experiment
Literature

Chemicals
in a product

Efficacy or
safety data

QSAR models

Literature Data of other
chemicals

Fig. 1 Illustration of the role of QSAR in assessment of efficacy and safety for 
chemicals in the FDA-regulated products

QSAR Models at the US FDA/NCTR
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mation for each  compound such as chemical structure, assay type, 
potency, etc. was organized in a manner that facilitates an efficient 
search strategy. A user-friendly interface has been implemented for 
the quick navigation of the database, efficient searching for infor-
mation on chemicals with endocrine-related assay data, and graphi-
cal view of searched results. The search engine implemented in the 
EDKB enables searching by one or a combination of fields: chemi-
cal structure (including exact search and similarity search), chemi-
cal name, molecular formula, CAS registration number, experiment 
source, molecular weight, and so on. Cross-links to other publicly 
available and related databases are provided. Figure 2 shows a 
screenshot of the EDKB interface. Since its introduction to the 
scientific community, the EDKB has been a major data source for 
endocrine disruptor research, and many QSAR models have been 
developed based on the data contained in it.

Fig. 2 Screenshot of EDKB

Huixiao Hong et al.
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Chemicals of potential endocrine activity can interact with receptors in 
the body’s endocrine system. ER is the major receptor that has been 
widely studied, and many endocrine disruptors can bind ER. Apart 
from being the target of endocrine disruptors, the ER is also a ther-
apeutic target for treatment of various medical conditions. A huge 
amount of efforts in product safety evaluation in terms of estro-
genic activity and drug development utilizing estrogenic chemi-
cals have generated estrogenic activity data for a large number of 
chemicals, but these data exist in various sources and formats. This 
restricts the full utilization of these data, e.g., in benefit–risk ratio 
assessment in regulatory  science and for discovering potent lead 
compounds in drug development. To facilitate the full utilization of 
the available data, FDA/NCTR has developed Estrogenic Activity 
Database (EADB) (http://www.fda.gov/ ScienceResearch/
BioinformaticsTools/EstrogenicActivityDatabaseEADB/default.
htm). EADB is freely available to the scientific community.

There are more than 18,000 estrogenic activity data points 
from 1284 assays for more than 8000 chemicals in EADB. The 
data were curated from experiments of 11 different species. The 
assay types include ER binding, reporter gene, cell proliferation, 
and in vivo assays. The chemicals have a wide structural space, and 
the activity data cover a wide range and thus are suitable for QSAR 
development. A set of functions have been developed to help users 
to easily use the database in evaluation of compounds for their 
potential endocrine activity.

EADB has different user interfaces as shown in Fig. 3 to 
accommodate different purposes and users with different knowl-
edge backgrounds. The biological data focused interface (Fig. 3a) 
is developed for examination of chemical structures with a specific 
estrogenic activity, while the chemical structure focused interface 
(Fig. 3b) is designed for exploration of compounds for their estro-
genic activity data. The main part of the database is the table that 
is located in the right of the screen. It is designed for displaying the 
database content and the querying results. The left panel of the 
window displays query and chemical structure. Structure searching 
and data filtering functions are available in EADB. The “individual 
compound” button pops up the molecule interface that is used to 
display chemical-related data such as the chemical identifications, 
physical and chemical properties, and activity data (Fig. 3b).

Table 1 summarizes the database functions implemented in 
EADB that help users to fully utilize the data curated in EADB. 
The diverse and comprehensive estrogenic data are a rich source 
for the development of QSAR models for predicting estrogenic 
activity of chemicals. EADB is being widely accessed in the scien-
tific community since we made the database publicly available 
in 2013.

2.2 EADB
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Fig. 3 EADB biological focused interface (a) and chemical structure focused interface (b). The query and filtering 
functions are implemented in the biological focused interface. The chemical structure focused interface can be 
opened by clicking the “Show” individual compound at the top of the biological focused interface
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Drug-induced liver injury (DILI) in humans is a significant risk for 
drug development, and creative approaches are needed to combat 
this risk [31]. Roughly over 1000 post-marketing drugs are con-
sidered to be potentially capable of inducing liver injury [32]. 
DILI is one of the main reasons for the issuing of “black box” 
warnings by the FDA and withdrawal drugs from the market [33]. 
Programs such as the National Institutes of Health’s DILI Network 
and the “Virtual Liver Network” in Germany have been formed to 
enhance the understanding of the pathogenesis of DILI. LTKB 
(Liver Toxicity Knowledge Base), developed by the FDA/NCTR, 
aims to improve the understanding of DILI and facilitate the 
development of QSAR models for predicting DILI [34].

In the FDA’s Advancing Regulatory Science Initiative, a vari-
ety of technologies such as in vitro assays, new animal tests, and 
in silico modeling are embraced to acquire a better understand-
ing of the extrapolation from preclinical testing results to clinical 
setting. LTKB is designed as a knowledge base to incorporate 
all types of information needed for safety evaluation in terms of 
hepatotoxicity. The overall structure of LTKB is shown in Fig. 4. 
Diverse data covering multiple levels of biological complexity has 
been collected for most of the FDA- approved drugs in LTKB, 
such as toxicogenomics, mode of action, in vitro test results, 
histopathology, and adverse effects. Independently and in con-
junction with other approaches, a predictive model for DILI was 
constructed at NCTR/FDA. The FDA drug labeling was used 
as primary source to annotate DILI risk to develop and evaluate 
these predictive models.

Since DILI is a heterogeneous disease and many factors are 
involved in DILI, incorrect predictions can be yielded for DILI 
based on a single type of data sources or using a single model. 
Consequently, combination of diverse data and integration of 

2.3 LTKB

Table 1 
Database functions implemented in EADB

Function Description

Browsing The database or search results can be browsed easily in different ways

Searching Searching can be carried out on structure (substructure search, superstructure search, 
similarity search, full search, R-group search, and exclusion search) or data, including 
numerical data (various estrogenic activity data) and text data (assay descriptions and 
literature references), as well as logical combinations of multiple search operations

Updating The database can be updated through adding new chemicals or estrogenic activity data, 
and editing the structures or data whenever errors are found

Exporting Structures and data can be exported in various formats
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different models were used to advance model performance. 
Meanwhile, we established a “benchmark dataset” in which the 
drugs were well annotated with risks for DILI. Therefore, a stan-
dard set of defined drugs were offered to the research community 
to support assay development and QSAR model construction. 
Moreover, the LTKB team also utilized the datasets and tools 
developed by other institutes to for better understanding of 
DILI. Several other government-sponsored projects have adopted 
the LTKB benchmark drugs, including but not limited to ToxCast 
of the EPA and the Tox21 programs, a collaborative toxicological 
program among multiple US governmental agencies.

Three attributes can be used to identify a drug’s potential for 
DILI: causality, incidence, and severity. The public data resource 
that can meet the three conditions is the FDA-approved drug 
labels. The unique characteristic of drug labels is the reflection of 
expert opinions based on clinical data and is continuously being 
enhanced with post-market surveillance data. The drugs are classified 
as most-DILI-concern, less-DILI-concern, and no-DILI-concern 
through mining the FDA- approved drug labels. The harmony 

Fig. 4 Overview of the LTKB project. Three major components of LTKB were curation of drug-elicited data, 
development of predictive DILI models, and development of a software environment to publish both data and 
models
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among published datasets is strong among most-DILI-concern 
and no-DILI-concern [35].

As illustrated in Fig. 4, LTKB comprehensively collected 
multiple types of data on the FDA-approved drugs, including 
physiochemical properties, in vitro data, toxicogenomic data, his-
topathological data, and adverse reactions. Multiple resources were 
utilized to collect the data. Particularly the two toxicogenomic 
databases—the Toxicogenomics Project in Japan (http://toxico.
nibio.go.jp/open- tggates/search.html) and the DrugMatrix data-
base of the National Institute of Environmental Health Sciences 
(https://ntp.niehs.nih.gov/drugmatrix/index.html)—have 
archived a total of over 40,000 microarray gene expression data 
from over 500 drug treatment [36] and are publicly available. 
Thus, they have been included in the LTKB.

Bioinformatics designs have been developed for the construc-
tion of DILI models using single analogous data that mirrors a 
single biological response. One bioinformatics strategy being used 
is the development of the QSAR model from data relating to 
roughly 500 drugs with chemical descriptors [27]. Meanwhile, we 
also utilized 164 oral drugs to identify a simple rule, namely, “rule 
of two”—a daily dose of ≥100 mg and a lipophilicity measured 
using logP ≥ 3—to be associated with a significant risk of DILI in 
humans [37].

Integrating different types of data and predictive models is 
another critical effort of the LTKB. We found that individual mod-
els perform differently for drugs with different therapeutic uses 
[38], and methods such as consensus, hybrid, and/or hierarchical 
approaches tailored to therapeutic categories should be used to 
avoid the defects of “one size fits all” and increase prediction accu-
racy [39, 40].

The SRS (Substance Registration System) (http://fdasis.nlm.nih.
gov/srs) is a database system that is designed for the management 
of the substances contained in the FDA-regulated products. SRS 
contains some 7000 substances.

When registering, SRS generates unique ingredient identifi-
ers (UNIIs) for the substances contained in the FDA-regulated 
products such as drugs, biologics, foods, and devices. A UNII is 
represented as an alphanumeric identifier that is nonproprietary, 
free, unique, unambiguous, and non-semantic. The UNIIs in 
SRS were generated based on the molecular structures and/or 
descriptive information of the substances registered. The UNIIs 
in SRS can be downloaded from http://fdasis.nlm.nih.gov/srs/
jsp/srs/uniiListDownload.jsp.

The UNII codes are used by many FDA systems such as 
FDA’s Structured Product Labeling, FDA Inactive Ingredient 
Query Application, and FDA Data Standards Council and 

2.4 SRS UNIIs
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other governmental agencies such as NLM’s Unified Medical 
Language System (UMLS), National Cancer Institute’s 
Enterprise Vocabulary Service, and VA National Drug File 
Reference Terminology (NDF-RT).

SRS provides the most comprehensive product-related 
information and UNIIs. Therefore, it can also serve as a resource 
for development of QSAR models.

Chemical Evaluation and Risk Estimation System (CERES) is 
developed by the US FDA’s Center for Food Safety and Nutrition 
for pre- and post-market review of food ingredients. It is a chemi-
cal evaluation and risk estimation system that is chemical centric. 
CERES contains internal and external chemical and toxicity data 
and knowledge on food additives using controlled vocabulary. It 
provides a variety of functions for data retrieval and structure and 
similarity search. Some QSAR models were developed and included 
in CERES.

3 Molecular Descriptors

In mathematics, a QSAR model, either qualitative or quantitative, 
is a mathematical function that describes the relationship between 
structures of chemicals and their biological activities. Alternatively, 
a QSAR model is a transformation that can be used to estimate the 
biological function of a chemical from its structure. It is very dif-
ficult, if not impossible, that a QSAR model predicts biological 
activity of a chemical by directly using its molecular structure (the 
red path in Fig. 5). In practices, a QSAR model is constructed to 
use chemical structures by indirectly describing the chemical struc-
tures in molecular descriptors rather the structures themselves. 
Molecular descriptors, the form of numerical descriptions that cap-
ture the structural characteristics, are easier to be encoded in a 
QSAR model. Therefore, a QSAR model (mathematical or statisti-
cal) can be developed to correlate the biological activity of interest 
with the molecular descriptors (or, in most cases, a subset of the 
descriptors) of the compounds (the blue path in Fig. 5).

QSAR is based on the assumption that the molecular structure 
of a chemical must contain features responsible for its physical, 
chemical, and biological properties. When described as numerical 
values, these features are known as molecular descriptors. The 
most frequently used molecular descriptors in the early stage of 
QSAR are empirical in nature such as substituent constants, parti-
tion coefficients, and various electronegativity- related parameters 
[41–47]. With the increased computational power and advances in 
sciences, other types of molecular descriptors such as quantum 
chemical, electronic, geometrical, constitutional, and topological 
descriptors are used in modern QSAR.

2.5 CERES
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Whether 3D molecular descriptors yield better predictive 
models than 2D descriptors is a long-time topic of debate in the 
scientific community. The argument for preference of 3D molecular 
descriptors emphasizes their capability of handling absolute stereo-
chemistry and advantages of using force fields to model complexi-
ties of ligand binding to a receptor. However, some comparative 
studies [48–50] showed that 2D descriptors can perform as well as 
3D descriptors in most applications, supporting the preference of 
2D descriptors. Another advantage of 2D descriptors is the less 
computational cost because there is no need to deal with estimat-
ing the bioactive conformations required for 3D methods. The 
best set of molecular descriptors in the absolute sense may well be 
indeterminable.

The Mold2 program was developed at the FDA/NCTR to 
enable the rapid calculation of a large and diverse set of molecular 
descriptors from both 1D and 2D chemical structure information 
[51]. Mold2 is very fast and thus suitable not only for small datas-
ets, as is normal in QSAR applications, but especially for the large 
databases typically in virtual screening chemicals. Calculation of 
the Mold2 descriptors does not require 3D structures, and conse-
quently, both the descriptors and models derived from them should 
be highly reproducible.

Fig. 5 Molecular descriptors bridge chemical structure to biological activity
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Based on the 2D structure of chemical, the current version 
of Mold2 calculates 777 molecular descriptors that are grouped 
as listed in Table 2 by their origin. Mold2 primarily calculates 
constitutional and topological parameters as molecular descrip-
tors. It is freely available to the public (http://www.fda.gov/
ScienceResearch/BioinformaticsTools/Mold2/default.htm).

To demonstrate the applicability of Mold2 molecular descrip-
tors in QSAR, we compared the performance of QSAR models to 
correlate Cmax (the maximum or “peak” concentration in serum of 
a drug observed after its administration) values to the structures of 
chemicals using Mold2 and CODESSA (Comprehensive Descriptors 
for Structural and Statistical Analysis) which emphasizes descriptors 
obtained from quantum mechanical calculations. To construct the 
QSAR model using Mold2 molecular descriptors, all of the 777 
descriptors were first scaled to the range of 0–1. Then, a forward 
stepwise multiple linear regression method was used to construct an 
optimal regression model. In the construction of the model using 
CODESSA descriptors, all of the descriptors were scaled automati-
cally from the software output. Thus, the descriptor values were 
directly used to build the QSAR model using the integrated best 
multiple linear regression (BMLR) algorithm [52]. For comparative 
purposes, a model involving the same number of parameters as the 
one generated using Mold2 descriptors was selected.

Table 2 
Molecular descriptors in Mold2

Class Subclass Number of descriptors Example of descriptors

1D Counts for atoms 105 Number of O atoms
Chemical physical property 2 Molecular weight

2D Counts for atoms 80 Number of ring tertiary C
Counts for bonds 9 Number of rotatable bonds
Counts for functional groups 104 Number of carboxylic (aromatic)
Chemical physical property 16 logP
Structural features 13 Number of 5 member rings
2D autocorrelation 96 Moran coefficient
Balaban index 12 Normalized centric index
Connectivity index 36 Randic connectivity index
Detour index 24 Cyclicity index
Distance (topological) index 73 Average atom eccentricity
Eigen value-based descriptors 88 Folding degree index
Information content 45 Mean information content
Kier index 14 Kier flexibility
Molecular walk counts 13 Total walk count
Schultz index 4 Reciprocal Schultz index
Topological charge index 21 Mean topological charge
Wiener index 17 Normalized Wiener index
Zagreb index 5 Quadratic index
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The two alternative regression models reported in Tables 3 
and 4 are based on a dataset of 410 compounds with Cmax values 
curated in the LTKB. The whole dataset was randomly split into 
the training (273 compounds) and test (137 compounds) subsets. 
The modeling results from using Mold2, and CODESSA descrip-
tors are plotted in Fig. 6a, b.

As shown in Fig. 6, both sets of molecular descriptors pro-
duced regression models of almost the same quality. The compara-
tive study demonstrated that Mold2 can be advantageously used for 
the purpose of QSAR as it can be ultrafast calculated.

Table 3 
The best 5-parameter regression model obtained using CODESSA  
descriptors

X ΔX t Descriptor

31.280 11.270 2.775 Intercept

0.714 0.143 4.994 Average information content (order 2)

7.935 2.127 3.731 FHACA fractional HACA  
(HACA/TMSA) (MOPAC PC)

0.069 0.020 3.419 Number of C atoms

35.900 11.790 3.044 Max sigma–sigma bond order

0.0008 0.0003 2.855 WNSA-2 weighted PNSA  
(PNSA2*TMSA/1000) (MOPAC PC)

R2 = 0.319, R2
cv = 0.278, R2

test = 0.229, F = 24.9, Std. error of estimate = 1.10

Table 4 
The best 5-parameter regression model obtained using Mold2 descriptors

X ΔX t Descriptor

0.168 0.571 0.294 Intercept

3.335 0.727 4.589 Mean of vertex distance information index

1.744 0.548 3.183 Information content order 3 index

3.416 1.097 3.114 Lowest eigenvalue from Burden matrix  
weighted by masses order-1

0.971 0.390 2.486 Maximal valence vertex electrotopological  
negative variation

1.008 0.678 1.487 Mean electrotopological states index

R2 = 0.302, R2
test = 0.212, F = 23.1, Std. error of estimate = 1.12
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4 QSAR Models Developed at the FDA/NCTR

Chemicals that show potential endocrine activity could have 
adverse interactions with both humans and animals. They can 
directly or indirectly interact with many target proteins in the 
body’s endocrine system. ER is the receptor that has been most 
studied for endocrine activity, and many endocrine active chemicals 
show estrogenic activity and could change the ER-mediated path-
ways. Several QSAR models have been developed for predicting 
estrogenic activity at the FDA/NCTR.

In 1996, the Food Quality Protection Act of 1996 (http://www.
epa.gov/pesticides/regulating/laws/fqpa/) and the Safe Drinking 
Water Act Amendments of 1996 (http://water.epa.gov/lawsregs/
guidance/sdwa/theme.cfm) were passed by the US Congress. 
These two acts requested the US Environmental Protection Agency 
(EPA) to screen and test for estrogenic, androgenic, and thyroid 
endpoints for a large number of chemicals in the environment. 
There were more than 87,000 chemicals in the environment for 
evaluation. The polymers or otherwise unlikely to bind to steroid 
receptors were filtered, leaving about 58,000 chemicals for evalua-
tion. Experimental evaluation of such a large number of chemicals 
would require many years and extensive resources. Therefore, the 
US EPA adopted an approach requiring priority setting to rank the 
most potential chemicals for more resource-intensive and costly 
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values were plotted against the predicted log (Cmax) values. The training results were depicted by the diamond 
points, while the testing results were given by the triangle markers
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experimental evaluations. Many biologic mechanisms such as 
receptor binding involve endocrine activity that has potential for 
endocrine disruption. Hence, rapid methods for characterizing ER 
binding activity are important priority setting of environmental 
chemicals. We developed a tree-based QSAR model for predicting 
ER binding potential of the 58,000 environment chemicals [20].

We used a training dataset having ER binding data from an 
established in-house rat ER binding assay (NCTR dataset) [20] for 
model development. Chemicals are classified as ER binders and 
non-binders by the tree-based model using a series of rules on the 
basis of descriptors. To evaluate a large number of initial 153 
molecular descriptors and identify the ones most informative for 
the tree-based model, we selected the top ten descriptors using the 
genetic function approximation (GFA) approach. Several tree-
based models were constructed based on the NCTR dataset using 
combined groups of three to six of the top ten descriptors. The 
model giving the best concordance was the final model. Five 
descriptors (phenolic ring index, logP, Jurs-PNSA-2, Jurs-RPCS, 
and shadow-XY fraction) were used in the final tree-based model as 
shown in Fig. 7. The presence or absence of the phenolic group in 

Fig. 7 Tree-based model. The model displays a series of yes/no (Y/N) rules to 
classify chemicals into active (A) and inactive (I) categories based on five descrip-
tors: phenolic ring index, logP, Jurs PNSA-2, shadow-XY, and Jurs RPCS. The 
squares represent the rules; the circle represents the categorical results
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a chemical was the phenolic ring index. The logP measures the 
hydrophobicity of a chemical [53]. Jurs-PNSA-2 and Jurs-RPCS 
combined molecular shape and electronic information and were 
used to characterize the positive-charged surface area of a molecule 
[54]. The breadth of a molecule was represented by a geometric 
descriptor, the shadow-XY fraction [55].

The training results of the tree-based model showed an accu-
racy of about 88 % for the NCTR dataset. More specifically, 123 of 
the 131 ER binders were correctly predicted to be active (sensitiv-
ity = 93.9 %), while 81 of the 101 non-ER binders were correctly 
predicted to be inactive (specificity = 80.2 %).

The dataset reported by Nishihara et al. [56] was then used as 
a test dataset to challenge the tree-based QSAR model constructed 
from the NCTR dataset. This dataset was generated using the yeast 
two-hybrid assay for 517 chemicals, most of which are pesticides 
and industrial chemicals. After removing the chemicals that lacked 
unique structures such as mixtures, the remaining 463 chemicals 
were used for the test. Sixty-two chemicals were defined as active 
using the criterion of activity >10 % of 10–7 M E2 by Nishihara 
et al., while the majority of the chemicals were treated as inactive.

An accuracy of 82.5 % was yielded when applying the tree-
based model to the Nishihara dataset. The sensitivity and specific-
ity of the model were 87.1 % (54/62) and 81.8 % (328/401), 
respectively.

We applied the tree-based QSAR model into an integrated sys-
tem that consists of rejection filters, structural alerts, and the tree-
based model to prioritize the some 58,000 environmental 
chemicals. Of 58,230 chemicals in priority setting, the two rejec-
tion filters removed 16,689 chemicals as ER non-binders. The 
remaining 41,541 chemicals were predicted for their ER binding 
activity using the tree-based model and the structural alerts. The 
prediction yielded that 6903 chemicals were ER binders and 34638 
chemicals ER non-binders. Our results suggested that less than 
12 % (6903) of the original 58230 chemicals might need to be 
tested for their potential ER activity. Of the 6903 chemicals, only 
104 chemicals had the most active ER activity as they were pre-
dicted to be active by more than three of the four models (the 
tree- based model and three structural alerts).

Structurally diverse chemicals can bind the ER to change the con-
formation of the protein in a nonspecific way, altering normal 
estrogen signaling through genomic and non-genomic pathways 
[57, 58]. Depending on their binding to ER, xenoestrogens can be 
agonists, partial agonists, or antagonists, altering normal gene 
expression levels and functions modulated by endogenous hor-
mones [59, 60].

Many in vivo and high-throughput in vitro assays have been 
developed and validated to screen for mimics that act either as 

4.1.2 Docking Models 
for Predicting ER Agonists 
and Antagonists
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estrogens or antiestrogens. However, comprehensively testing 
hundreds of thousands of man-made chemicals would be too 
expensive [61]. The timeline would also be highly protracted, 
given that a few chemical classes have been tested in over a decade, 
barely the tip of the iceberg of the chemical universe. Finally, the 
validated experimental techniques are not comprehensive at the 
moment. As developmental endpoints, means to detect levels of no 
biological effect, mixture and metabolism effects, among other 
limitations, are not adequately represented. Therefore, a full assess-
ment of endocrine activity potential across the universe of chemi-
cals constitutes a daunting problem, and QSAR models are needed 
to reduce costs and streamline the process.

In silico methods have often been used to complement experi-
mental studies in order to assist with data analysis as well as improve 
results. In this instance, rapid QSAR models can be used not only 
to help identify and prioritize which class of compounds to screen 
but also reduce the number of compounds to be tested. Docking 
is one of the popular QSAR techniques often used for ligand pose 
prediction, ligand binding affinity prediction, as well as identifying 
potential actives from a library of decoys in virtual screening [62].

QSAR models based on docking techniques demonstrated that 
docking has utility to differentiate potential ligands (binders) from 
decoys (non-binders). However, current docking QSAR models 
lack the ability to distinguish agonists from antagonists and are 
thus unable to obviate or reduce experimental assays for further 
understanding of the mechanisms of actions of xenoestrogen. 
Hence, we have developed a QSAR model based on docking that 
can differentiate ligands in accordance with likelihood of activating 
or inhibiting or blocking the activity of ER.

This QSAR model consists of two separate docking models 
(SDMs), one constructed using known agonists and the other was 
built from known antagonists [16]. Figure 8 shows the study 
design. Basically, two SDMs were constructed to form a competi-
tive docking model (CDM) for differentiation of ER agonists from 
ER antagonists. The SDMs compete in determination of ER ago-
nist or antagonist. The CDM used docking scores that estimates 
the non-covalent interactions between a chemical and the ER ago-
nist conformation and ER antagonist conformation to select the 
preferred ER binding mode for the chemical. A chemical is pre-
dicted to be (in a winner-take-all strategy) the type, agonist or 
antagonist, corresponding to the most favorable docking score 
from the individual SDMs.

The rationale of this approach is the dynamic nature of com-
peting ligand-protein complexes where agonists and antagonists 
impart different conformation changes not represented by a single 
rigid conformation found in prior docking models. The approach 
was tested using two sets of ER ligands (one extracted from PDB 
crystal structures and another from the DUD [63]). We used 
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enrichment factors (EFs) as the performance metric to assess the 
quality of our SDMs and CDM through virtual screening. Results 
obtained showed that the CDM could differentiate agonists from 
antagonists as depicted in Fig. 9.

With EADB, a database that contains estrogenic activity data and 
structural information for more than 8000 chemicals collected by 
mining the literature and publicly available databases, it is expected 
that more accurate and reliable QSAR models for predicting estro-
genic activity can be developed as the number of chemicals that can 
be used for training QSAR models are large, and consistency of 

4.1.3 Decision Forest 
Model for Predicting ER 
Binding
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Fig. 8 Study design depicting the overall workflow. Three ligand sets are used for 
docking. While the first set of ligands is derived from the crystal structures avail-
able from the PDB, the second and third sets of ligands and decoys, respectively, 
are obtained from the DUD website. Results from the first and second sets of 
docking will be used to evaluate the ability of the CDM to differentiate agonists 
and antagonists, while the results from the second and third sets of dockings will 
be combined and used to calculate enrichment factors
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activity data for the same chemicals can be used to improve the 
data quality in the training dataset. To demonstrate the utility of 
EADB in the prediction of  estrogenic activity, we developed a 
QSAR model for predicting ER binding activity.

First, we examined the data consistency for the 5497 chemicals 
that have ER binding data in EADB. We found 103 chemicals hav-
ing discordant ER binding activity data (i.e., active in some assays 
but inactive in other assays), and, thus, we removed them from the 
QSAR model development. Of the rest 5394 chemicals having 
consistent ER activity data, 4719 are ER binders, while 675 are ER 
non-binders. The 777 Mold2 molecular structures [51] for each of 
these 5394 chemicals were then calculated using the SDF files 
exported from EADB. Thereafter, we removed the molecular 
descriptors with constant value across all the 5394 chemicals. The 
values of the remaining 633 Mold2 descriptors were then normal-
ized from zero to one. Lastly, decision forest (DF) [21], the novel 
supervised machine learning algorithm, was used to build the 
QSAR model for prediction of ER binders using the normalized 
Mold2 descriptors.

The fivefold cross validation was carried out to evaluate predic-
tive power and robustness of the DF QSAR model as depicted in 
Fig. 10. For one iteration of the fivefold cross validation, the 5394 
chemicals were randomly split into five equal portions. One por-
tion of the chemicals was left for testing the DF QSAR model 
trained using the remaining four portions. This process was 
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Fig. 9 The bar charts show the prediction accuracy of the SDMs (yellow) and CDM (red) for the crystallographic 
and DUD ER ligand sets. The bar heights denote the total number of ligands in each category. In all cases, CDM 
outperformed the SDMs, particularly in the case of agonist predictions
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repeated by changing the left portion of chemicals so that all the 
five portions were used as testing datasets. The prediction results 
yielded from the five models were then averaged to provide the 
estimate of model performance. To make the performance evalua-
tion statistically robust, the fivefold cross validation was repeated 
ten times using different random divisions of the 5394 chemicals 
to ensure the results are not purely by chance.

The predictive performance of the DF QSAR model was sum-
marized in Fig. 11. The mean accuracy, sensitivity, and specificity 
reached 93.84 % (standard deviation (SD) = 0.25 %), 98.03 % 
(SD = 0.21 %), and 64.53 % (SD = 2.51 %), respectively. The results 
demonstrated that EADB is a valuable resource and a convenient 
tool for developing high- quality QSAR models.

The shrink in the number of recent drugs presented to the mar-
ket causes detriment for the pharmaceutical industry. This is 
attributable to about 90 % of drug candidates approved for 
human testing failing in clinical trials [64]. Drug potency and 

4.2 QSAR Models 
for Predicting Drug-
Induced Liver Injury

Fig. 10 The flowchart of fivefold cross validations. The dataset was first randomly 
split into five portions. Four portions were used to construct a DF model, and the 
remaining one portion was used to challenge the model. This procedure was iter-
ated for five times by changing the challenge portions. The predictions of the five 
models were then used as measurement of the performance for the DF model. 
The random splits of the datasets into five portions were repeated ten times
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toxicity are the main causes of drug failure, and DILI (drug-
induced liver injury) is one of principal toxicity causes [31]. 
QSAR is a computational method that has shown to be useful for 
safety screening during the early stages of drug discovery [65]. 
The physicochemical nature of compounds like lipophilicity has 
been identified as an important risk factor for DILI when consid-
ered together with daily dose [37]. QSAR models have been 
published for the study of hepatotoxicity, and currently the per-
formance of the majority of published models for DILI in humans 
has been less than satisfactory, with efficiencies of roughly 60 % or 
less [32], most notably when the models are tested by large exter-
nal validation sets.

To facilitate the development of better QSAR models for assessing 
DILI risk in humans, FDA-approved drug labeling data were used. 
Drug labeling is one of the few public data sources that can assess 
severity, causality, and incidence, a requirement for assessing a 
drug’s potential for human hepatotoxicity [35]. The FDA-
approved drug labeling separated drugs into three groups: 
most-DILI-concern, less-DILI-concern, and no-DILI-concern 
that were used to develop a QSAR model for predicting DILI. Three 
published datasets, namely, NCTR dataset [27], Xu et al. dataset 
[66], and Greene et al. dataset [67], were used as independent 
validation sets to measure the performance of the QSAR model 
developed from the training set. Mold2 molecular descriptors [51] 
were used in the QSAR model. DF [21] was used to develop the 
QSAR model. Cross validation was used to measure the model 
performance. Permutation analysis was used to determine if a 
model’s performance was different from random chance. Figure 12 
gives an overall strategy of the QSAR model development and 
validation procedure.

4.2.1 QSAR Model 
for DILI Prediction

Fig. 11 Performance of the ten iterations of fivefold cross validation. Accuracy 
was plotted in up triangles, sensitivity in squares, and specificity in circles
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The QSAR model composed of six decision trees using 82 
Mold2 descriptors.

The mean accuracy, sensitivity, and specificity listed in Table 5 are 
the results of 2000 repetitions of tenfold cross validation. The 
distributions of prediction accuracy for the 2000 cross validations 
and for 2000 permutations are plotted in Fig. 13. The low per-
centage of the permutation results (48.5 %) suggests that the 
medium accuracy value from the cross validations (69.7 %) was 
not by mere chance.

The prediction performance of the QSAR model was evaluated 
using three validation datasets: the NCTR, Xu, and Greene valida-
tion sets. The performances of the QSAR model on the three 
external datasets are listed in Table 5.

We further compared the QSAR predictions between drugs 
with consistent and inconsistent DILI annotations across the three 
external validation sets. We observed that 70 % of the drugs with 
consistent annotations between the NCTR and Greene validation 
datasets were correctly predicted by the QSAR model, while only 
58.8 % of the drugs with inconsistent annotations could be cor-
rectly predicted. The same trend was observed in the comparison 
between the NCTR and Xu validation datasets and between the 
Greene and Xu validation datasets.

4.2.2 Cross Validation 
of the QSAR Model 
and Permutation Tests

4.2.3 External Validation 
of the QSAR Model

Fig. 12 Flowchart of the quantitative structure–activity relationship model development and validation 
procedure of the study
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Table 5 
Summary of internal cross validation and external validation results

Cross validation  
(2000 runs) External validation

NCTR training seta NCTR validation set Greene dataset Xu dataset

Accuracy 69.7 % ± 2.9 % 68.6 % 61.6 % 63.1 %

Sensitivity 57.8 % ± 6.2 % 66.3 % 58.4 % 60.6 %

Specificity 77.9 % ± 3.0 % 70.8 % 67.5 % 66.1 %

PPV 64.6 % ± 4.3 % 69.2 % 77.2 % 68.4 %

NPV 72.6 % ± 2.5 % 68.0 % 46.4 % 58.1 %

Drugs 197 (pos/
neg = 81/116)

191 (pos/
neg = 95/96)

328 (pos/
neg = 214/114)

241 (pos/
neg = 132/109)

Cross validation results are averaged values of 2000 runs of tenfold cross validations. External validation results are 
prediction results on the three independent validation sets
aMean ± relative standard deviation
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Fig. 13 Distribution of prediction accuracy of the 2000 runs of tenfold cross vali-
dation and the 2000 permutation analysis

The tenfold cross validations performed on the training set were 
used to explore the difference of the QSAR model’s predictive per-
formance for drugs in the therapeutic subgroups defined by the 
second level of the Anatomical Therapeutic Chemical (ATC). The 
result showed that the QSAR model had a higher prediction 

4.2.4 Identification 
of High- Confidence 
Therapeutic Subgroups
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accuracy than the overall prediction for drugs in 22 therapeutic 
groups that were termed as high- confidence subgroups and had a 
lower prediction accuracy than the overall prediction for drugs in 
18 therapeutic groups that were assigned as low-confidence 
subgroups (Table 6). The predictive accuracy values of the 40 ther-
apeutic subgroups were plotted as a bar chart in Fig. 14, showing 
that the QSAR could be used for predicting DILI in humans, espe-
cially for the high-confidence therapeutic subgroups like analge-
sics, antibacterial agents, and antihistamines.

Consistent with the observation in the tenfold cross valida-
tions, the external validations also showed that the QSAR model 
performed better for drugs in the high-confidence therapeutic sub-
groups than drugs in the low-confidence therapeutic subgroups.

Our study demonstrated the possibility of constructing QSAR 
models for predicting DILI potential.

5 Future Perspectives

Generally speaking, all currently available descriptor software packages 
share a firm foundation in theory and practice that span for many 
decades. Likewise, there is a rich literature and proven track record 
of contributions of these software packages to chemistry, medicinal 

Table 6 
The high- and low-confidence therapeutic subgroups (second level of ATC classification) identified 
from cross validation of the QSAR model based on the training set

Confidence 
domain Therapeutic subgroup (ATC code)

High  
confidence

Stomatological (A01), drugs for functional gastrointestinal disorders (A03), 
antidiarrheals, intestinal anti-inflammatory/anti-infective agents (A07), 
antihemorrhagics (B02), cardiac therapy (C01), antihypertensives (C02), 
vasoprotectives (C05), antipruritics, incl. antihistamines, anesthetics, etc (D04), 
antibiotics and chemotherapeutics for dermatological use (D06), corticosteroids 
for systemic use (H02), antibacterials for systemic use (J01), muscle relaxants 
(M03), analgesics (N02), nasal preparations (R01), throat preparations (R02), 
drugs for obstructive airway diseases (R03), cough and cold preparations (R05), 
antihistamines for systemic use (R06), ophthalmologicals (S01), otologicals (S02), 
ophthalmological and otological preparations (S03), contrast media (V08)

Low  
confidence

Vitamins (A11), anabolic agents for systemic use (A14), antithrombotic agents 
(B01), peripheral vasodilators (C04), calcium channel blockers (C08), agents 
acting on the renin-angiotensin system (C09), antifungals for dermatological use 
(D01), gynecological anti-infectives and antiseptics (G01), sex hormones and 
modulators of the genital system (G03), urologicals (G04), antivirals for systemic 
use (J05), antineoplastic agents (L01), endocrine therapy (L02), antiinflammatory 
and antirheumatic products (M01), anesthetics (N01), psycholeptics (N05), 
psychoanaleptics (N06), antiprotozoals (P01)
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 chemistry, and a myriad of other QSAR applications. Different 
software packages may emphasize on specific descriptor space 
domains corresponding to distinct aspects of chemical structure 
space or may offer various statistical or graphical functionalities. 
Improvement of current descriptor calculation software packages 
and development of new descriptors that can describe chemical 
structures more comprehensively to cover chemical structure char-
acterization are anticipated in the near future. With more compre-
hensive molecular descriptors, it can be expected that better QSAR 
models will be obtained from high- quality data by the experienced 
and careful practitioner.

Multiple QSAR models have been and could be developed 
for a specific endpoint using different datasets, descriptors, and 
machine learning methods. In most cases, the models for predict-
ing the same endpoint perform differently for some chemicals. 
The question as to how to utilize the models in applications is 
a challenge in the field. A common approach is to combine the 
results from multiple models using different consensus approaches. 
Many consensus methods have been used in QSAR modeling. For 
example, decision forest [21] uses consensus modeling by combin-
ing multiple well-learned models from different sets of descriptors 
of all samples using both majority voting and weighted voting. 
In a different way, random forest [68] ensembles unpruned clas-
sification trees constructed by using bootstrapping samples from 
the training samples and a subset of features randomly selected. 
Consensus methods had gained applications in regulatory science 
recently, as evidenced by the issuing of “Practical guide 2: How to 
report weight of evidence” (https://echa.europa.eu/documents/ 
10162/13655/pg_report_weight_of_evidence_en.pdf) by ECHA 

Fig. 14 Prognostic accuracy in the high- and low-confidence therapeutic sub-
groups derived from the three external validation sets
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(European Chemicals Agency). It is expected that more consen-
sus modeling methods will be developed and used for QSAR in 
the future.

There are diverse data available for QSAR. The amount of data 
for the same chemical grows quickly, making utilization of the data 
in QSAR very challenging. In addition to the challenges in captur-
ing, curating, storing, visualizing, and sharing of the big and 
diverse data, fusion of the data will also be a challenging task for 
the development of more robust and accurate QSAR models. 
Fusion data from different assays, especially from different emerg-
ing technologies, will be a key step to fully utilize the knowledge in 
the QSAR research. As the big data solutions continue apace, we 
expect that more data fusion algorithms will be developed, and 
they will, in turn, improve QSAR in the near future.
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    Chapter 19   

 A Round Trip from Medicinal Chemistry to Predictive 
Toxicology                     

     Giuseppe     Felice     Mangiatordi    ,     Angelo     Carotti    ,     Ettore     Novellino    , 
and     Orazio     Nicolotti      

  Abstract 

   Predictive toxicology is a new emerging multifaceted research fi eld aimed at protecting human health and 
environment from risks posed by chemicals. Such issue is of extreme public relevance and requires a mul-
tidisciplinary approach where the experience in medicinal chemistry is of utmost importance. Herein, we 
will survey some basic recommendations to gather good data and then will review three recent case studies 
to show how strategies of ligand- and structure-based molecular design, widely applied in medicinal chem-
istry, can be adapted to meet the more restrictive scientifi c and regulatory goals of predictive toxicology. 
In particular, we will report:

 ●    Docking-based classifi cation models to predict the estrogenic potentials of chemicals.  
 ●   Predicting the bioconcentration factor using biokinetics descriptors.  
 ●   Modeling oral sub-chronic toxicity using a customized k-nearest neighbors (k-NN) approach.     

  Key words     Docking-based classifi cation models  ,   Estrogenic potentials of chemicals  ,   Bioconcentration 
factor  ,   Biokinetics descriptors  ,   Oral sub-chronic toxicity  

1      Introduction 

 Predicting the effects of xenobiotics, not solely drugs, is far from 
being a winning bet. Their interplay with living organisms is in fact 
responsible for biological/toxicological actions which are often 
not easy to predict. On the other hand, predictions can be made on 
the basis of (a) in vivo experiments based on direct animal testing, 
(b) in vitro experiments making use of tissue culture cells, and (c) 
in silico simulations by employing computer models. It is widely 
acknowledged that in vivo and in vitro experiments are time 
demanding and expensive. Great efforts have been thus directed to 
develop in silico approaches. Such computational strategies allow a 



462

signifi cant save in terms of money, time, and, above all, laboratory 
animals and provide reliable toxicological evidence in order to 
minimize or replace in vivo assays according to the “three Rs” 
principle (replacement, reduction, refi nement) [ 1 ]. In our opin-
ion, computational methods are thus complementary to experi-
mentation and prospectively capable of replacing empirical testing. 
The tendency is thus that of moving from experiments to explor-
atory toxicology which can provide timely go/no-go decisions and 
represents a viable alternative for the prediction of biological/toxi-
cological effects [ 2 ,  3 ]. 

 In the present survey, we will review some ad hoc examples 
taken from our recent studies showing how adapting consolidated 
drug discovery strategies to the scientifi c and regulatory goals of 
exploratory toxicology. First of all, we will emphasize the impor-
tance of having high-quality data to ensure the derivation of trust-
able models. In this respect, some practical recommendations will 
be given. Then, we will discuss how applying molecular docking, 
perhaps the most popular structure-based method employed by 
medicinal chemists, to obtain classifi ers for discerning estrogenic 
from non-estrogenic substances. In the second case studies, we will 
present how QSAR models can be derived and applied to predict 
the bioconcentration factor, a relevant ecotoxicological endpoint. 
In this respect, attention will be paid to the appropriate use of bio-
kinetics descriptors and to the defi nition of the applicability domain 
to ensure both model transparency and adequacy. Finally, we will 
describe how customizing a k-NN algorithm to properly model 
oral sub-chronic toxicity. We will show how the implementation of 
user- adjustable rules can be very effective to increase the confi -
dence in data prediction, which is the ultimate aim of computa-
tional toxicology.  

2    Looking for High-Quality Data: Some Practical Recommendations 

 The advent of new regulations concerning the protection of human 
health and environment has strengthened the role of QSAR. Such 
methodology has today assumed the  status  of a mature discipline 
for both scientifi c and regulatory purposes. The pressing need of 
regulatory bodies and industries for the derivation of adequate 
QSAR models has led to issue some best practices, which are, at 
present, key elements for successful predictive in silico toxicologi-
cal studies. Some seminal papers [ 4 – 6 ] have clearly demonstrated 
that the predictive potential of QSAR models is mostly dependent 
from the quality of chemical descriptors rather than from the 
sophistication of the employed optimization techniques. A high-
quality data is therefore essential for obtaining trustable models. In 
this respect, several preliminary checks need to be taken into 
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account for steering away from even small structural mistakes 
whose occurrence can result in inaccurate molecular descriptors, 
which in the end are responsible for disappointing predictions. To 
circumvent this pitfall [ 7 ], great attention has been given to the 
data curation, a preprocessing treatment necessary to discard or 
amend chemical records, which are diffi cult to handle with conven-
tional cheminformatics techniques. Normally, data curation is 
applied to fi lter out inorganic and organometallic compounds, 
counterions, salts, and mixtures. In addition, data curation is car-
ried out to standardize the ring aromatization, to uniform specifi c 
chemotypes, to assign tautomeric forms, and to remove 
duplicates. 

 Since model reliability is strictly dependent on data quality 
(i.e., garbage in, garbage out), QSAR developers should also pay 
high attention in appropriately sizing the dataset and in fairly bal-
ancing structural classes or categories, which in real-life investiga-
tions are often unevenly represented. It would be advisable that the 
number of compounds in the dataset should not be too small since 
this could lead to the occurrence of chance correlation and overfi t-
ting; both these phenomena can deteriorate the real predictive 
power of models. Moreover, a small-sized dataset would be unsuit-
able for validation analyses. On the other hand, there is not an 
upper limit to defi ne a maximum size. In this respect, a key role is 
played by the algorithm implemented for deriving QSAR as well as 
by the available resources (e.g., computer and time). For practical 
reasons, a too large dataset can be reduced by selecting a given 
subset of chemically diverse compounds or can be partitioned in 
clusters from which deriving multiple and independent models. 
However, some golden rules should be observed to split the initial 
dataset into a training set for model derivation and into a test and 
external set for model validation. In case of continuous response 
variables, at least 40 compounds should be considered: 20 com-
pounds in the training set and 10 compounds in both test and 
external sets. Moreover, the response variables should cover a 
range at least fi ve times larger than the experimental error and 
should be fairly distributed over such entire range. In case of clas-
sifi cation or category response variables, at least 20 compounds per 
class are recommended: the training set should be made of no less 
than 10 compounds per class while test and external sets no less 
than 5 each. 

 Another reason of attrition in QSAR derivation is given by 
compounds, which are typical chemical singletons, being their 
structural features far away from those of all the other compounds 
within a dataset. In other words, they could behave as leverage (or 
structural) outliers. Other compounds could instead act as activity 
outliers as they rebut the basic QSAR assumption stating that simi-
lar compounds have similar properties. As reported in a number of 
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seminal works [ 8 ,  9 ], these compounds could originate the so-
called cliffs of the descriptor space where a given response property 
(i.e., biological/toxicological response) changes dramatically for 
an even subtle structural variation. Actually, both these types of 
outliers can be real or sometimes due to accidental errors in report-
ing the chemical structure or in annotating the response variable. 
Normally, it is wise to remove them prior to model derivation as 
they will likely cause model instability and deeply affect 
predictions. 

 Moreover, high-quality molecular descriptors are essential to 
derive predictive and interpretable QSAR models [ 10 ]. Nowadays, 
it is quite easy to quickly calculate an overwhelming number of 
descriptors [ 11 ] related to two- or three-dimensional molecular 
aspects, although their mechanistic interpretation remains some-
what obscure to mid-level QSAR practitioners. Needless to say 
that medicinal chemists have long debated about chemical desir-
ability, a concept inherent to the chemical meaning of QSAR 
model [ 12 ,  13 ]. We can guess that descriptors referring to the pas-
sage of xenobiotics across cellular membranes, for instance, may be 
desirable in a toxicological context. In this respect, we do believe 
that ADMET (absorption, distribution, metabolism, excretion, 
and toxicity) properties would make the descriptors space more 
attractive for toxicological purposes and of adequate transparency 
for molecular and numerical modeling. ADMET properties are in 
fact important to study the fate and disposition of drugs and to 
monitor their behavior in the body at therapeutic doses (i.e., phar-
macokinetic properties). Importantly, the studies of ADMET 
properties are not limited to drugs but can be extended to any 
chemical, including environmental pollutants, potentially affecting 
human health. In this respect, the term toxicokinetics and, even 
better, the more inclusive term biokinetics [ 14 ] are normally used 
to describe and, then, to predict unwanted toxic effects of xenobi-
otics on living system exposed to chemicals at any dosage regimen. 
The masterpiece by Waterbeemd [ 15 ] describes the progress made 
by medicinal chemistry in the attempt of refi ning ADMET proper-
ties in order to reduce the costly late-stage failures in drug devel-
opment and thereby accelerating the drug discovery process. Such 
efforts have resulted in the wide introduction of ADMET-related 
descriptors implemented in in silico methods to predict the most 
relevant pharmacokinetic, metabolic, and toxicity endpoints.  

3    Docking-Based Classifi cation Models to Predict the Estrogenic Potentials 
of Chemicals 

 Predicting the endocrine disruptor potential of chemicals and, 
more specifi cally, their ability to interfere with the estrogen recep-
tors (ERs) is a theme of utmost relevance [ 16 ]. Unlike previous 
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predictive  models [ 17 – 19 ], we have recently described how the 
current availability of X-ray-solved target structures can be 
employed [ 20 ]. Importantly, accounting for physicochemical 
information on the biological target allows a larger applicability 
domain with respect to classical QSAR-like models. 

 We used a three-dimensional (3D) training dataset (hereafter 
referred to as EPA-ERDB) consisting of 1677 chemical structures 
shared by US EPA. For each chemical, the estrogenic/nonestro-
genic action was derived from concentration-response data result-
ing from 18 high-throughput assays probing several sites of the 
mammalian ER pathway. Challengingly, the 1677 chemicals were 
unevenly distributed, being only 237 (14.13 %) chemicals desig-
nated as ER binders. To possibly cover a broader spectrum of pos-
sible biological actions of compounds comprised within the 
EPA-ERDB training dataset, eight ER crystal structures were 
retrieved from the Protein Data Bank (PDB) for docking simula-
tions. All four possible ER classes were considered: (1) ERα bound 
to agonist, (2) ERα bound to antagonist, (3) ERβ bound to ago-
nist, and (4) ERβ bound to antagonist. The 3D conformations of 
the 1677 chemicals in the training dataset were subjected to dock-
ing simulations performed by both GLIDE v.6.5 [ 21 ] and GOLD 
v.5.2 [ 22 ], two very popular software largely adopted in drug dis-
covery projects. The ability of the selected docking protocols to 
discern binders from nonbinders was assessed using typical confu-
sion matrix, which includes information about experimental and 
predicted matches and mismatches returned for each classifi cation 
system. Next, docking performance was evaluated using the enrich-
ment factor (EF), which represents the percentage of known bind-
ers found at a given percentage of the ranked database. In addition, 
we reported the EF at the early 1 % of the ranked dataset (i.e., 
EF1%). Predictive docking-based classifi cation models are expected 
to return similar values for both EF1% and EFmax (a reference 
ideal value obtained by dividing the total number of chemicals by 
the total number of binders). All these data were derived from the 
obtained receiver operating characteristic (ROC) curves ( see  
Fig.  1 ). The thresholds for defi ning the classes were set on the basis 
of the desired sensitivity (SE) values. The value of SE estimates the 
proportion of true positives that are correctly identifi ed. In order to 
designate the estrogenic or nonestrogenic potential, two SE values 
equal to 0.25 and to 0.75 were set as thresholds to defi ne, for each 
ER crystal, three probability binding classes as follows:

    (a)    SE ≤0.25, the class with high probability of binding (i.e., 
binder molecules).   

  (b)    SE >0.75, the class with low probability of binding (i.e., 
nonbinder molecules).   

  (c)    0.25 < SE ≤ 0.75, the class with medium probability of 
binding (i.e., suspicious molecules).    

Medicinal Chemistry and Predictive Toxicology



466

  At a given threshold, the goodness of the classifi cation was 
assessed using two parameters: (a) the positive predictive value 
(PPV) that is related to the probability that a chemical predicted as 
a binder (over-threshold) is actually a binder and (b) the nega-
tive predictive value (NPV) that is related to the probability that a 
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  Fig. 1    ROC curves derived from ERα (PDB entries: 1L2I, 1A52, 3DT3, and 1SJ0) and ERβ structures (PDB 
entries: 3OLS, 2NV7, 1QKN, and 1L2J) are shown on the  left  and  right hand side , respectively (taken from  20 )       
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chemical predicted as a nonbinder (under-threshold) is actually a 
nonbinder. However, the pronounced asymmetry of data prompted 
us to compute the positive (+LR) and the negative likelihood ratio 
(−LR) for each of the SE-considered thresholds. Briefl y, the greater 
the +LR is at a given threshold, the better the performance of the 
classifi cation model. It is worthy to say that these likelihood ratios 
are independent from the data distribution within the training set. 

 We observed that, unequivocally, GLIDE detects a higher num-
ber of binders in the earliest fraction of the rank despite the lower 
AUC values. For all ER crystal structures, the ability to minimize FPs 
is higher with GLIDE with respect to GOLD, in agreement with the 
already discussed EF1% factors. Importantly, an opposite trend can 
be detected if the second threshold (SE = 0.75) is considered. GOLD 
returns PPV values higher than GLIDE. In other words, GLIDE 
ensures better performances in terms of ability to minimize FPs, 
whereas the interest is mostly oriented to the upper part of the rank-
ing. Our results would suggest that the use of GLIDE or GOLD 
depends on the pursued goals. As shown, there is not a winning 
model, but rather a case-by-case evaluation should be made. 
Docking-based classifi cation models have allowed to employ the 
wealth of physicochemical information contained in the native pro-
tein structures to screen large chemical collections and demonstrated 
to be helpful for immediately obtaining a preliminary idea of the 
estrogenic activity by simply comparing the docking score of a target 
chemical with those reported at the different SE-based thresholds.  

4    Predicting the Bioconcentration Factor Using Biokinetics Descriptors 

 The bioconcentration factor (BCF) represents the ratio of the con-
centration of a substance in an aquatic organism with respect to 
that in water [ 23 ]. It is an endpoint of utmost relevance due to its 
costs and its (eco)toxicological impact. Its assessment should be 
done following the experimental test OECD 305, which requires 
for each substance more than hundreds of fi shes, months for test 
execution, and tens of thousands of Euros [ 24 ]. The herein used 
data [ 25 ] comprises 851 chemicals, retrieved from the ANTARES 
dataset. The obtained dataset was split into three subsets: about 10 
% (78 out of 851) of the compounds were randomly selected to 
form the blind set (BS), required for fi nal validation. The remaining 
chemicals were split to ensure a uniform distribution of their exper-
imental BCF values, applying the Venetian blinds method [ 26 ], to 
form training set (TS) and validation set (VS) containing 620 and 
153 chemicals, respectively. These selection criteria were used to 
obtain two different and independent sets for model validation and 
to ensure the most realistic situation for the external compounds, 
so that statistics could explain the real capability of the model to 
predict new compounds, as it should be for regulatory purposes. 
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 Many commercial and free software programs are available for 
the calculation of thousands of two-dimensional (2D) or three- 
dimensional (3D) descriptors. In the present work, we preferred to 
calculate a smaller number (i.e., 51) of ADMET (absorption, dis-
tribution, metabolism, excretion, and toxicity)-relevant descriptors 
that are closely related to pharmaceutical properties of organic 
molecules. To this end, we used QikProp 3.4 [ 27 ] included in 
Schrödinger 2011-1 suite [ 28 ]. Note that, as already mentioned, 
descriptors referring to the permeation of the membrane may be 
more desirable for a toxicological or pharmacological audience. 
A number of models were derived using the Monte Carlo approach 
(simulated annealing), multiple linear regression (MLR), and neu-
ral network algorithm (NN). Importantly, the obtained models 
could be fl exibly adapted to play as classifi ers using as thresholds 
those established in Annex XIII of REACH to classify chemicals. 
All substances that exceed the fi rst threshold of log BCF = 3.3 are 
classifi ed as bioaccumulative (B), while those having log BCF < 3.3 
are classifi ed as nonbioaccumulative (nB) according to the PBT 
(persistent, bioaccumulative, and toxic) defi nition; on the other 
hand, all substances that exceed the second threshold of log 
BCF = 3.7 are classifi ed as very bioaccumulative (vB). 

 Among others, our attention was mostly engaged by a nine- 
descriptor model. Apart from robust statistics, particular attention 
was paid to the defi nition of the applicability domain (AD). 
Needless to say that predictions provided by models without a 
clearly defi ned AD are meaningless [ 29 – 31 ]. As previously 
described, its importance has also been remarked in REACH 
Annex XI, BPR Annex IV, and OECD principles for the derivation 
of acceptable QSARs. In our studies, we implemented a multi-step 
fi lter system to confi dently designate chemicals within the AD only 
those having the matching criteria requested at any step. Such pro-
cedure ensures higher confi dence and transparency irrespective of 
the accuracy of predictions [ 32 ]. 

 The fi rst independent fi lter accounted for the dataset structural 
diversity. Briefl y, the occurrence of organic functional group 
(nested) was assessed using the QSAR Toolbox 3.0 software, 
released by OECD—2013. The second independent fi lter 
accounted for the chemical descriptors range. The minimum and 
maximum values of the nine descriptors in the model for TS chem-
icals were used a criterion of interval validity. In this respect, VS or 
BS chemicals whose descriptors violated even only one range were 
placed outside AD. The third independent fi lter was a geometrical 
trap based on the interpolation region space representing the 
smallest convex area whose borders describe the perimeter of a 
polygon containing TS compounds. In particular, the interpola-
tion polygon was drawn using spatial coordinates of the fi rst two 
principal components of the multivariate descriptor space of the 
nine-term model. The  polygon area was reduced to include the top 
98 % TS compounds (considering their closeness to TS centroid) 
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to avoid the inclusion of underrepresented areas likely increasing 
the prediction uncertainty. Finally, the leverage method was applied 
as fourth independent fi lter. Briefl y, the leverage represents the com-
pound distance from the model experimental space (that is the cen-
ter of TS observations) and, thus, provides a measure of the degree 
of infl uence that a particular TS chemical structure has on the model 
or the degree of extrapolation for the prediction of VS and BS com-
pounds. In this respect, VS and BS compounds having leverages 
exceeding the widely acknowledged threshold of  h * = 3 p ′/ n  (where 
 p ′ is the number of model variables plus one and  n  is the number of 
TS compounds) were placed outside model AD being poor reliable 
predictable [ 33 ]. 

 The simultaneous application of multi-fi lter system has the 
effect of leaving outside AD: (a) a number of 20 (13 % of the ini-
tial) VS compounds with an indirect gain of  r  2  from 0.635 to 0.765 
and of RMSE from 0.794 to 0.616 and (b) a number of 7 (9 % of 
the initial) BS compounds with an indirect gain of  r  2  from 0.623 
to 0.659 and of RMSE from 0.841 to 0.817 ( see  Fig.  2 ).

   The harmonic application of consolidated QSAR approaches 
employing pharmaceutically relevant descriptors and a multi-step 
fi lter system to designate chemicals inside/outside AD  demonstrated 
to be very effective for modeling BCF data, an endpoint of utmost 
importance in both toxicological and regulatory terms.  

  Fig. 2    Comparison of the experimental and predicted log BCF values obtained through the nine- descriptor BCF 
model. TS, VS, and BS chemicals are represented by  white diamonds ,  gray squares , and  upside triangles , 
respectively. VS and BS outside AD chemicals are represented by  black squares  and  upside triangles , respec-
tively. The continuous line represents the case of ideal correlation (taken from  25 )       
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5    Modeling Oral Sub-chronic Toxicity Using a Customized k-Nearest Neighbors 
(k-NN) Approach 

 Repeated dose toxicity (RDT) is an important endpoint to toxico-
logically profi le a given chemical after repeated administration. 
RDT studies are focused on the no observed (adverse) effect level 
(NO(A)EL) and on the lowest observed (adverse) effect level 
(LO(A)EL). The former is the higher experimental dose at which 
there is no appreciable response [ 34 ]; the latter indicates the low-
est dosage at which adverse effects occur in comparison with a 
control group (e.g., onset of an adverse effect) [ 35 ]. The NO(A)
EL and LO(A)EL are assessed by means of in vivo studies that can 
be based on various protocols accounting for different exposure 
period, animal model (rodent or non-rodent species) and exposure 
route (oral, inhalation or dermal) [ 36 ]. As a result, regulators 
explicitly require data relative to repeated dose toxicity. 

 We recently conducted a toxicological study [ 37 ] focused on 
RDT data for sub-chronic oral exposure (i.e., 90 days) in rats. 
Training set data was retrieved from different sources (i.e., Munro 
database, Hazard Evaluation Support System, EPA’s Integrated 
Risk Information System). In particular, 254 chemicals were 
selected being the ones having unequivocal values of chronic toxic-
ity studies (from 84 to 98 days) of oral exposure (gavage, diet, or 
drinking water). An external dataset comprising 179 chemicals was 
also used to challenge the predictive power of our models. External 
dataset data were taken and properly selected from the RepDose 
database. 

 A customized k-nearest neighbors (k-NN) approach for pre-
dicting sub-chronic oral toxicity in rats was used ( see  Fig.  3 ). The 
basic idea was that of predicting a given response on the basis of 
those observed in the most structurally similar chemicals. The 
straight application of the k-NN was however very disappointing. 
To overcome this limitation, the algorithm was ad hoc adapted by 
implementing several rules to better control the reliability of pre-
dicted chemicals. The gain in prediction and confi dence was 
obtained for a given percentage of the dataset; the reasonable price 
to pay was that a number of compounds (those unmatching the 
new rules implemented in the k-NN) were left unpredicted as a 
precautionary measure. However, the use of restrictive conditions 
in modeling such a complex endpoint meets both the scientifi c and 
regulatory purposes established by international bodies for the 
protection of human health. In fact, providing few but highly reli-
able predictions represents a valuable prioritization strategy to 
generate trustable toxicological information on the substances 
and, at the same time, to support the use of alternative methods 
and thus to reduce the number of animals needed for in vivo 
testing.
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6       Conclusions and Perspectives 

 Exploratory toxicology employs in silico methods for their impor-
tance in scientifi c and regulatory context. Indeed, the need of pro-
tecting human health and environment has prompted public 
authorities, such as the US Environmental Protection Agency (US 
EPA) and the European Chemicals Agency (ECHA) to play a 
frontline role in the promotion of programs of predictive toxicol-
ogy to assess the risk posed by chemicals. For instance, the 
European Commission (EC) has issued, in Annex XI of REACH 
and Annex IV of BPR, four conditions for using in silico in place 
of in vivo testing: (1) results have to be derived from a QSAR 
model whose scientifi c validity has been well established, (2) the 
substances are expected to fall within the applicability domain of 
the QSAR model, (3) results need to be adequate for the purpose 
of classifi cation and labeling and/or risk assessment, and (4) ade-
quate and reliable documentation of the applied method has to be 

  Fig. 3    Flowchart for the selection of the output predictions. SI or similarity index between the target chemical 
and its nearest neighbors; Δ exp values are the difference between experimental values of nearest neighbors; 
error in pred is the error in prediction returned in cross validation of a neighbor in the TS (taken from  37 )       
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provided. Importantly, these recommendations for the implemen-
tation of the so-called non-testing methods are perfectly known to 
medicinal chemists, whose community is continuously discussing 
roles and goals. It is well known that medicinal chemists have in 
recent years already openly deplored the frequent temptation of 
discussing highly speculative computational predictions that are 
often the result of over-interpreted but not properly validated 
models. In this respect, a blacklist of simply decorative and colorful 
QSAR models has been matter of a strong skepticism, as recently 
pointed out by Cramer [ 38 ]. In this continuing debate, we do 
believe that modern medicinal chemists should be strongly com-
mitted to face the new challenge of exploratory toxicology, which 
implies more restrictive scientifi c and regulatory purposes (i.e., 
chemical prioritization, selecting compounds for further experi-
mental testing, reducing the number of false negatives, harmful 
compounds predicted as safe). By discussing three case studies, we 
reported how successfully adapting consolidated structure- and 
ligand-based strategies, largely applied in drug discovery programs, 
to the goal of exploratory toxicology. Needless to repeat that a 
critical case-by-case assessment is necessary to prove the result reli-
ability and to make trustable the adopted approach. Indeed, an 
informed interpretation of the results can make the difference. 
However, we are just at the beginning of a new fascinating journey 
requiring new scientifi c efforts and challenges.     
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    Chapter 20   

 The Use of In Silico Models Within a Large 
Pharmaceutical Company                     

     Alessandro     Brigo      and     Wolfgang     Muster     

  Abstract 

   The present contribution describes how in silico models are applied at different stages of the drug discov-
ery process in the pharmaceutical industry. A thorough description of the most relevant computational 
methods and tools is given along with an in-depth evaluation of their performance in the context of poten-
tial genotoxic impurities assessment. 

 The challenges of predicting the outcome of highly complex studies are discussed followed by consid-
erations on how novel ways to manage, store, share and analyze data may advance knowledge and facilitate 
modeling efforts.  

  Key words     Drug discovery  ,   Genotoxicity  ,   TTC  ,   Lead optimization  

1       Introduction 

 Computational methods (in silico models) are widely used in the 
pharmaceutical industry for optimizing molecules during early 
drug development, not only for effi cacy, but in parallel with regard 
to their toxicological as well as drug disposition properties. It is the 
fi ne balance of target potency, selectivity, favorable ADME (absorp-
tion, distribution, metabolism, excretion), and (pre)clinical safety 
properties that will ultimately lead to the selection and clinical 
development of a potential new drug [ 1 ,  2 ]. As a clinical candidate 
needs rigorous preclinical optimization in various aspects, multidi-
mensional optimization (MDO) is a term often used to describe 
the intensive investigations during the fi rst 3–4 years of drug dis-
covery from the identifi cation of the target to the selection of the 
best drug development compound. The current MDO process 
comprises the use of in silico, in vitro, as well as in vivo techniques. 
In general, in silico tools have the intrinsic advantages to be fast 
and not to need the physical presence of the test compounds and 
can therefore be applied very early in drug development. 
Theoretically, in silico models can be developed for all end points 
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and organisms, but the  availability of large enough, balanced, and 
high-quality datasets is the main drawback for reliable predictions. 
An excellent correlation with the in vitro/in vivo data, that is, 
high-sensitivity as well as high- specifi city, easy-to-use, and easy-to-
interpret in silico model, is a key requirement for its usefulness. In 
the past few years, computational toxicology prediction systems 
tremendously increased their predictive power for end points like 
genotoxicity, carcinogenicity, phototoxicity, phospholipidosis, 
GSH adduct formation, hERG inhibition, and CYP inductions, 
but still have not achieved the major breakthrough due to lack of 
suffi ciently large datasets covering more complex toxicological end 
points (e.g., liver-, kidney-, cardiotoxicity). These are the critical 
toxicity end points, which needs to be addressed in the next years 
to weed out potential safety issues in the clinics. Recent initiatives 
and consortia (e.g., IMI/eTOX, ToxCast, and ToxBank) dealing 
with data sharing of preclinical in vivo toxicology studies and com-
putational approaches have the potential of signifi cantly improving 
these end point predictions and fi lling the data gaps [ 3 – 5 ]. 

 This review will outline general considerations on the mainly 
applied expert systems—rule-based and statistical-based models—
in toxicology and ADME for pharmaceuticals and their application 
in the early drug development process as well as their regulatory 
impact on the assessment of potential impurities arising in the 
manufacturing process. Recent improvements and future perspec-
tives on the main challenge of predicting complex in vivo end 
points will be summarized and discussed.  

2     In Silico Methods for the Prediction of Toxicity 

 As already described in Subheading  1  of this chapter, the thorough 
characterization of the safety profi le of drug candidates is of great 
importance to ensure that no harm is posed to healthy volunteers 
and patients during and after clinical development throughout the 
entire compound lifecycle. 

 Drug toxicity can manifest itself in a number of ways and may 
interest one or more target organs or biological processes. In par-
ticular, carcinogenicity and liver, renal, cardiovascular, reproduc-
tive, and genetic toxicities are among the most signifi cant safety 
issues that can prevent drug candidates to progress through clinical 
development or can cause the withdrawal of already marketed 
products. Overall, between 20 and 30 % of failures can be attrib-
uted to safety reasons [ 6 – 8 ]. 

 Over that past few years, predictive computational approaches 
have found a signifi cant role within drug discovery in helping sci-
entists rank compounds classes and prioritize in vitro and in vivo 
experiments. A number of factors contributed to the increased 
importance of in silico methods in drug discovery: (1) wider avail-
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ability of high- quality datasets (public domain, focused data shar-
ing initiatives), (2) robust computational models that can provide 
reliable predictions[ 9 ], (3) pressure to reduce animal testing, (4) 
need to bring new drugs to the market faster and cheaper, (5) leg-
islation on the assessment of potential genotoxic impurities, and 
(6) greater number of commercially available and open-source 
software tools. 

 The most widely used computational methods for the predic-
tion of toxicity end points can be roughly divided into two main 
categories, rule-based and statistical-based systems, depending on 
what type of methods they use to make their classifi cations. 

   Computational tools included in this category store and manipu-
late knowledge to interpret information. They are often referred to 
as expert systems, which make use of a set of explicit rules (i.e., not 
implicitly embedded in a code) to make deductions and classifi ca-
tions. Such systems have the advantage that rules can be easily rep-
resented and developed by experts in the fi eld of toxicology (or of 
any discipline the systems are applied to), rather than by informa-
tion technology (IT) specialists. In addition, solid expert rules can 
be derived from limited amounts of data, as long as they are suffi -
ciently representative of specifi c chemical and biological spaces. 

 Both commercial and open-source systems are available within 
the rule-based methodologies, and they include, among others, 
Derek Nexus [ 10 – 13 ], Toxtree [ 14 ], CASE Ultra Expert Rules 
[ 15 ], and Leadscope Expert Alerts System [ 16 ]. 

  Derek Nexus  is an expert, knowledge base system which con-
tains structural alerts (SAs) and expert knowledge rules (derived 
from both public and proprietary data by scientists at Lhasa Ltd.) 
for a wide range of toxicological end points and applies these to 
make in silico predictions about the toxicity of chemical entities. 
The knowledge-based expert rules represent knowledge from lit-
erature, academic, industrial, and Lhasa Ltd. scientifi c experts and 
are regularly updated according to newly available experimental 
data and publications. In making predictions, the expert rules take 
into account not only the presence or absence of a structural alert 
but also the species and a few calculated physicochemical parame-
ters (where applicable) in a process akin to the human-based logic 
of argumentation. Proprietary data donated, by Lhasa Ltd. mem-
bers, has been used in the development of approximately 25 % of 
the bacterial in vitro (Ames test) mutagenicity alerts in Derek 
Nexus, and proprietary datasets are used to validate the perfor-
mance of alerts for this, and other end points, to provide an indica-
tion of predictive performance within the chemical space of highest 
interest to users. In addition proprietary and customized alerts can 
be defi ned by users and implemented through the Derek Knowledge 
Editor. 

2.1  Rule-Based 
Systems

The Use of In Silico Models Within a Large Pharmaceutical Company
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 The most recent version of Derek Nexus contains expert-
derived functionality to provide negative predictions for bacterial 
in vitro mutagenicity in order to give more confi dence on nonposi-
tive predictions. If a query compound does not match a structural 
alert for mutagenicity, then it is compared to a Lhasa reference set 
of Ames test data, and a negative prediction is provided based on 
the features within the query compound [ 17 ]. In case of absence 
of alerts for end points other than mutagenicity, negative calls 
should be made with caution as alerts that are not part of the rule-
base, hence unknown to the system, can still be relevant in the 
induction of certain toxicities. 

 Since Derek is an expert system, it has no training set in a strict 
sense as in QSAR-based systems, but there are example compounds 
for the alerts stored in its knowledge base. 

  Toxtree  [ 14 ,  18 ] is a Java-based, freely available, open-source 
application for toxicity prediction. It was developed by IDEAconsult 
Ltd. (Sofi a, Bulgaria) under the terms of a contract with the 
European Commission Joint Research Centre. The program is 
mainly based on structural alerts but also provides QSAR models 
for distinct chemical classes to refi ne the predictions. For mutagen-
icity, Toxtree implements the Benigni-Bossa rulebase [ 19 ] for car-
cinogenicity and mutagenicity. The alerts are only differentiated 
into genotoxic and a small number of non-genotoxic ones, with-
out distinction between carcinogenicity and mutagenicity. 
Additionally, this module offers QSAR models for aromatic amines 
and α,β-unsaturated aldehydes, which should improve the predic-
tivity for these specifi c chemical classes. However, the mutagenicity 
QSARs refer to  Salmonella typhimurium  TA100 only. With regard 
to structures that do not trigger any alert, the same considerations 
on negative predictions made for Derek Nexus apply. 

  CASE Ultra Expert Rules : As of version 1.5.2.0 of CASE 
Ultra, an  expert-rule system  is built using rules from expert knowl-
edge or scientifi c literature for the prediction of bacterial mutagen-
icity [ 15 ]. A detailed description of the software is given in the 
section describing the statistical-based systems. 

  Leadscope Expert Alerts System : Leadscope Inc. produces sev-
eral software modules applicable in the context of toxicological 
forecasting, particularly in the fi eld of QSAR models. Recently, 
Leadscope developed a rule-based expert system for the prediction 
of mutagenicity, using an extensive high-quality genetic toxicity 
database containing the results of the bacterial mutagenesis assay 
along with chemical structures [ 20 ]. Firstly, the chemical struc-
tures were merged using a chemical registration system to assign a 
unique identifi er to each chemical and merging entries on the basis 
of this identifi er. Next, the graded end points for  Salmonella  and 
 E. coli  were combined from the different sources, resulting in a 
database of over 7,000 chemicals each with a positive/negative 
overall bacterial mutation call. The reference set also covers a 
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diverse collection of compounds since they have been derived from 
many different sources, including pharmaceuticals, pesticides, 
industrial chemicals, and food additives. Clustering led to 1,220 
clusters with two or more examples and 1,049 singletons (clusters 
with one example). Once substructures are identifi ed for alert defi -
nitions, the selected alerts are consolidated and organized hierar-
chically (i.e., parent/child). This helps in establishing a mechanistic 
explanation particularly where any child alert is lacking or has lim-
ited mechanistic information, as it may be inherited from the par-
ent alert. When the expert alerts are used to make prediction, a 
score is calculated refl ecting the precision of the alert [ 20 ]. In addi-
tion to the primary alert, it is also important to defi ne any factors 
that would deactivate the alerts as a result of electronic or steric 
effects or by blocking an important metabolic step. In this context, 
the Leadscope software identifi ed and quantitatively assessed deac-
tivating factors using the 27,000 predefi ned structural features in 
Leadscope and generated new chemical scaffolds associated with 
negative bacterial mutagenicity. Any deactivating fragments identi-
fi ed were quantitatively evaluated using the reference set.  

   Quantitative structure-activity relationship (QSAR) models are 
regression or classifi cation models used in the chemical and bio-
logical sciences and other disciplines. Like other regression mod-
els, QSAR regression models relate a set of “predictor” variables 
( X ) to the potency of the response variable ( Y ), while classifi cation 
QSAR models correlate the predictor variables to a category value 
of the response variable. 

 The QSAR approach can be generally described as an applica-
tion of data analysis methods and statistics to model development 
that could accurately predict biological activities or properties of 
compounds based on their structures. Any QSAR method can be 
generally defi ned as an application of mathematical and statistical 
methods to the problem of fi nding empirical relationships (QSAR 
models) in the form Pi =  k ′ (D1, D2, …, Dn), where Pi are bio-
logical activities (or other properties) of molecules; D1, D2, …, Dn 
are calculated (or, sometimes, experimentally measured) struc-
tural properties (or molecular descriptors) of compounds;  k ′ is 
some empirically established mathematical transformation that 
should be applied to descriptors to calculate the property values 
for all molecules. The goal of QSAR modeling is to establish a 
trend in the descriptor values, which parallels the trend in bio-
logical activity [ 21 ]. 

 Both commercial and open-source systems are available within 
the QSAR-based methodologies, and they include, among others, 
Sarah Nexus [ 22 ], CASE Ultra [ 15 ], Leadscope Model Applier 
[ 23 ], OECD Toolbox [ 24 ], Bioclipse [ 25 ], admetSAR, and Prous 
Institute Symmetry [ 26 ]. 

2.2  Statistical-Based 
Systems

The Use of In Silico Models Within a Large Pharmaceutical Company
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  Sarah Nexus  is a statistical system which utilizes a self- 
organizing hypothesis network (SOHN) model to generate pre-
dictions for mutagenicity [ 27 ]. This hierarchical model not only 
retrieves matching fragments, it also further refi nes these results by 
considering the structure’s similarity to the query structure. The 
methodology retains those fragments that are perceived to be of 
greater value; fragments may be of various sizes and can even over-
lap, ensuring greater accuracy in predictions. Fragments are gener-
ated from the provided training set of molecules and not selected 
from lists of predetermined fragments. Both global (broad cover-
age, not adequately sensitive to local variations) and local (more 
accurate for fragments that fall inside their chemical space, nar-
rower in scope) models are available in Sarah Nexus. If the query 
structure is not an exact match to a compound within the training 
set (for which a prediction of 100 % confi dence is generated), the 
structure is fragmented and the software will select the most appro-
priate model for each fragment. 

 The structural explanation for the prediction provided by 
Sarah Nexus is conveyed by highlighting those fragment(s) that 
the model considers meaningful. Sarah Nexus provides a confi -
dence score and a structural explanation for each prediction along-
side direct access to supporting data to aid expert analysis [ 28 ]. 

  CASE Ultra : CASE Ultra’s algorithm is mainly infl uenced by 
the original MCASE methodology [ 29 ,  30 ], a traditional QSAR 
system, which can automatically generate a predictive model from 
a training set of non-congeneric compounds with associated bio-
logical or toxicity data. The training set ideally should contain 
examples of both active and inactive chemicals in a non-overly 
skewed ratio. 

 CASE Ultra can identify alerts that are not limited to linear 
paths of limited size or limited branching pattern, and the training 
sets could be larger than 8,000 molecules [ 31 ]. To build a model, 
CASE Ultra picks up one active chemical at a time from the train-
ing set and systematically generates a list of fragments for that 
chemical. Each fragment’s relevance for activity is then determined 
using a two- objective criteria comprised of Shannon’s entropy [ 32 ] 
as a fi tness measure and the number of the active training set mol-
ecules containing this fragment (fragments that are optimal based 
on the two objectives, i.e., the ones that cannot be replaced by any 
other fragment without degrading one or both objectives, are 
selected and then sorted in descending order of the number of 
their active chemicals). A top few fragments (based on the afore-
mentioned two- objective criteria, e.g., fragments that have low 
entropy as well as supported by higher number of active training 
chemicals) are selected. These fragments are considered as poten-
tial positive alerts. The fragment generation procedure produces 
simple linear chains of varying lengths and branched fragments as 
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well as complex  substructures generated by combining simple frag-
ments. When the algorithm has fi nished scanning all the active 
chemicals, a search is made in the accumulated list of the potential 
positive alerts to fi nd the alert that covers the highest number of 
active chemicals, and it is added to the fi nal list of positive alerts. 
This step is repeated until enough positive alerts were identifi ed to 
cover all the active chemicals in the training set. Once a fi nal set of 
positive alerts is identifi ed, CASE Ultra attempts to build separate 
local QSARs for each positive alert in order to explain the variation 
in activity within the training set chemicals covered by that alert. In 
addition, deactivating alerts are found using a very similar process 
but by scanning inactive chemicals and fi nding fragments that 
occur mainly in inactive chemicals. This collection of positive and 
deactivating alerts constitutes a model for a particular end point 
and can be used for predicting activity in test chemicals. During 
prediction, a test chemical is scanned against the list of the model’s 
positive and deactivating alerts, and if no positive alerts could be 
identifi ed in it, the chemical is considered inactive. In general, if 
the test chemical contains one or more positive alerts, it is pre-
dicted as “active.” However, this active prediction call can be 
changed if the local QSAR of the positive alert modifi es the predic-
tion. The presence of a deactivating alert alongside a positive alert 
renders the prediction call as “inactive.” If more than one positive 
alert is present, then the one with the highest number of active 
chemicals is used, and in the case of more than one deactivating 
alert, the one with the highest number of inactive chemicals is 
used. If a test chemical contains a positive alert that has been seen 
in just one or two active training set chemicals, the prediction 
result is considered “inconclusive” because of the alert low statisti-
cal confi dence. CASE Ultra recognizes unusual features/fragments 
in test chemicals that do not match training data (unknown struc-
tural fragments). The presence of more than three unknown struc-
tural fragments in the test chemical results in an “out of domain” 
call. 

  Leadscope Model Applier : The Leadscope software employs a 
fragment-based QSAR paradigm; however, the fragments are not 
paths of distinct lengths but are predefi ned in a hierarchically orga-
nized dictionary that is closely related to common organic/medici-
nal chemistry building blocks. For binary classifi cation problems, 
such as the Ames test results, the algorithm identifi es toxicity mod-
ulating fragments using a  χ  2 -test. Furthermore, the software is able 
to build superstructures from smaller fragments if they improve 
predictivity. Together with eight global molecular properties, the 
set of fragments is then used as a descriptor set in a partial least 
squares (PLS) logistic regression model of the activity class. 
Therefore, the predictions from this algorithm are continuous 
probabilities of class membership rather than binary outputs. The 
program also assesses the applicability domain by measuring the 
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distance to training set molecules. Typically, probabilities greater 
than 0.5 can be used to give an “active” prediction and probabili-
ties smaller than 0.5 an “inactive” prediction, which is the standard 
procedure used by the Model Applier for pretrained models. The 
system can also annotate compounds as “out of domain” or with 
“missing descriptors” when a conclusive prediction cannot be 
made [ 23 ]. 

  OECD Toolbox : The OECD Toolbox [ 24 ,  33 ] represents a free 
source of various models. The Toolbox is a software application 
intended to the use of governments, chemical industry, and other 
stakeholders in fi lling gaps in (eco)toxicity data needed for assess-
ing the hazards of chemicals. The Toolbox incorporates informa-
tion and tools from various sources into a logical workfl ow. Crucial 
to this workfl ow is grouping chemicals into chemical categories. 
The seminal features of the Toolbox are (1) identifi cation of rele-
vant structural characteristics and potential mechanism or mode of 
action of a target chemical, (2) identifi cation of other chemicals 
that have the same structural characteristics and/or mechanism or 
mode of action, and (3) use of existing experimental data to fi ll the 
data gap(s). The Toolbox includes a number of models predicting 
several toxicological end points, such as skin sensitization, Ames 
mutagenicity, acute and repeat-dose toxicity, aquatic toxicity, and 
others [ 34 ]. 

  Bioclipse  [ 25 ]: It is an open-source cheminformatics toolkit 
with a wide array of toxicity models integrated, such as carcinoge-
nicity, mutagenicity (Ames), hERG, aquatic tox (Daphnia), and a 
wide array of models from OpenTox [ 35 ]. The Ames mutagenicity 
model in Bioclipse is built using the dataset published by Kazius 
et al. in 2005 [ 36 ] containing 4337 chemical structures of which 
2401 were classifi ed as mutagen and 1936 non-mutagen. The 
datasets can be downloaded, and the software can be used to gen-
erate many molecule descriptors (using the CDK) [ 37 ,  38 ] and 
then QSAR models (through integration with the R statistical soft-
ware). The software is considered not as user friendly as some com-
mercial tools [ 39 ]. 

  admetSAR : admetSAR [ 40 ] is a free website (  http://lmmd.
ecust.edu.cn:8000/    ) [ 41 ] that enables a single input SMILES 
structure to be used to rapidly predict scores against a wide range 
of ADME/Tox models (at the time of writing, 26 qualitative 
classifi cation and 5 quantitative regression models). These datas-
ets can also be downloaded as most are based on other publica-
tions. Each model has some statistics describing the model as well 
as a probability to provide more confi dence in the result. The 
software is simple to use, and drawbacks appear to be the lack of 
batch processing operation, the “black box” nature of the mod-
els, and the lack of capability to build or update the models on 
the website [ 39 ]. 
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  Symmetry : Symmetry [ 26 ] is a platform that applies advanced 
machine learning techniques to a variety of structural features and 
physico-chemical properties of small molecules to provide quality 
predictions about biological effects. Available Symmetry algo-
rithms include binary classifi cation for active/inactive datasets, 
meta- classifi ers to achieve consensus predictions for sets of binary 
models, and multi-label learning that yields ranking and probabi-
listic estimates of the possible outcomes. Symmetry offers a wide 
range of predictive models, including mechanism of action and 
phenotypic models, toxicity [ 42 ], and human adverse effects.   

3    Assessment of Potential Genotoxic Impurities 

     The European Medicines Agency Committee for Medicinal 
Products for Human Use (CHMP) released in 2006 [ 43 ] a 
“Guideline on the Limits of Genotoxic Impurities,” which 
describes an approach for assessing genotoxic impurities of 
unknown carcinogenic potential based on the TTC concept. In 
2007 a question and answer document was published on the EMA 
website addressing several aspects of the practical implementation 
of the recommendations contained in the Guideline. 

 Genotoxicity is a broad term that typically describes a deleteri-
ous action on cellular genetic material. Chemicals may induce 
DNA damage by directly interacting with it (e.g., alkylating agents) 
or by acting on non-DNA targets (e.g., mitotic spindle poisons, 
inhibitors of topoisomerase, etc.). For DNA-reactive genotoxins, 
the mechanism by which they induce genetic damage is assumed to 
follow a linear no-threshold model; on the other hand, for mole-
cules not interacting directly with DNA, the existence of a thresh-
old concentration required to induce the damage is by and large 
accepted [ 44 ]. Impurities that belong to the second category of 
substances can be regulated according to the ICH Quality 
Guideline Q3C [ 45 ] which includes class 2 solvents. The thresh-
olds or permissible daily exposures (PDE) are calculated from the 
no-observed-effect level (NOEL) obtained in the most relevant 
animal studies with the use of conservative conversion factors used 
to extrapolate the animal data to humans. 

 The CHMP Guideline suggests that the TTC concept should 
be applied to those genotoxic impurities that do not have suffi cient 
evidence of a threshold-related mechanism of action. The refer-
ence values are taken from Kroes et al. [ 46 ], where a TTC of 0.15 
μg/day is proposed for impurities presenting a structural alert for 
genotoxicity, corresponding to a 10 −6  lifetime risk of cancer. In the 
case of pharmaceuticals, the Guideline suggests a 1 in 100,000 risk 
be applied, resulting in a TTC of 1.5 μg/day. 

 For drug substances, the identifi cation thresholds above which 
impurities are required to be identifi ed are within the range of 0.05 

3.1  ICH M7 Guideline

3.1.1  Background
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and 0.1 %. ICH Guidelines Q3A(R) [ 47 ] and Q3B(R) [ 48 ] state 
that even though the identifi cation of impurities is not necessary at 
levels lower than or equal to the identifi cation threshold, “analyti-
cal procedures should be developed for those potential impurities 
that are expected to be unusually potent, producing toxic or phar-
macological effects at a level not more than the identifi cation 
threshold.” The Guideline recommends carrying out a thorough 
evaluation of the synthetic route along with chemical reactions and 
conditions, with the aim of identifying reagents, intermediates, 
starting materials, and readily predicted side products which may 
be of potential concern. Once all potential impurities are theoreti-
cally identifi ed and listed, an initial assessment for genotoxicity is 
carried out by a scientifi c expert using computer tools such as 
QSAR and knowledge base expert systems. A thorough literature 
and internal archive (when applicable) search also needs to be com-
pleted, as a number of intermediates and reagents have often been 
tested in genotoxicity or carcinogenicity assays. The potential 
genotoxic impurities which may be present in an API are then clas-
sifi ed into one of fi ve classes described by Müller et al., in 2006 
[ 49 ]; the purpose is to identify those impurities that pose a high 
risk and need to be limited to very low concentrations. 

 In 2006, a task force established under the umbrella of the US 
Pharmaceutical Research and Manufacturers of America (PhRMA) 
for the fi rst time proposed the “staged TTC” concept to be applied 
to pharmaceuticals [ 49 ]. The task force was established as a 
response to various clinical holds imposed by the FDA on investi-
gational drugs in clinical trial phases based on suspicions to contain 
genotoxic impurities at levels potentially associated with a risk for 
the volunteers or patients involved in these trials [ 50 ]. The staged 
approach allows levels of daily intake of mutagenic impurities 
higher than 1.5 μg as defi ned by the lifetime TTC, namely, 10 μg 
(for a 6–12-month duration), 20 μg (3–6 months), 40 μg (1–3 
months), and 120 μg for not more than 1 month. The EMA 
adopted the staged TTC approach for limits of genotoxic impuri-
ties in clinical trials in the 2007 Q&A document (EMA 2010), but 
to be more conservative, it reduced the staged TTC limits pro-
posed in the PhRMA paper by a factor of 2. 

 In 2008, the FDA issued a draft “guidance for Industry on 
Genotoxic and Carcinogenic Impurities in Drug Substances and 
Products: Recommended Approaches” (FDA 2008) which was 
largely similar to the EU guidance. However, this document has 
not been fi nalized because in 2009 the topic “genotoxic impuri-
ties” was adopted by ICH for development of a new internation-
ally harmonized guideline. Since the topic was considered to 
include both safety and quality aspects, the projected Guideline 
was assigned to the M (multidisciplinary) series of the ICH process 
and designated as ICH M7 with the title “Assessment and Control 
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of DNA-Reactive (Mutagenic) Impurities in Pharmaceuticals to 
Limit Potential Carcinogenic Risk” [ 51 ]. 

 In February 2013 a draft of the M7 Guideline was published 
in the three ICH regions for public consultation (step 3 of the 
ICH process). The document was adopted as a step 4 ICH 
Harmonised Tripartite Guideline in June 2014 (ICH 2014) and is 
currently on step 5, adopted by CHMP on 25 September 2014 
and issued as EMA/CHMP/ICH/83812/2013 [ 51 ].  

   The ICH M7 Guideline combines many of the principles set by the 
EU and the draft FDA Guidelines on genotoxic impurities. Some 
aspects, though, have been updated and clear recommendations 
can be identifi ed. A thorough description of all key aspects of the 
ICH M7 Guideline, which are described elsewhere [ 50 ], is beyond 
the scope of the present contribution. It is nonetheless worthwhile 
mentioning few of the critical aspects that the ICH M7 Guideline 
does enforce:

    1.    Structure-based assessment of potentially mutagenic impuri-
ties has to be carried out using two in silico systems that com-
plement each other: one should be a rule-based and one a 
statistics-based method ( see  Subheading  2  in this chapter).   

   2.    The impurities classifi cation system proposed by the ICH M7 
Guideline has been derived from the scheme proposed by 
Müller et al. in 2006 [ 49 ], which identifi es fi ve classes of impu-
rities as a function of data availability for the characterization of 
their mutagenicity and carcinogenicity potential.   

   3.    ICH M7 replaced the term “genotoxic impurities” as applied 
by the EU Guideline on the Limits of Genotoxic Impurities 
with the term “DNA-reactive impurities” in order to specify 
that DNA-reactive compounds (i.e., that typically covalently 
bind to DNA- generating adducts, which, if unrepaired, can 
lead to point mutations and/or strand breakage) are those that 
fall within the scope of the Guideline. There is also the assump-
tion that DNA-reactive (Ames- positive) compounds are likely 
carcinogens with no threshold mechanism.   

   4.    For DNA-reactive (Ames-positive) compounds lacking rodent 
carcinogenicity data, a generic TTC value would be applied as 
an acceptable intake level that poses a negligible risk of 
carcinogenicity.   

   5.    If rodent carcinogenicity data is available for a (potentially) 
mutagenic impurity, the application of the TTC concept is not 
warranted, and a compound-specifi c calculation of acceptable 
levels of impurity intake is recommended as is described in 
more detail in the Note 4 of the Guideline [ 51 ].   

   6.    Compound-specifi c calculations for acceptable intakes can be 
applied case-by-case for impurities which are chemically similar 

3.1.2  Key Aspects 
of the ICH M7 Guideline
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to a known carcinogen compound class (class-specifi c accept-
able intakes) provided that a rationale for chemical similarity 
and supporting data can be demonstrated (Note 5) [ 44 ,  51 ].   

   7.    The acceptable intakes derived from compound-specifi c risk 
assessments can be adjusted for shorter duration of exposure. 
The TTC-based acceptable intake of 1.5 μg/day is considered 
to be protective for a lifetime of daily exposure. To address 
less-than- lifetime (LTL) exposures to mutagenic impurities in 
pharmaceuticals, a formula is applied in which the acceptable 
cumulative lifetime dose (1.5 μg/day × 25,550 days = 38.3 mg) 
is uniformly distributed over the total number of exposure days 
during LTL exposure. This allows higher daily intakes of muta-
genic impurities than would be the case for lifetime exposure 
and still maintain comparable risk levels for daily and non-daily 
treatment regimens. 

   Table  1  summarizes the levels for different duration.
       8.    As far as multiple impurities are concerned, when there are more 

than two mutagenic (i.e., Ames-positive) or alerting impurities, 
total mutagenic impurities should be limited as described in 
Table  2  for clinical development and marketed products.

            In silico methods for the prediction of mutagenic activity have 
been available for many years, and they have been continuously 
improved in terms of technology and prediction results, also for 
greater availability of high-quality data. 

 The specifi c use of such in silico tools in the pharmaceutical 
industry, in the context of the evaluation of genotoxic impurities, 
has been recently summarized and reviewed by Sutter et al. [ 52 ]. 
The authors, representing a total of 14 pharmaceutical compa-
nies, compared the predictive value of the different methodolo-
gies analyzed in two surveys conveyed in the US and European 

3.2  Performance 
of Commercial 
Systems 
on Proprietary 
Compounds

   Table 1  
  Acceptable intakes for an individual impurity   

 Duration of treatment  ≤1 month  >1–12 months  >1–10 years  >10 years 

 Daily intake (μg/day)  120  20  10  1.5 

   Table 2  
  Acceptable total daily intakes for multiple impurities   

 Duration of treatment  ≤1 month  >1–12 months  >1–10 years  >10 years 

 Daily intake (μg/day)  120  60  30  5 
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pharmaceutical industry: most pharmaceutical companies used a 
rule-based expert system as their primary methodology, yielding 
negative predictivity values of ⩾78 % in all participating compa-
nies. A further increase (>90 %) was often achieved by an addi-
tional expert review and/or a second statistics-based methodology. 
Also in the latter case, an expert review was encouraged, espe-
cially when confl icting results were obtained. The conclusion was 
that a rule-based expert system complemented by either expert 
knowledge or a second (Q)SAR model is appropriate. Overall, 
the procedures for structure-based assessment presented in the 
article by Sutter et al. [ 52 ] were already considered appropriate 
for regulatory submissions within the scope of ICH M7, which 
mandates the use two different methodologies: one expert-rule 
based and one statistical-based. 

 In order to comply with such Guideline specifi cation, addi-
tional commercial in silico tools and novel models have been 
recently made available to the scientifi c community. Brigo  et al.  
[ 53 ] evaluated three expert-rule systems ( Derek Nexus v.4.0.5  [ 13 ], 
 Toxtree v.2.6.6  [ 14 ],  Leadscope Expert Alerts v.3.2.4-1  [ 16 ]) and 
three statistical systems ( Sarah v.1.2.0  [ 22 ],  Leadscope Model 
Applier v.3.2.4-1  [ 23 ],  three models of CASE Ultra v.1.5.1.8  [ 15 ] —
GT1_7B, SALM2013, SALM2013PHARMA ) in an individual and 
combined fashion. 

 The evaluation was carried out using a large validation set of 
Ames mutagenicity data comprising over 10,000 compounds, 30 % 
of which are Roche proprietary data (Table  3 ). The Roche datasets 
include the vast majority of compounds (not only impurities) 
tested in the Ames Standard [ 54 ] and Microsuspension [ 55 ] 
protocols.

   All programs have been applied as commercially available, 
without internal customization or follow-up expert knowledge. 

 Individual systems showed adequate performance statistics 
with public domain datasets (concordance, 74–95 %; sensitivity, 
58–99 %; specifi city, 51–96 %;  see  Fig.  1 ); however, there was a 
consistently signifi cant drop in sensitivity with the Roche datasets, 

   Table 3  
  External validation sets   

 Dataset  Number of compounds  Positive  Negative 

 Roche Ames Standard  1,335  254  1,081 

 Roche Ames Microsuspension  1,785  190  1,595 

 LSDB  4,699  2,068  2,631 

 Hansen [ 56 ]  2,647  1,773  874 

 Total  10,466  4,285  6,181 
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down, in one case, to single digit (concordance, 66–88 %; sensitiv-
ity, 8–54 %; specifi city, 69–95 %;  see  Fig.  2 ). All systems showed 
good performance with “public validation sets,” also due to the 
training set overlap, which went up to 91 % for Sarah (Fig.  1 ).

    Expert-rule-based tools showed lower specifi city with public 
domain datasets versus the statistical-based programs. Statistical 
tools showed a much higher number of compounds (up to 39 % in 
one case) outside of their applicability domains and, hence, not 
predicted (Fig.  2 ). 

 To evaluate the performance of the combined approach rec-
ommended by the ICH M7 Guideline, the Roche validation sets 
have been submitted to all possible combinations of one expert-
rule- based and one statistical-based system (Figs.  3  and  4 ).

  Fig. 1    Performance of individual systems on public datasets Hansen [ 56 ] and LSDB       

  Fig. 2    Performance of individual systems on Roche Ames Standard and Ames Micro datasets       
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  Fig. 3    Performance of combined systems on the Roche Ames Standard dataset       
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  Fig. 4    Performance of combined systems on the Roche Ames Micro dataset       
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    The combinations of all systems, compared to their individual 
performance with both Roche validation sets, improve the sensitiv-
ity to consistently above 50 %, up to 71 % for the combination 
“LSMA Alerts + SALM2013.” As expected, specifi city is generally 
lower than with individual systems, but its reduction is limited for 
the majority of combinations. 

 In order to assess the prediction tools with chemicals that fall 
within the potential genotoxic impurities chemical space, four sub-
sets of both Roche validation sets have been generated with molec-
ular weights (MW) ≤400, ≤350, ≤300, and ≤250. Such subsets 
cover the chemical space of the large majority of the potential 
genotoxic impurities tested in Roche over the past decade. 

 All programs have been tested against these subsets individu-
ally (Figs.  5  and  6 ) and in combination (Figs.  7  and  8 )[ 53 ].

      With individual systems, sensitivity shows a clear trend to 
increase proportionally to the decrease of MW. For example, in the 
Roche Ames Microsuspension set, sensitivity improves as follows: 
Derek from 27 to 64 %, Sarah from 51 to 76 %, Toxtree from 42 
to 85 %, and CASE Ultra SALMPHARM2013 from 45 to 71 %. 
LSMA Alerts and LSMA Stats show an increase in sensitivity to 60 
% up to MW ≤300, but there is a fl ection down to ~55 % for both 
programs for MW ≤250. In general, sensitivity increases signifi -
cantly with low-MW subsets with almost all programs and models 
(Figs.  5  and  6 ). The only exception is CASE Ultra SALM2013 
model, which keeps the same sensitivity values throughout all sub-
sets (between 29 and 33 %) [ 53 ]. 

 The evaluation of combined systems with low-MW Roche 
subsets shows a signifi cant increase in sensitivity, up to over 90 % 
for sets with MW ≤300 and ≤250 with several combinations (Figs. 
 7  and  8 ). The increase in sensitivity is proportional to the decrease 
in MW; at the same time, there is a considerable decrease in speci-
fi city (<30 % in some cases). Such deltas are generally more pro-
nounced in the Ames Micro dataset (Fig.  8 ) compared to the 
Roche Ames Standard dataset (Fig.  7 ). In the Ames Standard sub-
sets, specifi city and sensitivity values are consistently comprised 
between 70 and 80 % in nearly all Derek Nexus and LSMA Alerts 
combinations. In the latter combinations, values are a bit lower 
than 70 % at higher MW. Toxtree combinations show lower sensi-
tivity and specifi city values at higher molecular weights and greater 
gaps between sensitivity and specifi city within the subsets MW 
≤300 and MW ≤250 [ 53 ]. 

 As far as the Roche Ames Micro set is concerned, the sensitiv-
ity is in the range of 90 % in the subset with MW ≤250 with several 
combinations, such as Derek Nexus + Sarah and Derek 
Nexus + GT1_A7B; LSMA Alerts + Sarah; LSMA Alerts + CASE 
Ultra models. Nearly all combinations with Toxtree gave sensitivity 
in the range of 90 %. Nearly all combinations of LSMA Alerts 
showed high sensitivity also in the subset with MW  ≤ 300. 
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 Looking at the plots in Fig.  8 , it is evident that more balanced 
results are obtained with all Derek Nexus combinations: in other 
words, the sensitivity increases proportionally to the decrease of 
the MW at a moderate expense of specifi city. Compared to this, 
LSMA Alerts combinations have overall lower specifi city than 
Derek combinations. At the same time, Toxtree combinations, 
despite showing good sensitivity, have a greater corresponding 
decrease in specifi city.  

   Validation exercises such as those described in Subheading  3.2  for 
mutagenicity or for other end points are typically very useful for 
the identifi cation of specifi c gaps in the chemical space represented 
by the assessed models and tools. 

 In particular, when proprietary data are used as external valida-
tion sets, false predictions represent a valuable opportunity to 
improve the models and expand their overall applicability domain. 

3.3  Improvement 
of In Silico Predictions 
with Proprietary Data
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 Roche recently undertook a similar exercise with Lhasa Ltd. in 
order to systematically include proprietary knowledge into the in 
silico prediction tools that are routinely used for early safety assess-
ment. Data collected from Ames test, embryonic stem cell assay 
(teratogenicity), hERG inhibition in vitro screening, and micro-
nucleus in vitro (chromosome damage) have been used to fi ll the 
gaps identifi ed in the models adopted within the company. 

 These collaborative efforts, aimed at incorporating proprietary 
knowledge in prediction models, quickly translated into a signifi -
cant increase in the prediction metrics ( see  Table  4 ), with sensitivity 
values that showed up to 60 % improvements.
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  Fig. 7    Performance of combined systems on the  Roche Ames Standard  dataset fi ltered by MW           
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Fig. 7 (continued)
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  Fig. 8    Performance of combined systems on the  Roche Ames Micro  dataset fi ltered by MW           
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4        Role of In Silico Models in the Prediction of Toxicity in Drug Discovery 

 In silico approaches to predict potential toxicities and drug metab-
olism on the basis of the chemical structure are of particular inter-
est to the pharmaceutical industry as having the potential to impact 
the early drug discovery process as well as in the candidate selec-
tion phase. Prediction models for the identifi cation of metabolic 
soft spots and potentially toxic substructures can be easily applied 
to a large number of chemical structures and are therefore inte-
grated already during HTS (high-throughput screening) or even 
earlier as an automatically attributed alert for all new chemical enti-
ties. At this early stage, only a basic in silico profi ling can be done, 
as only the most well-validated end points can be reliably applied 
automatically and generated on the fl y without an expert interven-
tion. Later in the development, at the latest before the fi nal candi-
date is selected, a more detailed in silico profi ling also considering 
the whole profi le of the compound is thoroughly conducted. 
According to the development scheme provided in Fig.  9 , the fur-
ther in silico tools and in vitro downstream activities are 
conducted.

     The fi rst step after the target has been identifi ed as potential devel-
opment opportunity is a target assessment (TA) conducted by 
nonclinical safety experts, using appropriate databases and public 
sources. A proper target/functionality assessment in healthy and 
diseased status contains pathway mapping, information from 
knockout and transgenic models, a target expression profi le in rel-
evant species, as well as a critical evaluation of potential off-target 

4.1  Target 
Identifi cation (TI), 
Target Assessment 
(TA), 
and Exploratory Work

    Table 4  
  Improvement in predictive performance of an in silico prediction tool including Roche 
proprietary data   

 End point 
 Sensitivity 
(%) 

 Specifi city 
(%) 

 Positive 
predictivity 
(%) 

 Negative 
predictivity 
(%) 

 Balanced 
accuracy 
(%) 

 Mutagenicity  Previous  36  92  45  89  64 
 Updated  69  89  55  94  79 

 Chromosome 
damage 

 Previous  5  97  34  76  51 
 Updated  65  92  72  89  78 

 hERG inhibition  Previous  21  90  70  50  55 
 Updated  63  67  69  61  65 

 Teratogenicity  Previous  3  96  17  79  50 
 Updated  59  92  66  90  76 
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safety alerts (selectivity). Various software systems are available to 
assist the experts in these assessments (e.g., MetaCore [ 57 ], 
Symmetry [ 26 ]). 

 Modern in silico prediction software is able to calculate thou-
sands of chemical structures on the fl y and can be therefore applied 
very early in the drug development process. Immediately after the 
chemical structure is known, meaning chemical libraries are added 
to the companies’ chemical database, a basic in silico prediction 
panel is applied using reliably validated toxicological end points 
like genotoxicity and carcinogenicity. As always, a large, homoge-
neous, and high-quality database is the prerequisite for reliable 
predictions. Therefore, in vitro screens which have been used 
within pharmaceutical companies for years containing data gener-
ated often in one single lab are the best sources for the develop-
ment of highly predictive models. For example, an in silico model 
predicting the potential of drug-induced phospholipidosis (a 
reversible storage disorder characterized by accumulation of phos-
pholipids within cells) has been developed. Based on more than 
600 in vitro assay, an accuracy of 86 % led to a replacement of the 
in vitro by the in silico method. The model is calculating the free 
energy of amphiphilicity (ΔΔ G  AM ) and log  P  value [ 58 ] of cationic 
amphiphilic drugs and can be applied in a high-throughput mode. 

  Fig. 9    Use of in silico tools and safety screening during the early drug development process       
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Further end points, which can be used for on-the-fl y predictions, 
are teratogenicity, GSH adduct formation, irritation, and skin 
sensitization. 

 At this early stage of development, the potential safety hazards 
identifi ed by the application of an expert system in combination 
with a set of statistical models contribute to the overall compound 
profi le, but are not used as a decision pathway ( see  Fig.  10 ).

      The main goal during lead identifi cation is to identify valid chemi-
cal templates for further optimizing the effi cacy and selectivity on 
the target, ideally multiple discrete series. Besides computational 
chemistry tools to calculate physicochemical properties, virtual 
screening, structure-based design, QSAR analysis of both the 
desired target and off-target activities, and chemical structures are 
analyzed continuously in silico for possible structure-related safety 
concerns to identify major issues with the templates. Insights into 
the toxicological potential of a scaffold or series of structures early 
in the drug discovery process could help medicinal chemists to 

4.2  Lead 
Identifi cation (LI) 
Phase: Target Selected 
(TS) to Lead Series 
Identifi ed (LSI)

  Fig. 10    Downstream activities following in silico alerts in the drug development process       
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prioritize particular scaffolds. Components of early avoidance of 
chemical structure safety liabilities include predictions for genotox-
icity, carcinogenicity, hERG channel blockade, reactive metabolite 
formation, phospholipidosis, structural similarity to problematic 
molecules, CYP  inductions, GSH adduct formation, and DMPK 
properties (cell penetration, microsomal stability, CYP3A inhibi-
tion). The in silico tools offer good guidance on what additional 
tests may be necessary or whether further characterization is war-
ranted; however, they also have limitations [ 59 ]. 

 Drug, metabolism and pharmacokinetics (DMPK) properties 
play a major role during lead identifi cation. Numerous commer-
cially available tools for the prediction of metabolites exist, such as 
METEOR [ 11 ,  17 ], MetabolExpert [ 60 ], and MetaSite [ 61 ]. 
Most software packages correctly predict metabolites that are 
detected experimentally. However, a relatively high incidence of 
false predictions of metabolites is common to most unspecifi ed 
computerized systems. In the hand of drug metabolism experts, 
these software packages have a certain value for hypothesis genera-
tion and guiding to experimental approaches for the identifi cation 
of drug metabolites. However, the generation of additional new 
local rules, intended to predict the activity of a single enzyme (and 
often only within a chemical series), can signifi cantly improve the 
prediction accuracy. 

 Experimental follow-up of potential issues are conducted to 
build/refi ne safety plans moving forward. Even if in vitro assays 
clearly disprove identifi ed in silico alerts, further spot-checking of 
the distinctive end point will be conducted to avoid creeping in of 
a structural liability. The in vitro results always overrule the in silico 
warnings provided that the corresponding assays could have been 
conducted under reliable conditions (e.g., solubility, stability). 
Chemical templates with identifi ed and confi rmed intrinsic meta-
bolic and/or safety concerns will be eliminated ( see  Fig.  10 ).  

   The task of the LO phase is to take a lead and convert it into a 
candidate for preclinical evaluation. This phase is intensively 
accompanied by early safety in vitro screening in various areas: 
genotoxicity, hERG and other ion channels, cytotoxicity, hepatic 
toxicity, bone marrow toxicity, transporters, metabolite identifi ca-
tion, metabolic stability, CYP induction/inhibition, reactive 
metabolites, off-target pharmacology/secondary pharmacology, 
and cross-species comparisons, where applicable. Further screens 
might be applied based on the target liabilities or already identifi ed 
potential safety issues. If adverse in vitro activities appear, specifi ed 
structure-activity relationships (SARs), so-called local SARs, will 
be established to support the discovery projects in optimizing the 
clinical candidates toward safety/DMPK in parallel to effi cacy. 

4.3  Lead 
Optimization (LO) 
Phase: Lead Series 
Identifi ed (LSI) 
to Clinical Candidate 
Selected (CLS)
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 At this stage, fi rst, fi t for purpose in vivo studies are conducted 
to address early target or chemistry related safety concerns. The 
fi rst general toxicology studies are maximal tolerated dose (MTD) 
and dose-range fi nding (DRF) studies generally performed in 
rodents and non-rodents. The value of performing exploratory 
drug safety studies before candidate nomination is to identify 
unwanted toxicities evident in a study of up to 14 days duration, as 
well as any potential toxicities anticipated based on a known cause 
for concern. In the absence of fi ndings or the presence of fi ndings 
that are judged manageable, these studies provide a greater com-
fort in the selection of a molecule for advancement into develop-
ment with higher likelihood of success. Additional benefi ts of these 
studies are the identifi cation of target organs to monitor in devel-
opment and the selection of doses for the GLP toxicology studies. 
In addition, identifi cation of the toxicity profi le of a lead com-
pound can be useful for the backup program where the goal is 
often an improved safety margin. In silico safety concerns might be 
included as part of pharmacokinetics/pharmacodynamics (PK/
PD) characterization in vivo (disease) models to extract safety-rel-
evant information and to build confi dence in safety before expand-
ing into larger regulatory animal studies. 

 During LO, every in silico alert is immediately followed up by 
the corresponding in vitro screen, in case, even in vivo studies 
might be frontloaded. To avoid late failures of optimized candi-
dates, spot- checking of the potential development candidates with-
out alerts is conducted if the resources and throughput of the assay 
allows. In case of screening alerts, creation of local SARs can result 
in signifi cant acceleration of project by optimizing the chemical 
improvement rounds. Specifi c and tailor-made local models nor-
mally have a signifi cantly higher accuracy, if continuously updated 
with new incoming screening results. Learnings and newly identi-
fi ed alerting substructures should be implemented in general rules 
and models (customized systems) to continuously improve the 
performance of the computational tools used for drug optimiza-
tion ( see  Fig.  10 ).  

   The main usage of in silico tools after the fi nal candidate has been 
selected encompasses the assessment of potentially genotoxic 
impurities according to the ICH M7 Guideline as described in 
Chapter   3    , as well as cross-reading and pathway analysis following 
an unexpected event in preclinical studies. Furthermore, a backup 
or fast- follower program will trigger dedicated in silico profi ling 
and screening of the new molecules, based on experiences and 
identifi ed issues of the frontrunner compound. 

 Apart from the use of in silico tools to assess genotoxic impuri-
ties, there are no computational assessments which are mandatory 
requirements from regulatory agencies, but in case in silico models 
have been applied during drug development and infl uenced the 

4.4  Phase 0: 
After Clinical 
Candidate Selected 
(CLS) to Entry 
into Humans (EIH)
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testing strategy or triggered addition investigations, the informa-
tion should be included in regulatory documents and adequately 
described.   

5    Prediction of Complex End Points 

   When the goal is the prediction of the outcome of certain assays, 
such as the Ames assay [ 54 ], in which the results can be roughly 
considered as binary, i.e., “yes” or “no” answer, in silico models 
have a higher chance to give a better performance if compared to 
more complex assays and studies. 

 The mechanism of action of a molecule leading to a specifi c 
readout plays a critical role in the predictive performance of in 
silico models as it is one of the biggest challenges of, for instance, 
QSAR models. “Do the descriptors have any physicochemical 
interpretation that is consistent with a known biological mecha-
nism? [ 62 ]” is often a very diffi cult question to answer. In vitro 
chromosome damage (an assay used to establish the clastogenicity 
potential of test compounds) can also be considered binary (i.e., 
the test item is “clastogenic” or “not clastogenic”). However, the 
mechanisms of action that may lead to clastogenicity are manifold 
and may involve the interaction of the compound with a number 
of proteins or enzymes, the disruption of one or more biological 
pathways that ultimately lead to a clastogenicity outcome. This 
complexity is refl ected in the performance of the in silico predic-
tion tool described in Table  4  for the chromosome damage end 
point. Before the update of the model based on internal data and 
structures, the sensitivity was in the single digit, showing that the 
model was practically unable to identify any clastogenic compound 
within the validation set used. The update was successful in increas-
ing the sensitivity value to 65 %; nonetheless, we need to bear in 
mind that due to the various mechanisms of action that can lead to 
clastogenicity, minor structural changes within a chemical class can 
have a large impact on the mechanism of action (e.g., the interac-
tion with one or more proteins may be hampered, hence changing 
the fi nal outcome of the assay). 

 Even greater challenges are offered to the prediction of the 
outcome of single-dose and repeat-dose toxicity in vivo studies. In 
the pharmaceutical industry, such studies are typically used to iden-
tify a maximum tolerated dose (MTD) and the NOAEL (non-
observed- adverse-effect level) for a test compound, in addition to 
the identifi cation of a general toxicity profi le and signifi cant target 
organs that may show toxicity upon exposure to the compound 
tested. 

 Since animal models are very complex and the number of read-
outs collected in such studies is extremely wide, the development 
of in silico models that can reliably predict such outcomes is 

5.1  Challenges 
in the Prediction 
of the Outcome 
of In Vivo Safety 
Studies
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extremely challenging. For example, a typical repeat-dose study 
requires the use of a control group plus three dose groups: each 
animal is then carefully examined for clinical observations through-
out the in-life part, including body weight and food consumption 
measurements as well as some behavioral evaluations; clinical 
pathology values are collected at different time points; urine analy-
sis is performed; macroscopic and microscopic examinations are 
carried out on a number of selected organs; toxicokinetics values 
are then calculated using the test item concentrations measured in 
blood from the samples collected throughout the study, which 
could be of different durations, from 5 days till 39 weeks (up to 2 
years for the rodent bioassays for the evaluation of carcinogenic-
ity), and in different species. 

 The variations, permanent or transient, of the parameters and 
values briefl y described above may depend on the pharmacological 
target, on the chemical structure and related physicochemical 
properties, and on background incidences due to adaptations or 
other factors, such as major differences in plasma exposures. 
Because of this variability, building an in silico model capable of 
predicting all these different “degrees of freedom” or “dimen-
sions” is extremely challenging, in particular due to the fact that 
the identifi cation of unequivocal mechanisms of action for what-
ever fi ndings have been identifi ed is not trivial. In addition, the 
development of robust SARs using the outcome of such studies is 
diffi cult because of the limited amount of publicly available data, 
and, even within large pharmaceutical companies, the number of 
chemically similar compounds tested in such long and expensive 
studies for each investigated pharmacological target is small (less 
than 5). This, of course, hampers the possibility to even develop 
local models since the number of similar compounds, designed for 
the same target, undergoing the same type of studies is rather 
limited. 

 Even if some sophisticated in silico models may become avail-
able for the prediction of the potential fi ndings identifi ed in, for 
example, repeat-dose studies, all the limitations described above 
and the diffi culties to conduct a proper validation would make very 
diffi cult, within the pharmaceutical industry, to accept them for 
decision making on compounds prioritization or as guidance for 
chemical optimization.  

    Within the industry, it has been recently recognized that the con-
solidation of the results of in vivo toxicity within appropriate tools 
making use of the right technology would allow the full exploita-
tion of the knowledge that such data can provide. 

 Large pharma organizations can typically count on many years 
of drug discovery and research conducted across several sites on a 
signifi cant number of therapeutic areas, pharmacological targets, 
and molecules. This translates into a large amount of complex 
datasets, stored in different repositories or Laboratory Information 

5.2  Data Collection, 
Organization, 
Availability, 
and Interpretation 
for In Vivo Toxicity 
Studies
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Management Systems (LIMS) each designed specifi cally to accom-
modate the data type of interest (e.g., histopathology, clinical 
observation, clinical pathology, PK, etc.). The organization of such 
wealth of information to generate specifi c knowledge from the 
integration of all of these data types has been considered several 
times in the past by many pharmaceutical companies. However, 
due to limited resources or inadequate technology, the outcome of 
such initiatives has often been disappointing. 

 In more recent years, there has been a tremendous focus across 
industries, not only pharma, to extract knowledge and identify pat-
terns or trends from large amounts of data, being either omics, 
market research, public preferences on digital movies rental [ 63 ], 
airplane estimated times of arrivals, or others. A lot of these initia-
tives often fall under the term “Big Data,” generally underlying the 
intention of large organizations to look deeper into their databases 
and assess whether an improvement in the way such data are orga-
nized, stored, made accessible, and mined may provide any advan-
tage for the business in terms of saving resources or increasing 
effi ciency via surfacing hidden value. 

 Along this line, Roche has been working on a number of “Big 
Data” projects across several areas of research and IT. One of them 
had the goal to integrate all in vivo nonclinical safety data gener-
ated by the company over the past 30 years across three research 
sites, two in the USA and one in Switzerland. The goal was to 
ensure that all different data types that are part of in vivo studies 
(i.e., histopathology, clinical observations, PK, clinical pathology, 
etc.) were brought together electronically in such a way that they 
could all be searched and made available at the same time to the 
user community. The scope for such a platform, internally called 
SDI (i.e., Safety Data Integration), is to allow scientists to identify 
specifi c patterns of fi ndings across species and their historical rele-
vance and correlations between molecular structures and toxico-
logical effects and, eventually, use the data to generate more reliable 
prediction algorithms. The application of a semantic data integra-
tion approach [ 64 ] for the harmonization of terms, formats, units, 
and taxonomy allowed the implementation of a nonclinical study 
warehouse including approximately 5,000 studies of different types 
which can be interrogated with very complex queries such as 
“Which compounds showed spleen hyperplasia and liver necrosis 
and lung leukocytosis and an AST increase >50 %?”, returning an 
answer in a matter of seconds. The identifi cation of studies and 
compound matching the query above, in the absence of properly 
designed data integration efforts, would have been extremely labor 
intensive and time consuming, if possible at all. 

 In addition, the SDI platform has been interfaced with other, 
already existing, internal databases, such as the chemical structures 
and the in vitro biology data repositories to further expand the 
data integration beyond toxicology allowing the users to assess the 
compound profi le in almost its entirety.  

The Use of In Silico Models Within a Large Pharmaceutical Company
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   As far as model development is concerned, the advantage of the 
platform described in Subheading  5.2  is the high data granularity 
available, down to the single animal level. 

 One of the challenges in the development of predictive models 
for complex end points, such as hepatotoxicity, is that the modeler 
is forced to make a generic classifi cation (hepatotoxic vs. non- 
hepatotoxic), often neglecting safety margins (vs. pharmacological 
activity), doses at which specifi c toxicity is seen, and ignoring the 
specifi c fi ndings and whether it is transient or not. This is because, 
more often than not, such information is not easily available. All 
these factors make such classifi cation relatively inaccurate: for 
example, paracetamol (or acetaminophen), an over-the-counter 
mild analgesic, commonly used to relieve headaches and reduce 
fever, is commonly classifi ed as hepatotoxic (as its overdose can 
cause fatal liver damage [ 65 ]). However, at doses as high as up to 
4 g per day in adults, paracetamol is regarded as totally safe and can 
comfortably be used (at lower doses, of course) even in infants. 
This example explains how critical and challenging a correct clas-
sifi cation is: it is correct to classify paracetamol as hepatotoxic, 
since an overdose would likely cause a fatal liver failure? However, 
in drug development settings, what type of decision can be made 
on a compound predicted to be hepatotoxic by a model based on 
the information gathered, among others, from paracetamol? 
Should this molecule be discontinued and any further investigation 
stopped before knowing what safety margins might there be with 
regard to its intended therapeutic indication? Disregarding this 
molecule immediately after a positive prediction bears the risk of 
losing a potentially valuable compound. Continuing the investiga-
tions to further profi le the molecule for future clinical develop-
ment may be the best option to get to a more solid data-driven 
decision on its potential to become a drug. The bottom line is that, 
in this context, the prediction model will have a negligible impact 
on the decision. 

 In order to strengthen the reliability of in silico models for the 
prediction of complex end points, all information generated by 
in vivo single- and repeat-dose studies should be made available in 
a clear and searchable way at the highest possible level of details. 
This would allow experts to generate very specifi c models by mak-
ing the correct compound classifi cations for very specifi c fi ndings 
via a preliminary and careful data analysis. For example, it will be 
possible to have models for AST and ALT increases above 50 % vs. 
control groups or for the prediction of bilirubinemia, moving away 
from a nonspecifi c, for example, “hepatotoxicity” classifi cation. 
This approach would, in principle, also make the identifi cation of 
sound mechanisms of action for the specifi c observed toxicities a 
bit easier to address.   

5.3  Possible Model 
Generation
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6    Future Perspectives 

   On December 18, 2014, FDA issued the binding guidance titled 
“Providing Regulatory Submissions In Electronic Format—
Standardized Study Data” [ 66 ] that requires Investigational New 
Drug (IND), New Drug Application (NDA), Abbreviated New 
Drug Application (ANDA), and Biologics License Application 
(BLA) submissions to be made in a standardized electronic format. 
The Clinical Data Interchange Standards Consortium (CDISC) 
Standard for Exchange of Nonclinical Data (SEND) is intended to 
guide the structure and format of standard nonclinical datasets for 
interchange between sponsors and contract research organizations 
(CROs) and for submission to the US FDA. 

 The current version of the SEND Implementation Guide 
(SENDIG v.3.0) is designed to support single-dose general toxi-
cology, repeat- dose general toxicology, and carcinogenicity 
studies. 

 The guidance requires submission of nonclinical safety studies 
in SEND format for the study types currently supported. In the 
near future, the standard will be expanded to include additional 
study types, such as safety pharmacology (cardiovascular and respi-
ratory) and developmental and reproductive toxicology, which will 
also be required. 

 The guidance further stipulates that published FDA-specifi c 
SEND validation rules will be enforced for all submitted datasets. 
The agency may refuse to fi le (for NDAs and BLAs) or refuse to 
receive (for ANDAs) an electronic submission that does not have 
study data in conformance to the required standards. 

 Under the guidance, supported studies (included in NDA, 
ANDA, and certain BLA submissions) starting after December 18, 
2016, must be submitted in SEND. 

 For IND submissions supported studies starting after 
December 18, 2017 must be submitted in SEND. 

 Currently nonclinical safety data is provided as tabulated data 
within PDF study reports. Original electronic data, generated in- 
house, is normally stored on the originating LIMS systems until it 
is archived. In the case of CRO studies, original electronic data is 
typically not made available unless explicitly requested by the spon-
sor. The FDA now requires that, in addition to the PDF reports, 
the original electronic data also be submitted in SEND format.  

 While it is possible to build a SEND dataset manually, the pro-
cess is labor intensive, error prone, and very diffi cult to validate. 
Given the fact that data comprising a study may come from mul-
tiple data sources, the challenge becomes unworkable. 

 An automated or semiautomated computerized system that 
can accurately and consistently transform original non-SEND data 
from multiple sources to the SEND standard and validate SEND 

6.1  SEND Model 
and Data Exchange 
with FDA
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data following published rules is required. Oversight, tools, and 
processes for ensuring that source datasets are collected, curated, 
transformed to SEND, and made available for submission in an 
effective manner are also required. 

 Currently, FDA pharm/tox reviewers analyze the submitted 
study reports by manually extracting the tabulated data contained 
in the appendices of the PDF documents and loading them into 
any number of tools they see fi t for visualizing and reviewing it. 
This fi rst step is labor intensive and time consuming. 

 With the recently issued guidance for e-submissions, FDA 
reviewers have the opportunity to receive the study data directly in 
the appropriate format into one single platform called Nonclinical 
Information Management System (NIMS). FDA will use NIMS 
also to visualize the data, run their analyses, and draw their conclu-
sions on the studies under review. 

 This approach will allow FDA reviewers to save time on data 
curation and formatting aspects and free resources for more in- 
depth scientifi c analyses, also leveraging the large amount of infor-
mation and knowledge that NIMS will be capturing over the 
coming years. 

 Since clinical data is also electronically exchanged via standard-
ized models (  www.cdisc.org    ), it can be expected that one day, clini-
cal and nonclinical data will be integrated under one single 
platform, which would represent a signifi cant milestone in transla-
tional medicine arena.  

   Analysis of reasons for previous failures and exploitation of them 
should help in improving the effi ciency of clinical development of 
new drugs and their safety profi les. So far, preclinical study reports 
have been rarely stored in a format that supports data mining or 
statistical analysis. Some pharmaceutical companies have realized 
these hidden treasures in their archives and started internal work to 
improve retrievability of their report data. It would clearly be of 
benefi t to the whole industry to analyze these data across multiple 
companies in order to expand the chemical and biological space. 
However, extracting these data from the reports and building such 
a database requires considerable investment. Recent advances 
achieved in international initiatives, including IMI’s eTOX project, 
have shown that sharing of preclinical data, both private and pub-
lic, is achievable through the combination of legal (IP), IT, and 
honest broker concepts ([ 3 ,  67 ];  see  Fig.  11 ).

   The eTOX project aims to collect, extract, and organize pre-
clinical safety data from pharmaceutical industry legacy study 
reports and publically available toxicology data into a searchable 
database to facilitate data mining and the development of innova-
tive in silico models and software tools to predict potential safety 
liabilities of small molecules. The eTOX consortium consists of 13 
pharmaceutical companies, 11 academic institutions, and 6 SMEs 

6.2  Data Sharing 
Initiatives

Alessandro Brigo and Wolfgang Muster
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working together under the sponsorship of the Innovative 
Medicines Initiative (IMI) since 2010. The participating partners 
embrace expert knowledge in computational modeling, toxicol-
ogy, pathology, and database design, liaising within the project in 
an integrative working environment. 

 After establishing an effective data sharing intellectual property 
(IP) protection within an “honest broker” approach ( see  Fig.  11 ), 
the project was able to compile a unique, well-curated dataset of 
currently more than 6,000 study reports, corresponding to ca. 
1800 test compounds. The concept to divide the results from the 
legacy reports of the pharmaceutical companies in different “con-
fi dentiality classes” was fundamental to facilitate data sharing and 
overcome IP and legal hurdles. Public data (class 1) are accessible 
to the public on request, nonconfi dential data (class 2) are open 
for eTOX consortium members, confi dential data (class 3) are only 
accessible within the consortium with an additional secrecy agree-
ment, and private data (class 4) are only for EFPIA data owners, 
but can be shared for model generation on request. 

 Treatment-related fi ndings have been classifi ed within the 
database, refl ecting the interpreted study outcome of every report. 
A suite of ontologies, built through OntoBrowser now released by 
eTOX to the public domain, enables the user to directly compare 
observed effects or toxicities of chemically similar structures 
(read-across). 

  Fig. 11    The overall setup of the eTOX project       
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 A new in silico tool—eTOXsys—has been developed with a 
single user interface, which manages search queries on the high- 
quality preclinical database and organizes requests to a steadily 
growing collection of independent prediction models. Aspects of 
IP rights for data sharing, defi nition of ontologies, design of data-
base structure, development of in silico models, data analysis, vali-
dation, and sustainability are key aspects of the eTOX project.      
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  Abstract 

   The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important 
role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are 
applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general 
recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline 
stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR pre-
diction methodologies complementing each other: a statistical-based method and an expert rule-based 
method. 

 Based on our consultant experience, we describe here a framework for in silico assessment of muta-
genic potential of drug impurities. Two main applications of in silico methods are presented: (1) support 
and optimization of drug synthesis processes by providing early indication of potential genotoxic impuri-
ties and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 
guideline. Some critical case studies are also discussed.  

  Key words     Genotoxic impurities  ,   In silico methods  ,   (Q)SAR  ,   Statistical-based methods  ,   Expert rule-
based methods  ,   ICH M7  

1      Introduction 

 In silico modeling, such as (quantitative) structure-activity rela-
tionships ((Q)SARs) and molecular modeling, have been widely 
used in drug discovery, drug development, and regulatory pur-
poses. In the current chapter, the focus will be primarily on the use 
of (Q)SARs for the evaluation of the genotoxic potential of drug 
impurities. 

 Drug impurities are defi ned as any component of the drug 
substance or drug product that is not the drug substance or an 
excipient (i.e., inactive constituent) and that can arise from drug 
synthesis or subsequent degradation, as well as from external 
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 contamination. In the regulatory framework for pharmaceuticals, 
specifi c guidelines exist for the qualifi cation and control of the 
majority of the impurities, e.g., the International Conference on 
Harmonisation (ICH) Quality Guidelines Q3A (“Impurities in 
New Drug Substances”) [ 1 ] and Q3B (“Impurities in New Drug 
Products”) [ 2 ] and the ICH Multidisciplinary Guideline M3 
(“Nonclinical Safety Studies for the Conduct of Human Clinical 
Trials and Marketing Authorizations for Pharmaceuticals”) [ 3 ]. 
Recently, a new guideline (ICH M7) was introduced for the iden-
tifi cation, categorization, qualifi cation, and control of DNA-
reactive (mutagenic) impurities to limit the potential carcinogenic 
risk of drugs [ 4 ]. The ICH M7 guideline outlines recommenda-
tions on the use of in silico structure-based methods for genotoxic-
ity assessment of drug impurities. According to ICH M7, 
computational (in silico) toxicology assessment should be per-
formed using two (Q)SAR prediction methodologies complement-
ing each other: a statistical-based method and an expert rule-based 
method. The employed (Q)SAR models should follow the interna-
tionally recognized principles for QSAR validation as defi ned by the 
Organisation for Economic Co-operation and Development 
(OECD) [ 5 ,  6 ]. According to the OECD principles, a QSAR model 
should (1) provide predictions for a defi ned endpoint; (2) be based 
on an unambiguous algorithm; (3) have a defi ned domain of appli-
cability; (4) be internally and externally validated by applying 
appropriate measures of goodness of fi t, robustness, and predictiv-
ity; and (5) provide a mechanistic interpretation of the prediction, 
when possible. The guideline recommendations state also that the 
outcome of any computer system-based analysis should be reviewed 
with the use of expert knowledge in order to provide additional 
supportive evidence on relevance of any positive or negative predic-
tion and to elucidate underlying reasons in case of confl icting 
results. The crucial role of the expert in the fi nal assessment is also 
highlighted in the literature [ 7 – 9 ]. 

 In the present chapter, a practical approach for in silico assess-
ment of mutagenic potential of drug impurities is described. The 
focus is on two main applications: (1) support and optimization of 
drug synthesis processes by providing early indication of potential 
genotoxic impurities and (2) regulatory evaluation of genotoxic 
potential of impurities in compliance with the ICH M7 guideline. 
Different approaches are proposed according to the specifi c appli-
cation of the in silico assessment, and some critical case studies are 
discussed based on our experience.  

2    Materials 

 In the toxicity framework, in silico predictions can be obtained by 
three main computational approaches: QSAR statistical-based 
methodologies, (Q)SAR expert rule-based methodologies, and 
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grouping approaches, which include read-across and chemical cat-
egory formation. A brief description of the three approaches, 
including the underlying theory and examples of tools implement-
ing these methods, is described in the following paragraphs. 

   The statistical-based QSAR method is a quantitative (mathemati-
cal) relationship between a numerical representation of the chemi-
cal structure (i.e., molecular descriptors) and a biological activity,  
physicochemical or fate property. Statistical-based QSARs are 
models based on experimental data, which extract the knowledge 
directly through a process of data mining and knowledge engineer-
ing. Thousands of molecular descriptors encoding for mono-, bi-, 
or tridimensional structural features (e.g., atom counters, topo-
logical descriptors, symmetry and steric descriptors) or chemical 
properties (e.g., LogP or electronic properties) have been pro-
posed and derived from different theories and approaches, with the 
aim to provide an “exhaustive” description of the chemical struc-
ture. At the same time, a wide range of algorithms are now avail-
able to identify the quantitative relationship between the structure 
and the studied property/activity and to build statistically robust 
and predictive QSAR models (e.g., multiple linear regression 
(MLR), partial least squares (PLS) regression, artifi cial neural net-
works (ANN), etc.). It follows that the majority of statistical-based 
QSARs are characterized by robust validation techniques and high 
predicting performances, and can provide predictions also when 
the mechanism of action is unknown. Additionally, several mathe-
matical/chemometrical metrics have been developed to defi ne 
model applicability domain and to measure the level of extrapola-
tion. On the other hand, in some cases, their predictions could 
miss a mechanistic reasoning and a clear interpretation, especially 
when based on complex algorithms and molecular descriptors, 
thus resulting “nontransparent” to the end user. 

 Nowadays, several tools (both commercial and freeware) are 
available coding QSAR statistical models for the prediction of 
mutagenic/genotoxic potential [ 10 – 14 ]. We routinely use an array 
of commercial and freely available tools in a weight of evidence 
approach. All the predictors we use fulfi ll the OECD principles for 
QSAR validation and are characterized by (1) wide and heteroge-
neous training set collected from valid sources (e.g., FDA—US 
Food and Drug Administration), (2) high robustness and external 
predictivity, (3) wide applicability domain, and (4) defi ned param-
eters for reliability assessment. Additionally they allow the user to 
visualize structure and experimental data of structural analogues, 
thus providing supporting information to further assess the predic-
tion. A brief description of these tools is as follows:

 ●     ACD/Percepta Impurity Profi ling  [ 15 ,  16 ] provides a bat-
tery of in silico models to accurately assess the genotoxic 

2.1  QSAR Statistical- 
Based Methodology

In Silico Prediction of Genotoxic  Impurities
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and carcinogenic potential of chemicals. The impurity 
profi ling module is a result of the collaboration between 
ACD/Labs and FDA Center for Food Safety and Applied 
Nutrition (CFSAN). This module includes probabilistic 
predictive models for 21 different endpoints that cover 
various mechanisms of hazardous activity (including 
mutagenicity, clastogenicity, DNA damage mechanisms, 
carcinogenicity, and endocrine disruption mechanisms) 
and that are based on experimental data obtained from 
FDA. Probabilistic predictive models were developed using 
GALAS modeling methodology [ 17 ]. Each GALAS model 
consists of two parts: (1) a global (baseline) model, built 
using binomial PLS method based on fragmental descrip-
tors, that refl ects a “cumulative” mutagenicity potential, 
and (2) local corrections that are applied to baseline pre-
dictions using a special similarity- based routine, after per-
forming an analysis for the most similar compounds used in 
the training set. The reliability of prediction is assessed in 
terms of reliability index (RI), which ranges from 0 to 1 
and takes into account the similarity of the target with the 
training set compounds and the consistency of experimen-
tal values for similar compounds. A “positive” or “nega-
tive” call is then provided if the compound can be reliably 
classifi ed on the basis of p-value (i.e., probability that a 
compound will result in a positive test in the respective 
assay) and RI values (“undefi ned” otherwise).  

 ●    ChemTunes Studio  is a knowledge base software consisting 
of experimental in vitro and in vivo toxicity information 
(QC’ed by experts) and in silico models for a series of 
human health toxicity endpoints, comprising the key 
genetic toxicity endpoints (i.e., Ames mutagenicity, chro-
mosome aberration, and in vivo micronucleus). The soft-
ware is made of multiple components, including genotoxic 
chemotypes (structural alerts); mechanistically informed 
(mode-of-action driven) QSAR models, i.e., an approach 
used at US FDA CERES (Chemical Evaluation and Risk 
Estimation System) [ 18 ,  19 ]; and comparison of the pre-
diction results to structural analogues. A mathematically 
rigorous and quantitative weight of evidence (WoE) deci-
sion theory approach is used to obtain the fi nal overall 
assessment and to provide a quantitative estimation of the 
uncertainty associated with the prediction. All ChemTunes 
Studio QSAR models consist of chemical mode-of-action 
category models as well as a general global model. The 
computational modeling approach is a hybrid of partial 
least squares (PLS)/ordinal logistic regression methods. 
For model building, global molecular and shape descrip-
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tors (from CORINA Symphony [ 20 ]) and quantum-
mechanic parameters are used. The models return 
probabilistic predictions (positive and negative probabili-
ties plus a quantitative estimate of the associated uncer-
tainty) and an overall prediction (positive/negative/
equivocal). Applicability domain analysis reports whether 
the target compound is out of domain. QSARs for bacterial 
reverse mutagenesis (Ames mutagenicity) are based on 
selected studies for more than 2200 structures, compiled 
from various sources, and including  S. typhimurium  and 
 E. coli  strains with and without metabolic activation.  

 ●    Leadscope Model Applier/Genetox QSAR Statistical Suite  
[ 21 ] is a chemoinformatic platform that provides QSARs 
for the prediction of potential toxicity and adverse human 
clinical effects, including the microbial in vitro  Salmonella  
mutagenicity model that is used by the US FDA (Food and 
Drug Administration) in their testing under the ICH M7 
Guidance for impurities [ 22 – 24 ]. The in vitro  Salmonella  
mutagenicity QSAR model was constructed by the FDA 
scientists based on a training set of over 3500 compounds 
(including both proprietary and nonproprietary data). The 
model is based on a wide set of molecular descriptors, 
including 369 substructural features and seven calculated 
properties, and on partial logistic regression (PLS) model-
ing technique. Model predictions consist of four possible 
results, i.e., “positive,” “negative,” “indeterminate,” or 
“not in domain,” and probability of a positive result. 
Predictions are provided together with several parameters, 
which can be used to assess the prediction in terms of appli-
cability domain (e.g., the presence in the target compound 
of model training set structural features and the presence of 
structural analogues in the training set).  

 ●    VEGA/CAESAR Mutagenicity  model is a QSAR model 
predicting mutagenicity developed under the EU project 
CAESAR [ 25 ] and implemented in the VEGA platform 
[ 26 ]. The QSAR model is based on a dataset  of 4225 com-
pounds and consists of an integrated model made of two 
complementary techniques: a machine learning algorithm 
(SVM), to build an early model with the best statistical 
accuracy, equipped with an expert facility for false negative 
removal based on known structural alerts, to refi ne its pre-
dictions. The reliability of predictions is assessed using an 
Applicability Domain Index (ADI) that ranges from 0 to 1 
and is calculated by grouping several other indices, each 
one taking into account a particular issue of the applicabil-
ity domain (i.e., the presence of similar compounds in the 
training set, the consistency of their experimental data and 
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their prediction accuracy, the presence in the target of 
structural fragments possessed by training set compounds, 
and the range of values of modeling descriptors).     

   The (Q)SAR expert rule-based (or knowledge-based) method 
relies on rules derived from toxicological knowledge, which are 
likely to have strong mechanistic basis, used to make predictions 
about a defi ned adverse effect. In the expert rule-based systems, 
human experts identify structural fragments related to the studied 
effect. The examination of a series of chemicals sharing the same 
fragment (“structural alert”—SA) is used to detect the toxic effect 
(e.g., genotoxic or not); the chemical information is simply the 
fragment and the algorithm is, in this case, the rule. The expert 
rule-based systems have several advantages, e.g., they are mecha-
nistically connected to the predicted activity, provide reasoning for 
the predictions, and in many cases support the prediction with lit-
erature references or expert knowledge. On the other side, applica-
bility domain measures for expert systems are not well defi ned 
[ 27 ], and usually it is not possible to discriminate active from inac-
tive chemicals bearing the same structural alert. The accuracy in 
prediction is mostly comparable to statistical-based QSARs; how-
ever, expert systems tend to exhibit a higher sensitivity at the cost 
of a lower specifi city (SAs are conservative), whereas the statistical-
based QSARs show the opposite behavior [ 28 ]. 

 Several tools (both commercial and freeware) are now available 
coding expert rule-based systems [ 10 – 14 ]. In some tools, expert 
systems are combined with statistical-based models (the so-called 
hybrid systems), in order to provide supporting knowledge-based 
evidence to QSAR predictions. For our consultant activities, we 
routinely use an array of commercial and freely available tools in a 
weight of evidence approach. The predictors in use are based on 
wide sets of chemicals and alerts and provide means to assess the 
reliability of predictions. A brief description of these tools is as 
follows:

 ●     ACD/Percepta Impurity Profi ling  [ 15 ,  16 ] is supplemented 
with a knowledge-based expert system that identifi es 
potentially hazardous structural fragments that could be 
responsible for genotoxic and/or carcinogenic activity of 
the compound of interest. The expert system contains a list 
of 70 alerting groups of toxicophores, of which 33 repre-
sent mutagens, 24 clastogens, and 13 epigenetic carcino-
gens (androgens, peroxisome proliferators, etc.). The alert 
list is not limited to directly acting substructures, such as 
planar polycyclic arenes, aromatic amines, quinones, and 
N-nitro and N-nitroso groups, but also includes various 
fragments that may undergo biotransformation to reactive 
intermediates. Each hazardous fragment is provided with a 

2.2  (Q)SAR Expert 
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description of its mechanism of action, literature refer-
ences, and  z -scores.  z -Scores show whether the presence of 
the fragment leads to a statistically signifi cant increase in 
the proportion of compounds with a positive test result for 
a particular assay. The identifi ed alerting groups are high-
lighted on the structure of the molecule and the fi ve most 
structurally similar structures from the training set, along 
with experimental results, are shown.  

 ●    ChemTunes Studio  includes, in addition to QSAR statistical- 
based models, genotoxic chemotypes (structural alerts), 
developed from mechanistic hypothesis; each alert is pro-
vided with likelihood prioritization, so that alerts can be 
used when combining the different information at the 
WoE stage. A knowledgebase was built and curated for a 
large dataset (over 8000 compounds) of Ames mutagenic-
ity data from public sources. The reliability of each alert is 
determined by exploring the ability of the alert to hit posi-
tive compounds in a large training set. Different training 
sets were used for the QSAR models and the alerts, so that 
predictions from these are independent.  

 ●    Leadscope Model Applier/Genetox Expert Alerts Suite  is 
implemented as part of the Leadscope Model Applier (in 
addition to the existing statistical-based QSAR model) 
[ 21 ]. To develop this system, an initial library of mutagen-
icity structural alerts was identifi ed from the literature. 
Information on plausible mechanisms was collected as well 
as the structural defi nitions. Factors that deactivate the 
alerts were also identifi ed from the literature and through 
an analysis of the corresponding data using the Leadscope 
data mining software. Over 200 distinct alerts are encoded 
in the system. These alerts were further validated against a 
reference database of over 7000 chemicals with known 
bacterial mutagenesis results. A confi dence score based 
upon information collected for each alert is provided 
alongside the positive or negative call. Up to ten structur-
ally similar structures from the alert reference set, along 
with experimental results, are provided.  

 ●    Toxtree  [ 29 ] is a fl exible and user-friendly open-source 
application that places chemicals into categories and pre-
dicts various kinds of toxic effects by applying decision tree 
approaches. The decision tree for estimating mutagenicity 
is based on discriminant analysis and structural rules as 
described in Benigni et al. [ 30 ]. It estimates in vitro (Ames 
test) mutagenicity, based on a list of 30 structural alerts 
(SAs). As one or more SAs embedded in a molecular struc-
ture are recognized, the system fl ags the potential muta-
genicity of the chemical. The use of Toxtree Benigni-Bossa 
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decision tree implemented in VEGA platform [ 26 ] allows 
the user to assess the reliability of predictions by means of 
the Applicability Domain Index (ADI) calculated in VEGA 
and to visualize chemical structure and experimental data 
for the most similar structures in Toxtree alert training set.     

   Chemical grouping approaches are based on the formation of 
chemical “categories” or “analogues,” composed by groups of 
chemicals whose physicochemical, (eco-)toxicological, and/or 
environmental fate properties are likely to be similar or follow a 
regular pattern. This can be the result of a structural similarity or 
other similarity characteristics (e.g., common mechanism of 
action). In principle, the chemical category is composed by several 
members, enabling the detection of trends across endpoints, while 
the grouping by analogue approach is based on a limited number 
of chemicals, where trends in properties are not apparent [ 31 ]. In 
these cases, predictions are generated by applying the “read-across” 
method. In the read- across technique, the endpoint information 
for one chemical is used to predict the same endpoint for another 
chemical, which is considered “similar” in some way (usually based 
on structural similarity). The chemical(s) being used to make an 
estimate is commonly referred to as a “source chemical(s),” 
whereas the chemical for which the endpoint is being estimated is 
referred to as a “target chemical.” The read-across methodology is 
currently accepted to fi ll data gaps in the regulatory framework, 
basically for the transparency and interpretability of the approach 
and of the fi nal outcome. However, read-across is not a formalized 
approach (i.e., it is not based on a defi ned and reproducible algo-
rithm), and the obtained predictions strongly depend on the expert 
judgment. For these reasons, specifi c guidelines on how to per-
form a read-across study in order to be accepted for regulatory 
purposes (e.g., REACH) have been developed [ 32 ]. According to 
this guideline, any read-across analysis should be supported by a 
detailed documentation to be provided according to the defi ned 
read-across reporting formats [ 31 ,  33 ]. 

 The OECD QSAR Toolbox [ 34 ] is the main tool we use to 
perform read-across predictions [ 35 ]. It was developed by the 
OECD to use (Q)SAR methodologies to group chemicals into cat-
egories and to fi ll data gaps by read-across and trend analysis. It is 
currently recommended and released by the European Chemicals 
Agency (ECHA) in collaboration with OECD. The Toolbox incor-
porates information and tools from various sources into a logical 
workfl ow, which supports the user to carry out read-across studies 
through the identifi cation of relevant structural characteristics and 
potential mechanism or mode of action of a target chemical, the 
identifi cation of other chemicals that have the same structural 
characteristics, and/or mechanism or mode of action and the use 
of existing experimental data to fi ll the data gaps. Another freely 
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available software useful to assist users for read-across evaluations 
is ToxRead [ 36 ]. ToxRead was recently developed by IRCCS 
(Istituto di Ricerche Farmacologiche Mario Negri), Politecnico di 
Milano, and KODE within a joint collaboration between the LIFE 
projects CALEIDOS and PROSIL and offers a workfl ow to gener-
ate read-across predictions with high reproducibility.  

   Any predictive model is by defi nition a simulation of reality, and 
therefore it will never be completely accurate. The same applies to 
(Q)SARs. As discussed in the previous paragraphs, each computa-
tional approach, i.e., statistical-based, expert rule-based, or read- 
across approach, has its own advantages and weaknesses. Likewise, 
each (Q)SAR model is characterized by distinctive predictive per-
formances (e.g., sensitivity versus specifi city) and a defi ned applica-
bility domain (i.e., no QSAR model can be applied to every 
chemical of interest), thus providing different partial “views” of 
the whole picture. Thus, the most reasonable way to get the best 
out of several views and achieve accurate predictions is to combine 
predictions from different models and approaches in a weight of 
evidence approach [ 37 – 39 ]. A weight of evidence (WoE) approach 
involves an assessment of the values and relative weights of differ-
ent pieces of available information [ 40 ]; in our case, it implies an 
assessment of different in silico predictions taking into account the 
reliability of each prediction and the concordance among different 
predictions. This can be achieved either in an objective way by 
using a formalized procedure or by using expert judgment. Some 
tools, such as ChemTunes and Leadscope Model Applier, provide 
algorithms for the calculation of WoE (or consensus) predictions 
based on the combination of predictions from statistical- and 
expert rule-based models as well as experimental data. It has been 
broadly demonstrated that the complementary use of statistical-
based and expert-based approaches, supplemented by expert 
knowledge, improves prediction accuracy [ 8 ,  11 ,  14 ,  41 ].   

3    Methods 

    In silico methods can be effi ciently employed in the early stages of 
drug development for the screening and identifi cation of potential 
genotoxic impurities, thus providing useful information to opti-
mize the design of the synthesis scheme. When in silico methods 
are used for screening purposes, the integration of statistical-based 
and knowledge-based approaches is not mandatory, and a less 
detailed documentation of the burden of proof is required. Our 
procedure for an early indication, by means of in silico methods, of 
the potential genotoxicity of impurities is described and summa-
rized in Fig.  1 .

2.4  Weight 
of Evidence Approach

3.1  Early Indication 
of Potential Genotoxic 
Impurities
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     1.    Characterization of the target impurity by means of chemical 
names, registry number, structure identifi ers (e.g., SMILES, 
InChI), chemical structure, and properties (e.g., molecular 
weight, molecular formula).   

   2.    QSAR statistical-based prediction of bacterial mutagenicity:
    (a)     Combined use of multiple tools for the prediction of geno-

toxicity as microbial in vitro  Salmonella  (Ames test). For 
 screening purposes, statistical-based QSAR models are usu-
ally preferred than knowledge-based approaches because of 
their higher accuracy and wider applicability [ 42 ]. Among 
the available predictors based on a statistical approach, we 
are currently using ACD/Labs Percepta, Leadscope Model 
Applier, and the CAESAR Mutagenicity model imple-
mented in VEGA, while ChemTunes is going to be inte-
grated. These predictors are particularly indicated for 
screening purposes since they are characterized by wide and 
heterogeneous training set (including drug substances), 
external predictivity, and wide applicability domains.   

   (b)     Assessment of the prediction reliability taking into account 
multiple issues, e.g., (i) whether the target impurity falls 
within the applicability domain of the model, (ii) whether 
and how the target impurity is represented in the training 
set by analyzing the structural analogues included in the 
training sets, (iii) prediction accuracy of the identifi ed ana-
logues, and (iv) consistency between the analogues’ exper-
imental test results (Ames test) and the prediction for the 
target impurity. Identifi cation of the proper analogues is a 
critical step and depends on the methodology used to 
measure chemical similarity. Defi ning chemical similarity 
measures to infer mutagenic potential as well as approaches 
to assess the reliability of predictions is still an open chal-
lenge [ 43 ].   

   (c)     Generation of a WoE prediction, i.e., positive/negative for 
microbial in vitro  Salmonella , taking into account only 

  Fig. 1    Workfl ow for early indication of potential genotoxic impurities       

 

Manuela Pavan et al.



521

reliable predictions. If different predictors, based on differ-
ent training molecules, molecular descriptors, and model-
ing approaches, lead to consistent results, then a higher 
level of confi dence in the in silico prediction is achieved. If 
equally reliable but not consistent results are provided by 
different predictors, then the most conservative outcome, 
i.e., positive, should be concluded. Examples on how to 
deal with critical case studies, e.g., not consistent and/or 
unreliable predictions, are commented in Subheading  4  
( Notes 1 – 5 ).       

   3.    Documentation of the results. The predictions provided by the 
different tools together with the performed WoE analysis are 
described in a detailed report.    

     According to ICH M7 guideline, hazard assessment of genotoxic 
impurities fi rst involves an analysis of actual and potential impuri-
ties, based on experimental carcinogenicity and bacterial mutagen-
icity data available from database and literature. If such data are not 
available, in silico (Q)SAR assessment of the impurities should be 
performed to provide predictions for bacterial mutagenicity. As a 
result of the hazard assessment, drug impurities are assigned to one 
of the fi ve classes summarized in Fig.  2 , and specifi c control actions 
are suggested [ 4 ].

3.2  Regulatory 
Evaluation 
of Genotoxic Potential 
of Impurities (ICH M7 
Guideline)

  Fig. 2    Impurities classifi cation with respect to mutagenic and carcinogenic potential       
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    The ICH M7 guideline states that the computational toxi-
cology assessment should be performed by using two (Q)SAR 
prediction methodologies that complement each other, i.e., a 
statistical-based and an expert rule-based methodology. In addi-
tion, expert analysis including read-across is applied to provide 
additional supportive evidence on the predictions and/or to 
solve confl icting results. It is here described our stepwise proce-
dure for regulatory in silico assessment of genotoxic impurities. 
The procedure is also summarized in the workfl ow of Fig.  3 .

     1.    Characterization of the target impurity (i.e., chemical names, 
structure identifi ers, chemical structure, and properties)   

   2.    QSAR statistical-based prediction of bacterial mutagenicity:

    (a)     Combined use of multiple statistical-based QSAR models 
for the prediction of genotoxicity as microbial in vitro 
 Salmonella  (Ames test).   

   (b)     Assessment of the reliability of the predictions provided by 
the individual statistical-based tools as described in 
Subheading  3.1  ( step 2b ).   

   Table 1  
  Examples of critical case studies for in silico assessment of genotoxic impurities   

 No.  Statistical-based WoE  Expert rule-based WoE  Read-across study 

 Conclusive 
in silico 
assessment 

 1  NEGATIVE  OUT OF DOMAIN/
INCONCLUSIVE 

 NEGATIVE based on 
negative source 
chemical(s) (e.g., the 
API or structural 
related impurities) 

 NEGATIVE 

 2  OUT OF DOMAIN/
INCONCLUSIVE 

 NEGATIVE  NEGATIVE based on 
negative source 
chemical(s) 

 NEGATIVE 

 3  OUT OF DOMAIN/
INCONCLUSIVE 

 POSITIVE based on alert X  NEGATIVE based on 
negative source 
chemical(s) possessing 
the same alert X 

 NEGATIVE 

 4  NEGATIVE  POSITIVE based on alert X  NEGATIVE based on 
negative source 
chemical(s) possessing 
the same alert X 

 NEGATIVE 

 5  NEGATIVE  POSITIVE based on alert X  NOT FEASIBLE/
POSITIVE positive 
source chemical(s) 
possessing the same 
alert X 

 POSITIVE 
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   (c)     Computation of the statistical-based WoE prediction, i.e., 
positive/negative for microbial in vitro  Salmonella , based 
on the employed statistical-based tools. The level of confi -
dence of the WoE prediction (e.g., unreliable, borderline, 
moderate, or highly reliable) is defi ned taking into account 
the reliability and consistency of the predictions obtained 
by the individual employed statistical-based tools.       

   3.    (Q)SAR expert rule-based prediction of bacterial mutagenicity:
    (a)     Combined used of multiple expert rule-based methods for 

the prediction of genotoxicity as microbial in vitro 
 Salmonella  (Ames test). Among the available knowledge-
based tools, we are currently using ACD/Labs Percepta, 
Leadscope Model Applier, and the Toxtree in vitro muta-
genicity (Benigni-Bossa) decision tree implemented in 
VEGA. The novel expert system implemented in 
ChemTunes based on genotoxic chemotypes is going to 
be integrated in our in silico assessment. These tools pro-
vide a positive, negative, or inconclusive prediction based 
on the identifi cation of one or more structural alerts for 
mutagenicity, as well as the means to assess the reliability 
of the prediction (as discussed in the next step). Particular 
attention is paid to negative (“non-genotoxic”) predic-
tions based on the absence of structural alerts. In fact, the 
absence of any known structural alerts is NOT a suffi cient 
evidence for a lack of effect, and there is the possibility that 
the target impurity may act through an unknown mecha-
nism of action, for which structural alerts have not been 
developed yet.   

   (b)     Assessment of the reliability of the predictions provided by 
the expert SA-based tools. Although structural alerts often 
lack an adequately defi ned applicability domain [ 27 ], the 

  Fig. 3    Workfl ow for regulatory evaluation of potential genotoxic impurities       
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level of confi dence of the predictions can be assessed focus-
ing on the following issues: (i) whether the target impurity 
is suffi ciently represented in the training set, in terms of 
structural similarity, chemical fragments, or other struc-
tural features represented in the training set; (ii) relevance 
of the identifi ed alert, i.e., the alert is characterized by a 
statistically signifi cant higher frequency in genotoxic com-
pounds compared to non-genotoxic (from the training 
set); (iii) precision of the identifi ed alert, i.e., accuracy of 
the alert in the correctly predicted genotoxic compounds 
(i.e., true positive rate); and (iv) consistency between the 
experimental test results (Ames test) of the identifi ed ana-
logues (particularly those sharing the same alert(s)) and 
the predicted outcome of the target impurity. If no struc-
tural alerts for genotoxicity are identifi ed, a proper reliabil-
ity assessment is not applicable. In these cases, a detailed 
analysis of the structural analogues with no alerts and the 
precision of the expert system toward training compounds 
with no alerts is recommended [ 13 ].   

   (c)     Generation of the expert rule-based WoE prediction, i.e., 
positive/negative for microbial in vitro  Salmonella , based 
on the employed expert rule-based tools. The level of con-
fi dence of the WoE prediction is defi ned taking into 
account the reliability and consistency of the predictions 
obtained by individual tools.       

   4.    Generation of the fi nal WoE prediction, i.e., positive/negative 
for microbial in vitro  Salmonella , based on the integration of 
the outcome of the statistical-based and expert rule-based 
WoE predictions. The level of confi dence of the WoE predic-
tion is defi ned taking into account the reliability and consis-
tency of the predictions obtained by the two approaches. In 
case of confl icting results and/or weak WoE assessment (i.e., 
low reliability), either we conclude for a predicted genotoxic 
potential (conservative scenario) or, preferably, we integrate 
the in silico assessment with a read-across study (as described 
in  step 5 ). It is important to highlight that the WoE approach 
is not an automatic procedure, rather an assessment based on 
expert judgment performed on a case-by-case analysis of the 
predictions. Examples on how to deal with some critical case 
studies, e.g., not consistent and/or unreliable predictions, 
are commented in Subheading  4  ( Notes 1 – 5 ).   

   5.    Read-across study to provide additional supportive evidence 
on the predictions and/or to solve confl icting results. From 
our consultancy experience, the source chemical(s) is often 
suggested by the commissioner and could be either the API 
(active  pharmaceutical ingredient), compounds related to the 
drug substance (e.g., process intermediates), or structurally 
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related impurities, for which the commissioner already con-
ducted an experimental Ames test. Alternatively, an extensive 
search in the literature and in open databases (e.g., DSSTox 
[ 44 ], ECHA CHEM [ 45 ], NTP [ 46 ], GENE-TOX [ 47 ], etc.) 
is performed to identify the most appropriate source(s) for the 
target impurity. The read-across study is performed and docu-
mented according to the guidance document on the grouping 
of chemicals (including read-across and chemical categories) 
[ 31 – 33 ]. The OECD QSAR toolbox is employed to identify 
the functional groups (by applying the Organic Functional 
Groups (OFG) system) and to profi le the source and target 
chemicals by describing their foreseen mechanism of action 
relevant for mutagenic activity. Two general mechanistic pro-
fi lers, namely, DNA binding by OECD and DNA binding by 
OASIS v.1.2, and three endpoint-specifi c profi lers, namely, 
DNA alerts for AMES, MN, and CA by OASIS v.1.2, in vitro 
mutagenicity (Ames test), and in vivo mutagenicity (micronu-
cleus) alerts by ISS, are used being the most meaningful profi l-
ers for genotoxicity available in the toolbox [ 48 ].   

   6.    Conclusion from the in silico assessment on the potential 
genotoxicity of the target impurity, based on results of the two 
QSAR prediction methodologies, i.e., a statistical-based 
method and an expert rule-based method, and the supporting 
evidence coming from the read-across study.   

   7.    Documentation of the results. The predictions provided by the 
different tools and approaches, together with the performed 
WoE analysis, are described in a detailed report.    

4         Notes 

 The interpretation of results from a (Q)SAR assessment of geno-
toxic impurities is not always straightforward, and several issues are 
commonly encountered. Thus, the role of the expert is crucial to 
build up a WoE prediction by an integrated approach, which con-
siders information gained by various techniques, to provide addi-
tional supportive evidence on relevance of any positive or negative 
prediction and to elucidate underlying reasons in case of confl ict-
ing or inconclusive results. Some examples of critical and real case 
studies are reported and illustrated in Table  1 . In all cases, three 
statistical-based models, i.e., ACD/Percepta Impurity Profi ling (in 
vitro  Salmonella  model), Leadscope Model Applier/Genetox 
QSAR Statistical Suite (microbial in vitro  Salmonella  model), and 
VEGA/CAESAR Mutagenicity model, were employed together 
with three expert rule-based systems, i.e., ACD/Percepta Impurity 
Profi ling (in vitro  Salmonella  expert system), Leadscope Model 
Applier/Genetox QSAR Expert Suite (Bacterial Mutation), and 
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the Toxtree in vitro mutagenicity (Benigni-Bossa) decision tree 
implemented in VEGA platform.

    1.    Case study 1: The target impurity is reliably predicted as nega-
tive by the statistical-based approach, while the prediction 
obtained by the expert rule-based approach is not reliable 
(“out of domain”) or inconclusive. In this case, it is not possi-
ble to derive a robust WoE prediction, since two approaches 
are required by the ICH M7 regulation, and the read-across 
approach is suggested to provide further evidence of the nega-
tive prediction.   

   2.    Case study 2: The prediction obtained from the statistical-
based approach is not reliable (“out of domain”), or inconclu-
sive, while the outcome of the expert rule-based approach is 
negative, based on the absence of structural alerts for genotox-
icity. Again, a read-across study is suggested to provide further 
evidence of the negative prediction.   

   3.    Case study 3: The prediction obtained from the statistical-
based approach is not reliable, or inconclusive, while the out-
come of the expert rule-based approach is a reliable positive 
prediction, based on the detection of one or more structural 
alerts for genotoxicity. In this case, it is not possible to derive a 
robust WoE prediction, and the read-across approach is sug-
gested to verify whether the presence of the alert induces (or 
not) a positive effect. If the identifi ed source chemical (e.g., 
the API or structural related impurities) shares with the target 
impurity the same structural alert (e.g., same structural alert in 
the same position and environment in the impurity and the 
source) and the source chemical is non-mutagenic, then the 
target impurity is predicted negative by the read-across (Class 
4 according to ICH M7). In this case, in agreement with the 
ICH M7 guideline, the read-across study overturns the expert 
rule-based prediction, and the fi nal in silico assessment con-
cludes for a negative prediction.   

   4.    Case study 4: Confl icting predictions are obtained applying 
the two different methodologies, e.g., negative outcome 
obtained with the statistical-based approach and positive out-
come obtained with the expert rule-based system. The WoE 
assessment, based on a precautionary approach, would con-
clude for a positive prediction, leading possibly to a false posi-
tive. The read- across approach is thus suggested to solve 
confl icting results. As discussed in case study 3, if the impurity 
shares with the source chemical the same structural alert and 
the source chemical is non-mutagenic, then the target impurity 
is predicted negative by the read-across (Class 4 according to 
ICH M7). Thus, the read- across study overturns the WoE 
assessment based on statistical- based and expert rule-based 
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predictions, and the fi nal in silico assessment concludes for a 
negative prediction.   

   5.    Case study 5: Confl icting predictions are obtained applying 
the two different methodologies, e.g., negative outcome 
obtained with the statistical-based approach and positive out-
come obtained with the expert rule-based system. As discussed 
in case study 4, the target impurity is predicted as suspect posi-
tive following a precautionary approach, and the read-across 
approach is suggested. If no structural analogues justifying the 
read-across study can be identifi ed or if the source chemical(s) 
possessing the structural alert identifi ed in the target impurity 
shows positive experimental Ames test results, then the in silico 
assessment concludes for a positive prediction. Hence, the tar-
get impurity must be submitted for experimental assessment of 
mutagenicity.    
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